Skip to main content

Advertisement

Log in

Nutritional and Health-Promoting Effects of Lichens Used in Food Applications

  • REVIEW
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Lichens have a huge significance which is used in nutrition due to the bioactive components within. Lichen is a nutrient-dense resourceful diet nearly every day meal and has long been used as food; also, these valuable natural resources are now being utilized for a wide range of other purposes. The purpose of this review was to evaluate the nutritional and edible qualities of lichens as well as the possible health benefits of lichens. It is interesting to note that lichen is a nutrient-dense and functional food. It is a nutritional resource that can mitigate the effects of malnutrition to some amount.

Recent Findings

There is an indication that an intake of lichens as natural foods was associated with nutritional and health-promoting properties. Lichens have proven to have theoretically rich nutritional value, and their extracts and active constituents have also been shown to have multiple health benefits.

Summary

Low-fat content, high carbohydrate, and crude fibre content; plentiful mineral components; and good protein sources are all thought to contribute to lichen’s nutritional value. There is a lot of potential for using lichens as an effective food source and ensuring people’s food production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hanley N, Willis K, Powe N, Anderson M. (2002). Valuing the benefits of biodiversity in forests. Forestry Commission. 2002.

  2. Calcott MJ, Ackerley DF, Knight A, Keyzers RA, Owen JG. Secondary metabolism in the lichen symbiosis. Chem Soc Rev. 2018;47(5):1730–60.

    Article  CAS  PubMed  Google Scholar 

  3. Choi RY, Ham JR, Yeo J, Hur JS, Park SK, Kim MJ, Lee MK. Anti-obesity property of lichen Thamnolia vermicularis extract in 3T3-L1 cells and diet-induced obese mice. Prev Nutr Food Sci. 2017;22(4):285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kosanić M, Ranković B, Stanojković T, Rančić A, Manojlović N. Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. LWT - Food Sci Technol. 2014;59(1):518–25.

    Article  Google Scholar 

  5. Johansson O, Olofsson J, Giesler R, Palmqvist K. Lichen responses to nitrogen and phosphorus additions can be explained by the different symbiont responses. New Phytol. 2011;191(3):795–805.

    Article  CAS  PubMed  Google Scholar 

  6. • Huang X, Ma J, Wei L, Song J, Li C, Yang H, Bi H. An antioxidant α-glucan from Cladina rangiferina (L.) Nyl. and its protective effect on alveolar epithelial cells from Pb2+-induced oxidative damage. Int J Biol Macromol. 2018;112:101–109. This research paper examined the use of an isolichenan to protect alveolar epithelium cells from Pb2+-induced oxidative injury. An antioxidant α-(1 → 3),(1 → 4)-glucan effectively protected A549 cells against Pb2+-induced oxidative injury.

  7. Manojlovic NT, Vasiljevic PJ, Maskovic PZ, Juskovic M, Bogdanovic-Dusanovic G. Chemical composition, antioxidant, and antimicrobial activities of lichen Umbilicaria cylindrica (L.) Delise (Umbilicariaceae). Evid Based Complementary Altern Med. 2012.

  8. Wang Y, Geng C, Yuan X, Hua M, Tian F, Li C. Identification of a putative polyketide synthase gene involved in usnic acid biosynthesis in the lichen Nephromopsis pallescens. PLoS ONE. 2018;13(7): e0199110.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xu BB, Li C, Sung C. Telomerase inhibitory effects of medicinal mushrooms and lichens, and their anticancer activity. Int J Med Mushrooms. 2014;16(1).

  10. Kanwar AJ, De D. Lichen planus in children. Indian J Dermatol Venereol Leprol. 2010;76(4):366.

    Article  PubMed  Google Scholar 

  11. Marfatia Y, Surani A, Baxi R. Genital lichen sclerosus et atrophicus in females: an update. Indian J Sex Transm Dis AIDS. 2019;40(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pandhi D, Singal A, Bhattacharya SN. Lichen planus in childhood: a series of 316 patients. Pediatr Dermatol. 2014;31(1):59–67.

    Article  PubMed  Google Scholar 

  13. Rambhia KD, Kharkar V, Pradhan V, Patwardhan M, Ghosh K, Khopkar US. A study of prevalence of autoantibodies in patients with lichen planus from Mumbai, India. Indian J Dermatol Venereol Leprol. 2018;84(6):667.

