Skip to main content
Log in

Evaluating the dependency of polymer/particle interphase thickness to the nanoparticles content, aggregation/agglomeration factor and type of the exerted driving force

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The physical/mechanical characteristics of the polymer/particle interphase region have been always considered to be dependent on the surface chemical structure of the nanoparticles and their interactions with the polymer chains. In addition, it is repeatedly reported that the interphase-related parameters (e. g., thickness, tensile modulus and strength, yield strength, thermal conductivity) can be considered constant under any process conditions. Accordingly, in this study, a comprehensive investigation was performed to define the effects of nanoparticles content, aggregation/agglomeration factor and type of the exerted driving force on the characteristics of the polymer/particle interphase region. To this end, different experimental/analytical approaches were adapted by which it was possible to precisely characterize the internal structure of PS/silica and PMMA/silica nanocomposite samples based on their thermal and mechanical properties. The mechanical characteristics were evaluated using a developed form of Zare’s model and in the case of thermal characteristics, two new analytical models were proposed based on equivalent box model (EBM). According to the results, it was revealed that the increment of the nanoparticle content increased the thermal conductivity of the interphase while decreased its thickness and yield strength. Moreover, it was found that the aggregation/agglomeration of nanoparticles had negative effects on the interphase thermal properties which were negligible at low contents.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pesetskii SS, Bogdanovich SP (2013) Polymer composites and nanocomposites. In: Wang QJ, Chung Y-W (eds) Encyclopedia of tribology. Springer, Boston. https://doi.org/10.1007/978-0-387-92897-5_823

  2. Masoud EM, Liu L, Peng B (2020) Synthesis, characterization, and applications of polymer nanocomposites. J Nanomater 2020:5439136. https://doi.org/10.1155/2020/5439136

    Article  Google Scholar 

  3. Inamuddin M, Thomas S, Kumar Mishra R, Asiri AM (2019) Sustainable polymer composites and nanocomposites. Springer International Publishing, Switzerland

    Book  Google Scholar 

  4. Paublo DJ (2012) Tribology of nanocomposites. Springer-Verlag, Heidelberg

    Google Scholar 

  5. Power AJ, Remediakis IN, Harmandaris V (2021) Interface and interphase in polymer nanocomposites with bare and core-shell gold nanoparticles. Polymers (Basel) 13:541

    Article  CAS  Google Scholar 

  6. Hodgkinson JM (2012) Testing the strength and stiffness of polymer matrix composites. In: Robinson P, Greenhalgh E, Pinho S (eds) Failure mechanisms in polymer matrix composites. Woodhead Publishing, Cambridge. https://doi.org/10.1533/9780857095329.1.129

  7. Sharifzadeh E (2019) Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of Janus nanoparticles on polymer/polymer interface. Chinese J Polym Sci 37:164–177. https://doi.org/10.1007/s10118-019-2178-3

    Article  CAS  Google Scholar 

  8. Sharifzadeh E, Ghasemi I, Karrabi M, Azizi H (2014) A new approach in modeling of mechanical properties of nanocomposites: effect of interface region and random orientation. Iran Polym J 23:835–845. https://doi.org/10.1007/s13726-014-0276-1

    Article  CAS  Google Scholar 

  9. Sharifzadeh E, Ghasemi I, Qarebagh AN (2015) Modeling of blend-based polymer nanocomposites using a knotted approximation of Young’s modulus. Iran Polym J 24:1039–1047. https://doi.org/10.1007/s13726-015-0391-7

    Article  CAS  Google Scholar 

  10. Sharifzadeh E (2019) Modeling of the tensile strength of immiscible binary polymer blends considering the effects of polymer/polymer interface and morphological variation. Chinese J Polym Sci 37:1176–1182. https://doi.org/10.1007/s10118-019-2274-4

    Article  CAS  Google Scholar 

  11. Zhai S, Zhang P, Xian Y, Zeng J, Shi B (2018) Effective thermal conductivity of polymer composites: theoretical models and simulation models. Int J Heat Mass Transfer 117:358–374. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.067

    Article  CAS  Google Scholar 

  12. Netravali AN, Mittal KL (2016) Interface/Interphase in polymer nanocomposites. Wiley, Massachusetts

    Book  Google Scholar 

  13. Jesson DA, Watts JF (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52:321–354. https://doi.org/10.1080/15583724.2012.710288

    Article  CAS  Google Scholar 

  14. Ji XL, Jing JK, Jiang W, Jiang BZ (2002) Tensile modulus of polymer nanocomposites. Polym Eng Sci 42:983–993. https://doi.org/10.1002/pen.11007

    Article  CAS  Google Scholar 

  15. Sharifzadeh E, Amiri Y (2021) The effects of morphological variation and polymer/polymer interface on the tensile modulus of binary polymer blends: a modeling approach. J Polym Eng 41:109–118. https://doi.org/10.1515/polyeng-2020-0013

    Article  Google Scholar 

  16. Buryan OK, Novikov VU (2002) Modeling of the interphase of polymer-matrix composites: determination of its structure and mechanical properties. Mech Compos Mater 38:187–190. https://doi.org/10.1023/A:1016008432083

