Skip to main content
Log in

Temperature-dependent storage modulus of polymer nanocomposites, blends and blend-based nanocomposites based on percolation and De Gennes’s self-similar carpet theories

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Temperature-dependent storage modulus of polymer nanocomposites, blends and blend-based nanocomposites was studied using both analytical and experimental approaches. The analytical strategy comprised modeling the thermomechanical property of the systems based on parameters affecting the conversion degree of polymer chains in state-to-state transitions and mechanical characteristics of the polymer/polymer interface. Accordingly, percolation theory was developed to define the order of conversion rate and conversion degree of polymer chains considering the thermomechanical characteristics of the neat polymer matrix, behavior of nanoparticles in the system and formation of polymer/particle interphase region. The effect of interphase on a temperature-dependent conversion of polymer molecules was estimated based on De Gennes’s self-similar using the molecular characteristics of the adsorbed polymer chains and related scaling factor. To validate the model predictions, different neat, blend, nanocomposite and blend-based nanocomposite samples were prepared using high-density polyethylene, polyethylene terephthalate and hollow graphene oxide nanoparticles, where needed, and subjected to dynamic mechanical thermal analysis and other required tests. Besides providing acceptably accurate predictions in the case of all neat and nanocomposite samples, the model was proved to be independent of the system’s morphological variation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Misra A (2014) Applications of polymers in drug delivery. Smithers Information Limited, Shrewsbury

    Google Scholar 

  2. Chanda M, Roy SK (2008) Industrial polymers, specialty polymers, and their applications. New york, CRC

    Book  Google Scholar 

  3. Mandelkern L (1985) The relation between structure and properties of crystalline polymers. Polym J 17:337–350

    Article  CAS  Google Scholar 

  4. Dusunceli N, Colak OU (2008) Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers. Int J Plast 24:1224–1242

    Article  CAS  Google Scholar 

  5. Hojatzadeh S, Sharifzadeh E, Rahimpour F (2023) An EBM based multi-stage mechanical model to predict the time-dependent creep behavior of semi-crystalline polymer nanocomposites. Mech Mater 184:104737

    Article  Google Scholar 

  6. Hojatzadeh S, Rahimpour F, Sharifzadeh E (2023) A study on the synergetic effects of self/induced crystallization and nanoparticles on the mechanical properties of semi-crystalline polymer nanocomposites: experimental and analytical approaches. Iran Polym J 32:543–555

    Article  CAS  Google Scholar 

  7. Paul DR, Barlow JW (1979) A brief review of polymer blend technology. In: Cooper SL, Estes GM (eds) Multiphase polymers. American Chemical Society, Washington

    Google Scholar 

  8. Thomas S, Ajitha AR, Jaroszewski M (2023) Polymer blend nanocomposites for energy storage applications. Elsevier Science, Amsterdam

    Google Scholar 

  9. Muhammed Shameem M, Sasikanth SM, Annamalai R, Ganapathi Raman R (2021) A brief review on polymer nanocomposites and its applications. Mater Today Proc 45:2536–2539

    Article  CAS  Google Scholar 

  10. Sharifzadeh E, Maleki M (2022) An energy-based approach to study the aggregation/agglomeration phenomenon in polymer nanocomposites: dispersion force against inter-particle cohesion. Polym Compos 43:5145–5158

    Article  CAS  Google Scholar 

  11. Macosko CW, Jeon HK, Hoye TR (2005) Reactions at polymer–polymer interfaces for blend compatibilization. Prog Polym Sci 30:939–947

    Article  CAS  Google Scholar 

  12. Alkhodairi H, Russell ST, Pribyl J, Benicewicz BC, Kumar SK (2020) Compatibilizing immiscible polymer blends with sparsely grafted nanoparticles. Macromolecules 53:10330–10338

    Article  CAS  Google Scholar 

  13. Sharifzadeh E (2019) Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of Janus nanoparticles on polymer/polymer interface. Chin J Polym Sci 37:164–177

    Article  CAS  Google Scholar 

  14. Sharifzadeh E, Azimi N, Mohammadi R (2023) Improved thermostimulative shape memory behavior of HDPE/PET immiscible blend-based polymer nanocomposite using amphiphilic Janus nanoparticles. Polym Compos 44:1161–1174