    Article  PubMed  Google Scholar 

  14. Pawera L, Łuczaj Ł, Pieroni A, Polesny Z. Traditional plant knowledge in the white carpathians: ethnobotany of wild food plants and crop wild relatives in the Czech Republic. Hum Ecol. 2017;45(5):655–71.

    Article  Google Scholar 

  15. Kalle R, S˜oukand R. Historical ethnobotanical review of wild edible plants of Estonia (1770s–1960s). Acta Soc Bot Pol Pol 2012;81(4):271–281.

  16. Meli MA, Desideri D, Cantaluppi C, Ceccotto F, Feduzi L, Roselli C. Elemental and radiological characterization of commercial Cetraria islandica (L.) Acharius pharmaceutical and food supplementation products. Sci Total Environ. 2018;613:1566–1572.

  17. Kekuda TRP, Vinayaka KS, Swathi D, Suchitha Y, Venugopal TM, Mallikarjun N. Mineral composition, total phenol content and antioxidant activity of a macrolichen Everniastrum cirrhatum(Fr.) Hale (Parmeliaceae). E-J CHEM. 2011;8(4): 1886–1894.

  18. Munzi S, Paoli L, Fiorini E, Loppi S. Physiological response of the epiphytic lichen Evernia prunastri (L.) Ach. to ecologically relevant nitrogen concentrations. Environ Pollut. 2012;171:25–29.

  19. Malhotra S, Subban RAVI, Singh A. Lichens—role in traditional medicine and drug discovery. Internet j altern med. 2008;5(2):l1-5.

    Google Scholar 

  20. Ju Y, Zhuo J, Liu B, Long C. Eating from the wild: diversity of wild edible plants used by Tibetans in Shangri-la region, Yunnan. China J Ethnobiol Ethnomed. 2013;9(1):1–22.

    Google Scholar 

  21. Salin Raj P, Prathapan A, Sebastian J, Antony AK, Riya MP, Rani MP, Raghu KG. Parmotrema tinctorum exhibits antioxidant, antiglycation and inhibitory activities against aldose reductase and carbohydrate digestive enzymes: an in vitro study. Nat Prod Res. 2014;28(18):1480–4.

    Article  CAS  PubMed  Google Scholar 

  22. Siddiqi KS, Rashid M, Rahman A, Husen A, Rehman S. Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomater Res. 2018;22(1):1–9.

    Article  Google Scholar 

  23. Abdallah E. Lichen thalli of Platismatia glauca possesses a remarkable antimicrobial activity. In Paper presented at the Proceedings of 5th International Electronic Conference on Medicinal Chemistry. 2019.

  24. Emsen B, Togar B, Turkez H, Aslan A. Effects of two lichen acids isolated from Pseudevernia furfuracea (L.) Zopf in cultured human lymphocytes. Zeitschrift für Naturforschung C. 2018;73(7–8):303–312.

  25. Luo H, Wei X, Yamamoto Y, Liu Y, Wang L, Sung Jung J, Hur JS. Antioxidant activities of edible lichen Ramalina conduplicans and its free radical-scavenging constituents. Mycoscience. 2010;51(5):391–5.

    Article  CAS  Google Scholar 

  26. Zhang L, Zhang Y, Pei S, Geng Y, Wang C, Yuhua W. Ethnobotanical survey of medicinal dietary plants used by the Naxi People in Lijiang Area, Northwest Yunnan. China J Ethnobiol Ethnomed. 2015;11(1):1–11.

    Google Scholar 

  27. Du YQ, Liu Y, Wang JH. Polysaccharides from Umbilicaria esculenta cultivated in Huangshan Mountain and immunomodulatory activity. Int J Biol Macromol. 2015;72:1272–6.

    Article  CAS  PubMed  Google Scholar 

  28. Bai L, Bao HY, Bau T. Isolation and identification of a new benzofuranone derivative from Usnea longissima. Nat Prod Res. 2014;28(8):534–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kim MS, Cho HB. Melanogenesis inhibitory effects of methanolic extracts of Umbilicaria esculenta and Usnea longissima. J Microbiol. 2007;45(6):578–82.

    PubMed  Google Scholar 

  30. Glew RS, Vanderjagt DJ, Chuang LT, Huang YS, Millson M, Glew RH. Nutrient content of four edible wild plants from west Africa. Plant Foods Hum Nutr. 2005;60(4):187–93.

