Skip to main content
Log in

Modeling of the Mechanical Properties of Blend Based Polymer Nanocomposites Considering the Effects of Janus Nanoparticles on Polymer/Polymer Interface

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Blend based polymer nanocomposites, comprising Janus nanoparticles at their polymer/polymer interface, were analytically/experimentally evaluated. The modeling procedure was performed in two stages: first, modeling of polymer/polymer interface region comprising Janus nanoparticles and second, modeling of the entire systems as a function of the variation of the blend morphology. In the first stage, the modeling procedure was performed based on the development of the model proposed by Ji et al. and in the second stage, the fundamental of Kolarik’s model was used in order to propose a developed and more practical model. It was shown that Janus nanoparticles may form dual polymer/particle interphase at polymer/polymer interface which can drastically affect the final mechanical properties of the system. Comparing the results of tensile tests imposed on different prepared samples with the predictions of the model proved its accuracy and reliability (error < 9%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fathi, A.; Lee, S.; Breen, A.; Shirazi, A. N.; Valtchev, P.; Dehghani, F. Enhancing the mechanical properties and physical stability of biomimetic polymer hydrogels for micro–patterning and tissue engineering applications. Eur. Polym. J. 2014, 59, 161–170.

    Article  CAS  Google Scholar 

  2. Minaei–Zaim, M.; Ghasemi, I.; Karrabi, M.; Azizi, H. Effect of injection molding parameters on properties of cross–linked low-density polyethylene/ethylene vinyl acetate/organoclay nanocomposite foams. Iran Polym. J. 2012, 21, 537–546.

    Article  CAS  Google Scholar 

  3. Shaw, M. T. in Preparation of blends. in polymer blends and mixtures. Walsh, D. J.; Higgins, J. S.; Maconnachie, A., Eds. Springer Netherlands: Dordrecht, 1985, p57–6.

  4. Galloway, J. A.; Macosko, C. W. Comparison of methods for the detection of cocontinuity in poly(ethylene oxide)/polystyrene blends. Polym. Eng. Sci. 2004, 44, 714–727.

    Article  CAS  Google Scholar 

  5. Zaikov, G. E.; Bazylyak, L. I.; Haghi, A. K. in Functional polymer blends and nanocomposites: a practical engineering approach. Apple Academic Press, 2014

    Book  Google Scholar 

  6. Miles, I. S.; Zurek, A. Preparation, structure, and properties of two–phase co–continuous polymer blends. Polym. Eng. Sci. 1988, 28, 796–805.

    Article  CAS  Google Scholar 

  7. Pivsa–Art, W.; Chaiyasat, A.; Pivsa–Art, S.; Yamane, H.; Ohara, H. Preparation of polymer blends between poly(lactic acid) and poly(butylene adipate–co–terephthalate) and biodegradable polymers as compatibilizers. Energy Procedia 2013, 34, 549–554.

    Article  CAS  Google Scholar 

  8. Khaparde, D. Preparation and prediction of physical properties of cellulose acetate and polyamide polymer blend. Carbohydr. Polym. 2017, 173, 338–343.

    Article  CAS  PubMed  Google Scholar 

  9. Lepcio, P.; Ondreas, F.; Zarybnicka, K.; Zboncak, M.; Caha, O.; Jancar, J. Bulk polymer nanocomposites with preparation protocol governed nanostructure: the origin and properties of aggregates and polymer bound clusters. Soft Matter 2018, 14, 2094–2103.

    Article  CAS  PubMed  Google Scholar 

  10. Ucankus, G.; Ercan, M.; Uzunoglu, D.; Culha, M., 1–Methods for preparation of nanocomposites in environmental remediation A2–Hussain, Chaudhery Mustansar. In New polymer nanocomposites for environmental remediation, Mishra, A. K., Ed. Elsevier, 2018, pp 1–2.

    Google Scholar 

  11. Mittal, V. in Polymer nanotube nanocomposites: synthesis, properties, and applications. Wiley, 2010

    Book  Google Scholar 

  12. Koo, J. H. in Fundamentals, properties, and applications of polymer nanocomposites. Cambridge University Press, 2016

    Google Scholar 

  13. Thomas, S.; Grohens, Y.; Jyotishkumar, P. in Characterization of polymer blends: miscibility, morphology and interfaces. Wiley, 2014

    Book  Google Scholar 

  14. Isayev, A. I. in Encyclopedia of polymer blends: volume 1: Fundamentals. John Wiley & Sons, 2010

    Book  Google Scholar 

  15. Bai, L.; He, S.; Fruehwirth, J. W.; Stein, A.; Macosko, C. W.; Cheng, X. Localizing graphene at the interface of cocontinuous polymer blends: Morphology, rheology, and conductivity of cocontinuous conductive polymer composites. J. Rheol. 2017, 61, 575–587.