    Article  CAS  Google Scholar 

  15. Nofar M, Salehiyan R, Ray SS (2021) Influence of nanoparticles and their selective localization on the structure and properties of polylactide-based blend nanocomposites. Compos B Eng 215:108845

    Article  CAS  Google Scholar 

  16. Su H, Hurd Price CA, Jing L, Tian Q, Liu J, Qian K (2019) Janus particles: design, preparation, and biomedical applications. Mater Today Bio 4:100033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharifzadeh E, Ghasemi I, Qarebagh AN (2015) Modeling of blend-based polymer nanocomposites using a knotted approximation of Young’s modulus. Iran Polym J 24:1039–1047

    Article  CAS  Google Scholar 

  18. Naffakh M, Díez-Pascual AM, Marco C (2016) Polymer blend nanocomposites based on poly(l-lactic acid), polypropylene and WS2 inorganic nanotubes. RSC Adv 6:40033–40044

    Article  CAS  Google Scholar 

  19. Wang JF, Carson JK, North MF, Cleland DJ (2010) A knotted and interconnected skeleton structural model for predicting Young’s modulus of binary phase polymer blends. Polym Eng Sci 50:643–651

    Article  CAS  Google Scholar 

  20. Sharifzadeh E, Ghasemi I, Karrabi M, Azizi H (2014) A new approach in modeling of mechanical properties of binary phase polymeric blends. Iran Polym J 23:525–530

    Article  CAS  Google Scholar 

  21. Seymour R (2012) Applications of polymers. Springer, Denver

    Google Scholar 

  22. Ahmad N, Zhang X, Yang S, Zhang D, Wang J, Zafar SU, Li Y, Zhang Y, Hussain S, Cheng Z, Kumaresan A, Zhou H (2019) Polydopamine/ZnO electron transport layers enhance charge extraction in inverted non-fullerene organic solar cells. J MaterChem C. 7:10795–10801

    CAS  Google Scholar 

  23. Sharifzadeh E, Cheraghi K (2021) Temperature-affected mechanical properties of polymer nanocomposites from glassy-state to glass transition temperature. Mech Mater 160:103990

    Article  Google Scholar 

  24. Godovsky YK (2012) Thermophysical properties of polymers. Springer, Berlin

    Google Scholar 

  25. Pourakbar E, Sharifzadeh E (2021) Synthesis of Janus/non-Janus hollow graphene oxide micro- and nanoparticles and the effects of their localization on the thermal conductivity of blend-based polymer composites. J Mater Sci 56:18078–18092

    Article  CAS  Google Scholar 

  26. Huang C, Qian X, Yang R (2018) Thermal conductivity of polymers and polymer nanocomposites. Mater Sci Eng R Rep 132:1–22

    Article  Google Scholar 

  27. Ahmad N, Liang G, Fan P, Zhou H (2022) Anode interfacial modification for non-fullerene polymer solar cells: recent advances and prospects. InfoMat 4:e12370

    Article  CAS  Google Scholar 

  28. Sharifzadeh E (2021) Evaluating the dependency of polymer/particle interphase thickness to the nanoparticles content, aggregation/agglomeration factor and type of the exerted driving force. Iran Polym J 30:1063–1072

    Article  CAS  Google Scholar 

  29. Huang J, Zhou J, Liu M (2022) Interphase in polymer nanocomposites. JACS Au 2:280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghadami H, Sharifzadeh E, Azimi N (2023) A scaling theory to approximate the thermal conductivity of the interphase region in polymer nanocomposites. J Reinf Plast Compos 1:07316844231197266

    Article  Google Scholar 

  31. Singh M, Chandra Pandey J (2022) Probing thermal conductivity of interphase in epoxy alumina nanocomposites. Polym Polym Comps 30:09673911221077489

    CAS  Google Scholar 

  32. Bansal A, Yang H, Li C, Benicewicz BC, Kumar SK, Schadler LS (2006) Controlling the thermomechanical properties of polymer nanocomposites by tailoring the polymer–particle interface. J Polym Sci B Polym Phys 44:2944–2950

    Article  CAS  Google Scholar 

  33. Ahmad N, Zhao Y, Ye F, Zhao J, Chen S, Zheng Z, Fan P, Yan C, Li Y, Su Z, Zhang X, Liang G (2023) Cadmium-free Kesterite thin-film solar cells with high efficiency approaching 12%. Adv Sci 10:2302869