    Article  CAS  PubMed  Google Scholar 

  31. González-Burgos E, Fernández-Moriano C, Gómez-Serranillos MP. Current knowledge on Parmelia genus: ecological interest, phytochemistry, biological activities and therapeutic potential. Phytochemistry. 2019;165: 112051.

    Article  PubMed  Google Scholar 

  32. Vadivel JK, Govindarajan M, Somasundaram E, Muthukrishnan A. Mast cell expression in oral lichen planus: a systematic review. J Investig Clin Dent. 2019;10(4): e12457.

    Article  PubMed  Google Scholar 

  33. Gandhi AD, Sathiyaraj S, Suriyakala G, Saranya S, Baskaran TN, Ravindran B, Babujanarthanam R. Lichens in genus Parmelia: an overview and their application. Curr Pharm Biotechnol. 2020;21(13):1289–97.

    Article  CAS  PubMed  Google Scholar 

  34. •• Zhao Y, Wang M, Xu B. A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. J Funct Food. 2020;104283. This review collected the applications of lichens in food, evaluated the nutritious and dietary qualities of lichens and describe their possible health effects. The health benefits of lichen such as anti-oxidation, anti-cancer, anti-microbial, anti-inflammatory, anti-radiation, immune activation, analgesia, anti-thrombosis, anti-obesity, anti-diabetes have been reported.

  35. Gülçin İ, Oktay M, Küfrevioğlu Öİ, Aslan A. Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol. 2002;79(3):325–9.

    Article  PubMed  Google Scholar 

  36. Yusuf M. A review on trends and opportunity in edible lichens. Lichen‐Derived Products: Extraction and Applications. 2020;189–201.

  37. Vors LS. Boyce MS Global declines of caribou and reindeer. Glob Change Biol Bioenerg. 2009;15(11):2626–33.

    Article  Google Scholar 

  38. Kravchenko AV. Records of the protected species Bryoria fremontii (Parmeliaceae, Ascomycotina) in Arkhangelsk and Vologda regions. Botanicheskii Zhurnal. 2003;88:102–4.

    Google Scholar 

  39. Gómez-Serranillos MP, Fernández-Moriano C, González-Burgos E, Divakar PK, Crespo A. Parmeliaceae family: phytochemistry, pharmacological potential and phylogenetic features. RSC Adv. 2014;4(103):59017–47.

    Article  Google Scholar 

  40. Velmala S, Myllys L, Halonen P, Goward T, Teuvo AHTI. Molecular data show that Bryoria fremontii and B. tortuosa (Parmeliaceae) are conspecific. Lichenol. 2009;41(3), 231.

  41. Kirkpatrick RC, Zou RJ, Dierenfeld ES, Zhou HW. Digestion of selected foods by Yunnan snub-nosed monkey Rhinopithecus bieti (Colobinae). American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists. 2021;114(2):156–62.

    Article  Google Scholar 

  42. Bhattarai T, Subba D, Subba R. Nutritional value of some edible lichens of east Nepal. Angew Bot. 1999;73(1–2):11–4.

    CAS  Google Scholar 

  43. Rather LJ, Jameel S, Ganie SA, Bhat KA. Lichen derived natural colorants: history, extraction, and applications. Handbook of Renewable Materials for Coloration and Finishing. 2018;1:103–14.

    Article  Google Scholar 

  44. Pescott OL, Simkin JM, August TA, Randle Z, Dore AJ, Botham MS. Air pollution and its effects on lichens, bryophytes, and lichen-feeding Lepidoptera: review and evidence from biological records. Biol J Linn Soc. 2015;115(3):611–35.

    Article  Google Scholar 

  45. Gerson H, Cudmore B, Mandrak NE, Coote LD, Farr K, Baillargeon G. Monitoring international wildlife trade with coded species data. Conserv Biol. 2008;22(1):4–7.

    Article  PubMed  Google Scholar 

  46. • Devkota S, Chaudhary RP, Werth S, Scheidegger C. Indigenous knowledge and use of lichens by the lichenophilic communities of the Nepal Himalaya. J Ethnobiol Ethnomed. 2017;13(1):1–10. This study provides evidence that local information that is exclusive to a culture or society and is passed down through indigenous and local groups is known as indigenous knowledge. Understanding the traditional food and living systems of local residents requires scientific investigation and documenting of indigenous knowledge on wild resources. Around a billion individuals are thought to eat wild foods as part of their diets worldwide, and among them, wild plants are essential to rural groups' subsistence strategies in developing nations. Since ancient times, lichens have been employed in traditional meals and medicines. They also play a critical role in ecosystem function and human well-being.