    Article  CAS  Google Scholar 

  17. Maghami S, Shahrooz M, Mehrabani-Zeinabad A, Zornoza B, Sadeghi M (2020) Characterization of the polymer/particle interphase in composite materials by molecular probing. Polymer 205:122792. https://doi.org/10.1016/j.polymer.2020.122792

    Article  CAS  Google Scholar 

  18. Jain S, Goossens JGP, Peters GWM, van Duin M, Lemstra PJ (2008) Strong decrease in viscosity of nanoparticle-filled polymer melts through selective adsorption. Soft Matter 4:1848–1854. https://doi.org/10.1039/B802905A

    Article  CAS  Google Scholar 

  19. Zamanian M, Ashenai Ghasemi F, Mortezaei M (2021) Interphase characterization and modeling of tensile modulus in epoxy/silica nanocomposites. J Appl Polym Sci 138:49755. https://doi.org/10.1002/app.49755

    Article  CAS  Google Scholar 

  20. De Gennes P-G (1976) Scaling theory of polymer adsorption. J Phys 37:1445–1452. https://doi.org/10.1051/jphys:0197600370120144500

    Article  Google Scholar 

  21. Zare Y, Rhee KY (2020) Study on the effects of the interphase region on the network properties in polymer carbon nanotube nanocomposites. Polymers 12:182

    Article  CAS  Google Scholar 

  22. Boyard N (2016) Heat transfer in polymer composite materials: forming processes. Wiley, New Jersey

    Book  Google Scholar 

  23. Thomas S, Joseph K, Malhotra SK, Goda K, Sreekala MS (2013) Polymer composites nanocomposites. Wiley, New Jersey

    Book  Google Scholar 

  24. Ashraf MA, Peng W, Zare Y, Rhee KY (2018) Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Lett 13:214. https://doi.org/10.1186/s11671-018-2624-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zare Y (2016) Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos Part A Appl Sci Manuf 84:158–164. https://doi.org/10.1016/j.compositesa.2016.01.020

    Article  CAS  Google Scholar 

  26. Sharifzadeh E, Tohfegar E, Safajou Jahankhanemlou M (2020) The influences of the nanoparticles related parameters on the tensile strength of polymer nanocomposites. Iran J Chem Eng (IJChE) 17:65–78. https://doi.org/10.22034/ijche.2020.234505.1337

    Article  Google Scholar 

  27. Gao S-L, Mäder E (2002) Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Compos Part A Appl Sci Manuf 33:559–576. https://doi.org/10.1016/S1359-835X(01)00134-8

    Article  Google Scholar 

  28. Ding Y, Tran KN, Gear JA, Mainwaring D, Murugaraj P (2008) The influence of interphase between nanoparticles and matrix on Young’s Modulus of nanocomposites. Procc Int Conf NanoSci NanoTechnol. https://doi.org/10.1109/ICONN.2008.4639237

    Article  Google Scholar 

  29. Sharifzadeh E, Parsnasab M (2021) Direct and reverse desymmetrization process in O/W Pickering emulsions to produce hollow graphene oxide Janus micro/nano-particles. Colloids Surf A Physicochem Eng Asp 619:126522. https://doi.org/10.1016/j.colsurfa.2021.126522

    Article  CAS  Google Scholar 

  30. Sharifzadeh E, Amiri Y (2020) The effects of the arrangement of Janus nanoparticles on the tensile strength of blend-based polymer nanocomposites. Polym Compos 41:3585–3593. https://doi.org/10.1002/pc.25645

    Article  CAS  Google Scholar 

  31. Ciprari D, Jacob K, Tannenbaum R (2006) Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 39:6565–6573. https://doi.org/10.1021/ma0602270

    Article  CAS  Google Scholar 

  32. Boutaleb S, Zaïri F, Mesbah A, Naït-Abdelaziz M, Gloaguen JM, Boukharouba T, Lefebvre JM (2009) Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. Int J Solids Struct 46:1716–1726. https://doi.org/10.1016/j.ijsolstr.2008.12.011

    Article  CAS  Google Scholar 

  33. Mittal V (2013) Modeling and prediction of polymer nanocomposite properties. Wiley, Weinheim

    Book  Google Scholar 

  34. Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Fundamentals of heat and mass transfer. Wiley, Jefferson

    Google Scholar 

  35. Griskey RG (1995) Heat transfer in polymer systems. Polymer process engineering. Springer, Dordrecht

    Chapter  Google Scholar 

  36. Zare Y (2016) Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer–filler interphase. J Colloid Interface Sci 467:165–169. https://doi.org/10.1016/j.jcis.2016.01.022

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Sharifzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifzadeh, E. Evaluating the dependency of polymer/particle interphase thickness to the nanoparticles content, aggregation/agglomeration factor and type of the exerted driving force. Iran Polym J 30, 1063–1072 (2021). https://doi.org/10.1007/s13726-021-00956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00956-3

Keywords

Navigation