Skip to main content
Log in

Synthesis of Janus/non-Janus hollow graphene oxide micro- and nanoparticles and the effects of their localization on the thermal conductivity of blend-based polymer composites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the effects of Janus, hydrophilic and hydrophobic hollow graphene oxide (HO) particles on the thermal conductivity of binary polymer blends were investigated. The HO Janus (HOJ) micro- and nanoparticles were synthesized via buoyancy-induced desymmetrization process. The characteristics of the produced HO and HOJ micro- and nanoparticles were investigated using FTIR, TGA, EDX, FE-SEM, centrifuge and contact angle tests. Different PS/PMMA micro- and nanocomposite samples were prepared via solution mixing and subjected to the thermal conduction test. The results revealed that the presence of HO micro- and nanoparticles in either phase could increase the conduction coefficient of the PS/PMMA blend (K) though their simultaneous presence in both phases had significantly more impact on K. On the other hand, comparing the results of the blend samples with and without HOJ micro- and nanoparticle defined an outstanding improvement in the thermal conductivity of the polymer/polymer interface due to the presence of Janus particles. Also, the thermal stability of the samples decreased with the increment of their thermal conductivity and this effect was more significant in the case of the samples containing both HO and HOJ micro- and nanoparticles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Candlin JP (2008) in Chalmers JM, Meier RJ (eds) Comprehensive Analytical ChemistryElsevier, Hungary

  2. Nayak SK, Mohanty S, Unnikrishnan L (2017) Trends and applications in advanced polymeric materials. Wiley, Hoboken

    Book  Google Scholar 

  3. Subramanian MN (2017) Polymer blends and composites: chemistry and technology. Wiley, Beverly

    Book  Google Scholar 

  4. H-G Elias (1984) Macromolecules: Volume 2: Synthesis, materials, and technology, Springer, Boston

  5. de Souza JP, Baird DG (1996) In situ composites based on blends of a poly(ether imide) and thermotropic liquid crystalline polymers under injection moulding conditions. Polymer 37:1985. https://doi.org/10.1016/0032-3861(96)87317-4

    Article  Google Scholar 

  6. Sharifzadeh E, Amiri Y (2020) The effects of the arrangement of Janus nanoparticles on the tensile strength of blend-based polymer nanocomposites. Polym Compos 41:3585. https://doi.org/10.1002/pc.25645

    Article  CAS  Google Scholar 

  7. Sharifzadeh E (2019) Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of Janus nanoparticles on polymer/polymer interface. Chin J Polym Sci 37:164. https://doi.org/10.1007/s10118-019-2178-3

    Article  CAS  Google Scholar 

  8. Sharifzadeh E, Ghasemi I, Qarebagh AN (2015) Modeling of blend-based polymer nanocomposites using a knotted approximation of Young’s modulus. Iran Polym J 24:1039. https://doi.org/10.1007/s13726-015-0391-7

    Article  CAS  Google Scholar 

  9. Kim G-H, Lee D, Shanker A et al (2015) High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat Mater 14:295. https://doi.org/10.1038/nmat4141

    Article  CAS  Google Scholar 

  10. Liu J, Cai C, Wang Y et al (2020) A biomimetic plasmonic nanoreactor for reliable metabolite detection. Adv Sc 7:1903730. https://doi.org/10.1002/advs.201903730

    Article  CAS  Google Scholar 

  11. Li A, Zhang C, Zhang Y-F (2017) Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers 9:437

    Article  Google Scholar 

  12. John V (1992) Introduction to engineering materials. Palgrave Macmillan, London

    Book  Google Scholar 

  13. Cheng W, Zhang J, Liu J, Yu Z (2020) Granular hydrogels for 3D bioprinting applications. VIEW 1:20200060. https://doi.org/10.1002/VIW.20200060

    Article  Google Scholar 

  14. Denn MM (2008) Polymer melt processing: foundations in fluid mechanics and heat transfer. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Sogolova TI, Demina MI (1977) Temperature dependence of the mechanical properties of polymers of different chemical structure in the temperature range from 4.2 to 300°K. Polym Mech 13:333. https://doi.org/10.1007/BF00859411