  47. Fragoso G, Ferriss S. Monitoring international wildlife trade with coded species data: response to Gerson et al. Conserv Biol. 2008;22(6):1648–50.

    Article  PubMed  Google Scholar 

  48. Ranković B, Mišić M, Sukdolak S. Evaluation of antimicrobial activity of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa, and Umbilicaria cylindrica. Microbiology. 2007;76(6):723–7.

    Article  Google Scholar 

  49. Wirtz N, Printzen C, Sancho LG, Lumbsch TH. The phylogeny and classification of Neuropogon and Usnea (Parmeliaceae, Ascomycota) revisited. Taxon. 2006;55(2):367–76.

    Article  Google Scholar 

  50. Cankilic M, Sariozlu N, Candan M., TAY, N. Screening of antibacterial, antituberculosis and antifungal effects of lichen Usnea florida and its thamnolic acid constituent. Biomed Rese-India. 2017;28(7).

  51. Behera BC, Verma N, Sonone A, Makhija U. Optimization of culture conditions for lichen Usnea ghattensis G. Awasthi to increase biomass and antioxidant metabolite production. Food Technol Biotechnol. 2009;47(1):7–12.

  52. Upreti DK, Bajpai R, Nayaka S, Singh BN. Ethnolichenological studies in India: future prospects. Indian ethnobotany: emerging trends. Scientific Publisher, Jodhpur, 2016;195–233.

  53. Ravindran PN. The encyclopedia of herbs and spices, CAB Int., Wallingford, UK, 2017;195–233.

  54. Kumar GP, Kumar VS, Kumar SA. Pharmacological and phytochemical aspects of lichen Parmelia perlata: a review. Intern J Res Ayur Pharm. 2016;7(1):102–7.

    Article  CAS  Google Scholar 

  55. Shukla P, Upreti DK, Tiwari P. Assessment of dye yielding potential of Indian lichens. Indian Journal of Plant Sciences. 2014;3(1):57–63.

    Google Scholar 

  56. Laxinamujila Bao HY, Bau T. Advance in studies on chemical constituents and pharmacological activity of lichens in Usnea genus. Zhongguo Zhong Yao Za Zhi. 2013;38(4):539–45.

    PubMed  Google Scholar 

  57. Podterob AP. Chemical composition of lichens and their medical applications. Pharma Chem J. 2008;42(10):582–8.

    Article  CAS  Google Scholar 

  58. Olafsdottir ES, Ingólfsdottir K. Polysaccharides from lichens: structural characteristics and biological activity. Planta Med. 2001;67(3):199–208.

    Article  CAS  PubMed  Google Scholar 

  59. Ullah S, Khalil AA, Shaukat F, Song Y. Sources, extraction and biomedical properties of polysaccharides. Foods. 2019;8(8):304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boustie J, Grube M. Lichens—a promising source of bioactive secondary metabolites. Plant Genetic Resourc. 2005;3(2):273–87.

    Article  CAS  Google Scholar 

  61. Shukla V, Joshi GP, Rawat MSM. Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev. 2010;9(2):303–14.

    Article  CAS  Google Scholar 

  62. Molnár K, Farkas E. Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift für Naturforschung C. 2010;65(3–4):157–73.

    Article  Google Scholar 

  63. Rajan VP, Gunasekaran S, Ramanathan S, Murugaiyah V, Samsudin MW, Din LB. Antibacterial activity of extracts of Parmotrema praesorediosum, Parmotrema rampoddense, Parmotrema tinctorum and Parmotrema reticulatum. AIP Conf Proc. 2015;1678(1): 050015.

    Article  Google Scholar 

  64. Padhi S, Masi M, Panda SK, Luyten W, Cimmino A, Tayung K, Evidente A. Antimicrobial secondary metabolites of an endolichenic Aspergillus niger isolated from lichen thallus of Parmotrema ravum. Nat Prod Res. 2018;1–8.

  65. Anar M, Aslan A, Agar G, Ozgencli I. Antigenotoxic and antioxidant activity of lichens Anaptychia ciliaris, Bryoria fuscescens, Parmotrema chinensa and Xanthoria candelaria: an in vitro study. Med Aromat Plants. 2016;5(233):2167–412.

    Google Scholar 

  66. Thadhani VM, Karunaratne V. Potential of lichen compounds as antidiabetic agents with antioxidative properties: a review. Oxid Med Cell Longev. 2017.