    Article  CAS  Google Scholar 

  34. Sharifzadeh E, Mohammadi R (2021) Temperature-/frequency-dependent complex viscosity and tensile modulus of polymer nanocomposites from the glassy state to the melting point. Polym Eng Sci 61:2600–2615

    Article  CAS  Google Scholar 

  35. Bai Y, Keller T, Vallée T (2008) Modeling of stiffness of FRP composites under elevated and high temperatures. Compos Sci Techol 68:3099–3106

    Article  CAS  Google Scholar 

  36. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  37. De Gennes PG (1976) Scaling theory of polymer adsorption. J Phys 37:1445–1452

    Article  Google Scholar 

  38. Zare Y, Rhee KY (2017) Development of a conventional model to predict the electrical conductivity of polymer/carbon nanotubes nanocomposites by interphase, waviness and contact effects. Compos Part A Appl Sci 100:305–312

    Article  CAS  Google Scholar 

  39. Ader F, Sharifzadeh E, Azimi N (2023) A novel strategy to predict the tensile strength of polymer/particle interphase based on De Gennes’s self-similar carpet theory. Polym Eng Sci 1:1–9

    Google Scholar 

  40. Tang Z-H, Li Y-Q, Huang P, Fu Y-Q, Hu N, Fu S-Y (2021) A new analytical model for predicting the electrical conductivity of carbon nanotube nanocomposites. Compos Commun 23:100577

    Article  Google Scholar 

  41. Salzano de Luna M, Filippone G (2016) Effects of nanoparticles on the morphology of immiscible polymer blends: challenges and opportunities. Eur Polym J 79:198–218

    Article  CAS  Google Scholar 

  42. Ader F, Sharifzadeh E (2021) Rheological and mechanical behavior of blend-based polymer nanocomposites containing Janus and non-Janus silica nanoparticles. Colloid Polym Sci 299:1843–1852

    Article  CAS  Google Scholar 

  43. Sharifzadeh E, Parsnasab M (2021) Direct and reverse desymmetrization process in O/W pickering emulsions to produce hollow graphene oxide Janus micro/nano-particles. Colloid Surf A Physicochem Eng Asp 619:126522

    Article  CAS  Google Scholar 

  44. Cao J, Wang Y, Xiao P, Chen Y, Zhou Y, Ouyang J-H, Jia D (2013) Hollow graphene spheres self-assembled from graphene oxide sheets by a one-step hydrothermal process. Carbon 56:389–391

    Article  CAS  Google Scholar 

  45. Valencia C, Valencia CH, Zuluaga F, Valencia ME, Mina JH, Grande-Tovar CD (2018) Synthesis and application of scaffolds of chitosan-graphene oxide by the freeze-drying method for tissue regeneration. Molecules 23:2651

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sharma N, Sharma V, Jain Y, Kumari M, Gupta R, Sharma SK, Sachdev K (2017) Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol Symp 376:1700006

    Article  Google Scholar 

  47. Bitenieks J, Merijs Meri R, Zicans J, Buks K (2020) Dynamic mechanical, dielectrical, and rheological analysis of polyethylene terephthalate/carbon nanotube nanocomposites prepared by melt processing. Int J Polym Sci 2020:5715463

    Article  Google Scholar 

  48. Ader F, Sharifzadeh E (2022) Investigating the effects of hollow graphene oxide nanoparticles on the thermal/mechanical properties of polymer nanocomposites: experimental, analytical and simulation approaches. IJChE 18:71–83

    Google Scholar 

  49. Xavier P, Rao P, Bose S (2016) Nanoparticle induced miscibility in LCST polymer blends: critically assessing the enthalpic and entropic effects. Phys Chem Chem Phys 18:47–64

    Article  CAS  PubMed  Google Scholar 

  50. Gonzalez Ortiz D, Pochat-Bohatier C, Cambedouzou J, Bechelany M, Miele P (2020) Current trends in pickering emulsions: particle morphology and applications. Engineering 6:468–482

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Sharifzadeh.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1586 KB)

Supplementary file2 (MP4 4394 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, R., Sharifzadeh, E. & Azimi, N. Temperature-dependent storage modulus of polymer nanocomposites, blends and blend-based nanocomposites based on percolation and De Gennes’s self-similar carpet theories. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01300-1

Keywords

Navigation