    Article  Google Scholar 

  16. Moreira DC, Sphaier LA, Reis JML, Nunes LCS (2011) Experimental investigation of heat conduction in polyester–Al2O3 and polyester–CuO nanocomposites. Exp Therm Fluid Sci 35:1458. https://doi.org/10.1016/j.expthermflusci.2011.06.004

    Article  CAS  Google Scholar 

  17. Shang L, Wang Y, Cai L, Shu Y, Zhao Y (2020) Structural color barcodes for biodiagnostics. View 1:e8. https://doi.org/10.1002/viw2.8

    Article  Google Scholar 

  18. Bai Y, Keller T, Vallée T (2008) Modeling of stiffness of FRP composites under elevated and high temperatures. Compos Sci Technol 68:3099. https://doi.org/10.1016/j.compscitech.2008.07.005

    Article  CAS  Google Scholar 

  19. Dutta PK, Hui D (2000) Creep rupture of a GFRP composite at elevated temperatures. Comput Struct 76:153. https://doi.org/10.1016/S0045-7949(99)00176-5

    Article  Google Scholar 

  20. Liang JZ, Li FH (2007) Heat transfer in polymer composites filled with inorganic hollow micro-spheres: a theoretical model. Polym Test 26:1025. https://doi.org/10.1016/j.polymertesting.2007.07.002

    Article  CAS  Google Scholar 

  21. Sun S, Wang R, Huang Y et al (2019) Design of hierarchical beads for efficient label-free cell capture. Small 15:1902441. https://doi.org/10.1002/smll.201902441

    Article  CAS  Google Scholar 

  22. Tanaka K, Ogata S, Kobayashi R, Tamura T, Kitsunezuka M, Shinma A (2013) Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: a non-equilibrium molecular dynamics study. J Appl Phys 114:193512. https://doi.org/10.1063/1.4831946

    Article  CAS  Google Scholar 

  23. Hida S, Hori T, Shiga T, Elliott J, Shiomi J (2013) Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. Int J Heat Mass Transfer 67:1024. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.068

    Article  CAS  Google Scholar 

  24. Sharifzadeh E, Salami-Kalajahi M, Hosseini MS, Aghjeh MKR (2017) Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface. Colloid Polym Sci 295:25. https://doi.org/10.1007/s00396-016-3977-5

    Article  CAS  Google Scholar 

  25. Cardinaels R (2020) in A.R A, Thomas S (eds) Compatibilization of Polymer Blends, Elsevier, Amsterdam, Netherland

  26. Sharifzadeh E (2021) Evaluating the dependency of polymer/particle interphase thickness to the nanoparticles content, aggregation/agglomeration factor and type of the exerted driving force. Iran Polym J. https://doi.org/10.1007/s13726-021-00956-3

    Article  Google Scholar 

  27. Sharifzadeh E, Cheraghi K (2021) Temperature-affected mechanical properties of polymer nanocomposites from glassy-state to glass transition temperature. Mech Mater 160:103990. https://doi.org/10.1016/j.mechmat.2021.103990

    Article  Google Scholar 

  28. Su H, Hurd Price CA, Jing L, Tian Q, Liu J, Qian K (2019) Janus particles: design, preparation, and biomedical applications. Mater Today Bio 4:100033. https://doi.org/10.1016/j.mtbio.2019.100033

    Article  CAS  Google Scholar 

  29. Marschelke C, Fery A, Synytska A (2020) Janus particles: from concepts to environmentally friendly materials and sustainable applications. Colloid Polym Sci 298:841. https://doi.org/10.1007/s00396-020-04601-y

    Article  CAS  Google Scholar 

  30. Su H, Liu T, Huang L et al (2018) Plasmonic Janus hybrids for the detection of small metabolites. J Mater Chem B 6:7280. https://doi.org/10.1039/C8TB01587B

    Article  CAS  Google Scholar 

  31. Sharifzadeh E, Salami-Kalajahi M, Hosseini MS, Aghjeh MKR (2016) A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: experimental and theoretical approaches. Coll Surf A 506:56. https://doi.org/10.1016/j.colsurfa.2016.06.006

    Article  CAS  Google Scholar 

  32. Zamanian-Fard A, Sharifzadeh E, Rajabi L (2020) A spontaneous interfacial process to produce silica Janus nanosheets as perfect emulsifiers in pickering emulsions. J Dispers Sci Technol. https://doi.org/10.1080/01932691.2020.1848575