    Article  CAS  Google Scholar 

  16. Landel, R. F.; Nielsen, L. E. in Mechanical properties of polymers and composites, Second Edition. Taylor & Francis, 1993

    Google Scholar 

  17. Chiu, F. C.; Yen, H. Z.; Lee, C. E. Characterization of PP/HDPE blend–based nanocomposites using different maleated polyolefins as compatibilizers. Polym. Test. 2010, 29, 397–406.

    Article  CAS  Google Scholar 

  18. Naffakh, M.; Diez–Pascual, A. M.; Marco, C. Polymer blend nanocomposites based on poly(L–lactic acid), polypropylene and WS2 inorganic nanoltubes. RSC Adv. 2016, 6, 40033–40044.

    Article  CAS  Google Scholar 

  19. Baudouin, A. C.; Devaux, J.; Bailly, C. Localization of carbon nanotubes at the interface in blends of polyamide and ethyleneacrylate copolymer. Polymer 2010, 51, 1341–1354.

    Article  CAS  Google Scholar 

  20. Sharifzadeh, E.; Salami–Kalajahi, M.; Hosseini, M. S.; Aghjeh, M. K. R. Synthesis of silica Janus nanoparticles by buoyancy effect–induced desymmetrization process and their placement at the PS/PMMA interface. Colloid. Polym. Sci. 2017, 295, 25–36.

    Article  CAS  Google Scholar 

  21. Bryson, K. C.; Löbling, T. I.; Müller, A. H. E.; Russell, T. P.; Hayward, R. C. Using Janus nanoparticles to trap polymer blend morphologies during solvent–evaporation–induced demixing. Macromolecules 2015, 48, 4220–4227.

    Article  CAS  Google Scholar 

  22. Paunov, V. N.; Cayre, O. J. Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique. Adv. Mater. 2004, 16, 788–791.

    Article  CAS  Google Scholar 

  23. Lv, W.; Lee, K. J.; Li, J.; Park, T.–H.; Hwang, S.; Hart, A. J.; Zhang, F.; Lahann, J. Anisotropic Janus catalysts for spatially controlled chemical reactions. Small 2012, 8, 3116–3122.

    Article  CAS  PubMed  Google Scholar 

  24. Roh, K. H.; Martin, D. C.; Lahann, J. Biphasic Janus particles with nanoscale anisotropy. Nat. Mater. 2005, 4, 759.

    Article  CAS  PubMed  Google Scholar 

  25. Giermanska–Kahn, J.; Laine, V.; Arditty, S.; Schmitt, V.; Leal–Calderon, F. Particle–stabilized emulsions comprised of solid droplets. Langmuir 2005, 21, 4316–4323.

    Article  CAS  PubMed  Google Scholar 

  26. Fernandez–Rodriguez, M. A.; Rodriguez–Valverde, M. A.; Cabrerizo–Vilchez, M. A.; Hidalgo–Alvarez, R. Surface activity of Janus particles adsorbed at fluid–fluid interfaces: Theoretical and experimental aspects. Adv. Colloid Interface Sci. 2016, 233,240–254.

    Article  CAS  PubMed  Google Scholar 

  27. Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocompositesA review. Prog. Polym. Sci. 2013, 38, 1232–1261.

    Article  CAS  Google Scholar 

  28. Mahdavi, M.; Ahmad, M.; Haron, M.; Namvar, F.; Nadi, B.; Rahman, M.; Amin, J. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 2013, 18, 7533–7548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Taguet, A.; Cassagnau, P.; Lopez–Cuesta, J. M. Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog. Polym. Sci. 2014, 39,1526–1563.

    Article  CAS  Google Scholar 

  30. Sharifzadeh, E.; Ghasemi, I.; Karrabi, M.; Azizi, H. A new approach in modeling of mechanical properties of binary phase polymeric blends. Iran Polym. J. 2014, 23, 525–530.

    Article  CAS  Google Scholar 

  31. Sharifzadeh, E.; Ghasemi, I.; Karrabi, M.; Azizi, H. A new approach in modeling of mechanical properties of nanocomposites: effect of interface region and random orientation. Iran Polym. J. 2014, 23, 835–845.

    Article  CAS  Google Scholar 

  32. Sharifzadeh, E.; Ghasemi, I.; Safajou–Jahankhanemlou, M. Modulus prediction of binary phase polymeric blends using symmetrical approximation systems as a new approach. Iran Polym. J. 2015, 24, 735–746.

    Article  CAS  Google Scholar 

  33. Zare, Y. Modeling the strength and thickness of the interphase in polymer nanocomposite reinforced with spherical nanoparticles by a coupling methodology. J. Colloid Interface Sci. 2016, 465, 342–346.