  67. Khader SZA, Ahmed SSZ, Venkatesh KP, Chinnaperumal K, Nayaka S. Larvicidal potential of selected indigenous lichens against three mosquito species—Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi. Chin Herb Med. 2018;10(2):152–6.

    Article  Google Scholar 

  68. Nguyen TTH, Dinh MH, Chi HT, Wang SL, Nguyen Q, Tran TD, Nguyen AD (2019) Antioxidant and cytotoxic activity of lichens collected from Bidoup Nui Ba National Park. Vietnam Res Chem Intermediat. 2019;45(1):33–49.

    Article  CAS  Google Scholar 

  69. Paluszczak J, Kleszcz R, Studzińska-Sroka E. Krajka-Kuźniak V (2018) Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol Cell Biochem. 2018;441(1–2):109–24.

    Article  CAS  PubMed  Google Scholar 

  70. Dincsoy AB, Duman DC. Changes in apoptosis-related gene expression profiles in cancer cell lines exposed to usnic acid lichen secondary metabolite. Turk J Biol. 2017;41(3):484–93.

    Article  CAS  Google Scholar 

  71. Zambare VP, Christopher LP. Biopharmaceutical potential of lichens. Pharma Biol. 2012;50(6):778–98.

    Article  Google Scholar 

  72. Gülçin I, Küfrevioǧlu Öİ, Oktay M, Büyükokuroǧlu ME. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol. 2004a;90(2–3):205–215.

  73. Gülçin I, Uğuz MT, Oktay M, Beydemir Ş, Küfrevioğlu Öİ. Evaluation of the antioxidant and antimicrobial activities of clary sage (Salvia sclarea L.). Turk J Agric Forest. 2004b;28(1):25–33.

  74. Gulcin İ, Daştan A. Synthesis of dimeric phenol derivatives and determination of in vitro antioxidant and radical scavenging activities. Enzyme Inhib Med Chem. 2007;22(6):685–95.

    Article  Google Scholar 

  75. Sangameswaran B, Balakrishnan BR, Deshraj C, Jayakar B. In vitro antioxidant activity of roots of Thespesia lampas Dalz and Gibs. Pak J Pharm Sci. 2009;22(4):368–72.

    CAS  PubMed  Google Scholar 

  76. Sachindra NM, Airanthi MKWA, Hosokawa M, Miyashita K. Radical scavenging and singlet oxygen quenching activity of extracts from Indian seaweeds. J Food Sci Technol. 2010;47(1):94–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang W, Li B, Han L, Zhang H. Antioxidant activities of extracts from areca (Areca catectu L.) flower, husk and seed. African J Biotechnol. 2009;8(16).

  78. Naveena BM, Sen AR, Kingsly RP, Singh DB, Kondaiah N. Antioxidant activity of pomegranate rind powder extract in cooked chicken patties. Inter J Food Sci Technol. 2008;43(10):1807–12.

    Article  CAS  Google Scholar 

  79. Ganesan K, Sukalingam K, Xu B. Solanum trilobatum L. ameliorate thioacetamide-induced oxidative stress and hepatic damage in albino rats. Antioxidants. 2017;6(3):68.

  80. Kumar G, Murugesan AG, Rajasekara PM. Effect of Helicteres isora bark extract on blood glucose and hepatic enzymes in experimental diabetes. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2016;61(4):353–5.

    Google Scholar 

  81. Kumar G, Banu GS, Murugesan AG. Effect of Helicteres isora bark extracts on heart antioxidant status and lipid per oxidation in streptozotocin diabetic rats. J Appl Biomed. 2008;6(2).

  82. Fernández-Moriano C, Gómez-Serranillos MP, Crespo A. Antioxidant potential of lichen species and their secondary metabolites. A systematic review Pharma Biol. 2016;54(1):1–17.

    Google Scholar 

  83. Kim MS, Lee KA. Antithrombotic activity of methanolic extract of Umbilicaria esculenta. J Ethnopharmacol. 2006;105(3):342–5.

    Article  PubMed  Google Scholar 

  84. Odabasoglu F, Aslan A, Cakir A, Suleyman H, Karagoz Y, Halici M, Bayir Y. Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2004;18(11):938–41.

    Article  Google Scholar 

  85. Pol CS, Savale SA, Khare R, Verma N, Behera BC. Antioxidative, cardioprotective, and anticancer potential of two lichenized fungi, Everniastrum cirrhatum and Parmotrema reticulatum, from Western Ghats of India. J Herbs, Spices Med Plants. 2017;23(2):142–56.