    Article  Google Scholar 

  33. Sharifzadeh E, Parsnasab M (2021) Direct and reverse desymmetrization process in O/W Pickering emulsions to produce hollow graphene oxide Janus micro/nano-particles. Coll Surf A 619:126522. https://doi.org/10.1016/j.colsurfa.2021.126522

    Article  CAS  Google Scholar 

  34. Zhang Y, Jia F, Tang L et al (2019) Particle mold synthesis of block copolymer janus nanomaterials. Macromol Rapid Commun 40:1900067. https://doi.org/10.1002/marc.201900067

    Article  CAS  Google Scholar 

  35. Correia EL, Brown N, Razavi S (2021) Janus particles at fluid interfaces: stability and interfacial rheology. Nanomaterials 11:374

    Article  CAS  Google Scholar 

  36. Lim KH, Wong KW, Cadavid D et al (2019) Mechanistic study of energy dependent scattering and hole-phonon interaction at hybrid polymer composite interfaces for optimized thermoelectric performance. Compos B Eng 164:54. https://doi.org/10.1016/j.compositesb.2018.11.059

    Article  CAS  Google Scholar 

  37. Cao J, Wang Y, Xiao P et al (2013) Hollow graphene spheres self-assembled from graphene oxide sheets by a one-step hydrothermal process. Carbon 56:389. https://doi.org/10.1016/j.carbon.2012.12.075

    Article  CAS  Google Scholar 

  38. Perro A, Meunier F, Schmitt V, Ravaine S (2009) Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions. Coll Surf A 332:57. https://doi.org/10.1016/j.colsurfa.2008.08.027

    Article  CAS  Google Scholar 

  39. Hong L, Jiang S, Granick S (2006) Simple method to produce janus colloidal particles in large quantity. Langmuir 22:9495. https://doi.org/10.1021/la062716z

    Article  CAS  Google Scholar 

  40. Sharifzadeh E, Salami-Kalajahi M, Salami Hosseini M et al (2017) Defining the characteristics of spherical Janus particles by investigating the behavior of their corresponding particles at the oil/water interface in a Pickering emulsion. J Dispers Sci Technol 38:985. https://doi.org/10.1080/01932691.2016.1216861

    Article  CAS  Google Scholar 

  41. Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts. Wiley

  42. Alghunaim A, Brink ET, Newby B-MZ (2016) Surface immobilization of thermo-responsive poly(N-isopropylacrylamide) by simple entrapment in a 3-aminopropyltriethoxysilane network. Polymer 101:139. https://doi.org/10.1016/j.polymer.2016.08.059

    Article  CAS  Google Scholar 

  43. Valencia C, Valencia CH, Zuluaga F, Valencia ME, Mina JH, Grande-Tovar CD (2018) Synthesis and application of scaffolds of chitosan-graphene oxide by the freeze-drying method for tissue regeneration. Molecules 23:2651

    Article  Google Scholar 

  44. Giermanska-Kahn J, Laine V, Arditty S, Schmitt V, Leal-Calderon F (2005) Particle-stabilized emulsions comprised of solid droplets. Langmuir 21:4316. https://doi.org/10.1021/la0501177

    Article  CAS  Google Scholar 

  45. Wang Y, He Q, Qu H et al (2014) Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis. J Mater Chem C 2:9478. https://doi.org/10.1039/C4TC01351D

    Article  CAS  Google Scholar 

  46. McKeen LW (2017) in McKeen LW (ed) Film properties of plastics and elastomers (Fourth Edition)william andrew publishing, Waltham, USA

  47. Visakh PM, Arao Y (2015) Thermal degradation of polymer blends, composites and nanocomposites. Springer International Publishing, Switzerland

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ES contributed to supervision, project administration, writing (review and editing)—visualization, investigation, validation, conceptualization, methodology. EP contributed to methodology, investigation, writing (original draft)—visualization, resources, formula analysis.

Corresponding author

Correspondence to Esmail Sharifzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1169 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourakbar, E., Sharifzadeh, E. Synthesis of Janus/non-Janus hollow graphene oxide micro- and nanoparticles and the effects of their localization on the thermal conductivity of blend-based polymer composites. J Mater Sci 56, 18078–18092 (2021). https://doi.org/10.1007/s10853-021-06402-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06402-2

Navigation