    Article  CAS  PubMed  Google Scholar 

  34. Zare, Y. Modeling of tensile modulus in polymer/carbon nanotubes (CNT) nanocomposites. Synth. Met. 2015, 202, 68–72.

    Article  CAS  Google Scholar 

  35. Zare, Y.; Rhee, K. Y.; Park, S. J. Modeling of tensile strength in polymer particulate nanocomposites based on material and interphase properties. J. Appl. Polym. Sci. 2017,134, 44869.

    Article  CAS  Google Scholar 

  36. Bao, W. S.; Meguid, S. A.; Zhu, Z. H.; Meguid, M. J. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes. Nanotechnology 2011, 22, 485704.

    Article  CAS  PubMed  Google Scholar 

  37. Zare, Y. Modeling approach for tensile strength of interphase layers in polymer nanocomposites. J. Colloid Interface Sci. 2016, 471, 89–93.

    Article  CAS  PubMed  Google Scholar 

  38. Sharifzadeh, E.; Ghasemi, I.; Qarebagh, A. N. Modeling of blend–based polymer nanocomposites using a knotted approximation of Young's modulus. Iran Polym. J. 2015, 24, 1039–1047.

    Article  CAS  Google Scholar 

  39. Mortazavi, S.; Ghasemi, I.; Oromiehie, A. Prediction of tensile modulus of nanocomposites based on polymeric blends. Iran Polym. J. 2013, 22, 437–445.

    Article  CAS  Google Scholar 

  40. Dong, B.; Huang, Z.; Chen, H.; Yan, L. T. Chain–stiffness–induced entropy effects mediate interfacial assembly of Janus nanoparticles in block copolymers: from interfacial nanostructures to optical responses. Macromolecules 2015, 48, 5385–5393.

    Article  CAS  Google Scholar 

  41. Zhu, G.; Huang, Z.; Xu, Z.; Yan, L. T. Tailoring interfacial nanoparticle organization through entropy. Acc. Chem. Res. 2018, 51, 900–909.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, P.; Yang, Y.; Dong, B.; Huang, Z.; Zhu, G.; Cao, Y.; Yan, L. T. Polymerization–induced interfacial self–assembly of Janus nanoparticles in block copolymers: reaction–mediated entropy effects, diffusion dynamics, and tailorable micromechanical behaviors. Macromolecules 2017, 50, 2078–2091.

    Article  CAS  Google Scholar 

  43. Ji, X. L.; Jing, J. K.; Jiang, W.; Jiang, B. Z. Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 2002, 42, 983–993.

    Article  CAS  Google Scholar 

  44. Wang, J. F.; Carson, J. K.; North, M. F.; Cleland, D. J. A knotted and interconnected skeleton structural model for predicting Young's modulus of binary phase polymer blends. Polym. Eng. Sci. 2010, 50, 643–651.

    Article  CAS  Google Scholar 

  45. Kolarík, J. Three–dimensional models for predicting the modulus and yield strength of polymer blends, foams, and particulate composites. Polym. Compos. 1997, 18, 433–441.

    Article  Google Scholar 

  46. Sharifzadeh, E.; Salami–Kalajahi, M.; Hosseini, M. S.; Aghjeh, M. K. R. A temperature–controlled method to produce Janus nanoparticles using high internal interface systems:Experimental and theoretical approaches. Colloid Surface A 2016, 506, 56–62.

    Article  CAS  Google Scholar 

  47. Sharifzadeh, E.; Salami–Kalajahi, M.; Salami Hosseini, M.; Razavi Aghjeh, M. K.; Najafi, S.; Jannati, R.; Hatef, Z. Defining the characteristics of spherical Janus particles by investigating the behavior of their corresponding particles at the oil/water interface in a Pickering emulsion. J. Dispersion Sci. Technol. 2017, 38, 985–991.

    Article  CAS  Google Scholar 

  48. Mekhilef, N.; Verhoogt, H. Phase inversion and dual–phase continuity in polymer blends: theoretical predictions and experimental results. Polymer 1996, 37, 4069–4077.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Sharifzadeh.

Electronic supplementary material

10118_2019_2178_MOESM1_ESM.pdf

Modeling of the Mechanical Properties of Blend Based Polymer Nanocomposites Considering the Effects of Janus Nanoparticles on Polymer/Polymer Interface

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifzadeh, E. Modeling of the Mechanical Properties of Blend Based Polymer Nanocomposites Considering the Effects of Janus Nanoparticles on Polymer/Polymer Interface. Chin J Polym Sci 37, 164–177 (2019). https://doi.org/10.1007/s10118-019-2178-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2178-3

Keywords

Navigation