    Article  CAS  Google Scholar 

  86. Karakus B, Odabasoglu F, Cakir A, Halici Z, Bayir Y, Halici M, Suleyman H. The effects of methanol extract of Lobaria pulmonaria, a lichen species, on indometacin-induced gastric mucosal damage, oxidative stress and neutrophil infiltration. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2009;23(5):635–9.

    Article  Google Scholar 

  87. Wang Y, Shu X, Chen Y, Yan J, Zhang S, Wu B, Jia J. Enrichment, purification and in vitro antioxidant activities of polysaccharides from Umbilicaria esculenta macrolichen. Biochem Eng J. 2018;130:10–20.

    Article  CAS  Google Scholar 

  88. Bayir Y, Odabasoglu F, Cakir A, Aslan A, Suleyman H, Halici M, Kazaz C. The inhibition of gastric mucosal lesion, oxidative stress and neutrophil-infiltration in rats by the lichen constituent diffractaic acid. Phytomedicine. 2006;13(8):584–90.

    Article  CAS  PubMed  Google Scholar 

  89. Mammadov R, Suleyman B, Altuner D, Demirci E, Cetin N, Yilmaz A, Baykal H, Alpcan H, Turumtay EA, Suleyman H. Effect of ethyl acetate extract of Usnea longissima on esophagogastric adenocarcinoma in rats. Acta Cir Bras. 2019;18:34.

    Google Scholar 

  90. Odabasoglu F, Cakir A, Suleyman H, Aslan A, Bayir Y, Halici M, Kazaz C. Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. J Ethnopharmacol. 2006;103(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  91. De Paz GA, Raggio J, Gómez-Serranillos MP, Palomino OM, González-Burgos E, Carretero ME, Crespo A. HPLC isolation of antioxidant constituents from Xanthoparmelia spp. J Pharm Biomed Anal. 2010;53(2):165–71.

    Article  PubMed  Google Scholar 

  92. Rabelo TK, Zeidán-Chuliá F, Vasques LM, dos Santos JPA, da Rocha RF, de Bittencourt Pasquali MA, Gelain DP. Redox characterization of usnic acid and its cytotoxic effect on human neuron-like cells (SH-SY5Y). Toxicol in Vitro. 2012;26(2):304–14.

    Article  CAS  PubMed  Google Scholar 

  93. Kotan E, Alpsoy L, Anar M, Aslan A, Agar G. Protective role of methanol extract of Cetraria islandica (L.) against oxidative stress and genotoxic effects of AFB1 in human lymphocytes in vitro. Toxicol Ind Health 2011;27(7):599–605.

  94. Olak S, Geyikoglu F, Türkez H, Bakır TÖ, Aslan A. The ameliorative effect of Cetraria islandica against diabetes-induced genetic and oxidative damage in human blood. Pharma Biol. 2013;51(12):1531–7.

    Article  Google Scholar 

  95. Ganesan K, Xu B. Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. Intern J Mole Sci. 2017a;18(11):2331.

  96. Ganesan K, Xu B. Polyphenol-rich lentils and their health promoting effects. Inter J Mol Sci. 2017;18(11):2390.

    Article  Google Scholar 

  97. Ganesan K, Xu B. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Sci Hum Wellness. 2018;7(1):11–33.

    Article  Google Scholar 

  98. Ganesan K, Xu B. Anti-obesity effects of medicinal and edible mushrooms. Molecules. 2018;23(11):2880.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sukalingam K, Ganesan K, Xu B. Trianthema portulacastrum L.(giant pigweed): phytochemistry and pharmacological properties. Phytochem Rev. 2017;16(3):461–478.

  100. Gulluce M, Aslan A, Sokmen Munevver, Sahin Fikrettin, Adiguzel A, Agar G, Sokmen ATALAY. Screening the antioxidant and antimicrobial properties of the lichens Parmelia saxatilis, Platismatia glauca, Ramalina pollinaria, Ramalina polymorpha and Umbilicaria nylanderiana. Phytomedicine. 2006;13(7):515–521.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Thakur.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, M., Kasi, I.K., Islary, P. et al. Nutritional and Health-Promoting Effects of Lichens Used in Food Applications. Curr Nutr Rep 12, 555–566 (2023). https://doi.org/10.1007/s13668-023-00489-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-023-00489-6

Keywords

Navigation