Skip to main content

Advertisement

Log in

Lichens as a potential natural source of bioactive compounds: a review

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Biological activity of material whether known in folk medicine or observed in planned screening program has been the starting point in the drug research. The general pattern is the isolation of active principles, elucidation their structures, followed by attempts for modulation of its activity potential by chemical modification. Lichens are valuable plant resources and are used as medicine, food, fodder, perfume, spice, dyes and for miscellaneous purposes throughout the world. Lichens are well known for the diversity of secondary metabolites that they produce. Compounds isolated from various lichen species have been reported to display diverse biological activities. Here we review the medicinal efficacy of lichen substances, which intends to explore the pharmaceutical potential of lichen substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abo-Khatwa AN, Al-Robai AA, Al-Jawhari DA (1996) Lichen acids as uncouplers of oxidative phosphorylation of mouse liver mitochondria. Nat Toxins 4:96–102

    PubMed  CAS  Google Scholar 

  • Ahad AM, Goto Y, Kiuchi F, Tsuda Y, Kondo K, Sato T (1991) Nematocidal principles in “oakmoss absolute” and nematocidal activity of 2, 4-dihydroxybenzoates. Chem Pharm Bull 39:1043–1046

    PubMed  CAS  Google Scholar 

  • Armaleo D (1995) Factors affecting depside and depsidone biosynthesis in a cultured lichen fungus. Crypt Bot 5:14–21

    Google Scholar 

  • Asahina Y, Shibata S (1954) Chemistry of lichen substances. Japan Society for the Promotion of Science, Tokyo

    Google Scholar 

  • Aslan A, Güllüce M, Sökmen M, Adιgüzel A, Sahin F, Özkan H (2006) Antioxidant and Antimicrobial Properties of the Lichens Cladonia foliacea., Dermatocarpon miniatum., Everinia divaricata., Evernia prunastri., and Neofuscella pulla. Pharmaceutical Biol 44(4):247–252

    Google Scholar 

  • Bayir Y, Odabasoglu F, Cakir A, Aslan A, Suleyman H, Halici M, Kazaz C (2006) The inhibition of gastric mucosal lesion, oxidative stress and neutrophil- infiltration in rats by the lichen constituent diffractaic acid. Phytomedicine 13:584–590

    PubMed  CAS  Google Scholar 

  • Begora MD, Fahselt D (2001) Usnic acid and atranorin concentrations in lichens in relation to bands of UV irradiance. Bryologist 104:134–140

    CAS  Google Scholar 

  • Boustie J, Grube M (2005) Lichens—a promising source of bioactive secondary metabolites. Plant Genetic Resources 3(2):273–287

    CAS  Google Scholar 

  • Brunauer G, Hager A, Krautgartner WD, Turk R, Stocker-Wörgötter E (2006) Experimental studies on Lecanora rupicola (L.) Zahlbr.: chemical and microscopical investigations of the mycobiont and re-synthesis stages. Lichenologist 38:577–585

    Google Scholar 

  • Brunauer G, Hager A, Grube M, Turk R, Stocker-Wörgötter E (2007) Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages. Plant Physiol Biochem 45:146–151

    PubMed  CAS  Google Scholar 

  • Burton GW, Doba T, Gabe EJ, Hughes L, Lee FL, Prasad L, Ingold KU (1985) Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols. J Am Chem Soc 107:7053

    CAS  Google Scholar 

  • Cardarelli M, Serino G, Campanella L, Ercole P, De Cicco Nardone F, Alesiani O, Osiello F (1997) Antimitotic effects of usnic acid on different biological systems. Cell Mol Life Sci 53:667–672

    PubMed  CAS  Google Scholar 

  • Cohen PA, Hudson JB, Towers GHN (1996) Antiviral activities of anthraquinones, bianthrones and hypericin derivatives from lichens. Experientia 52:180–183

    PubMed  CAS  Google Scholar 

  • Correché ER, Carrasco M, Giannini F, Piovano M, Garbarino J, Enriz D (2002) Cytotoxic screening activity of secondary lichen metabolites. Act Farm Bon 21:273–278

    Google Scholar 

  • Correché ER, Enriz RD, Piovano M, Garbarino J, Gomez-Lechon MJ (2004) Cytotoxic and apoptotic effects on hepatocytes of secondary metabolites obtained from lichens. Alter Lab Animals 32:605–615

    Google Scholar 

  • Cuellar M, Quilhot W, Rubio C, Soto C, Espinoza L, Carrasco H (2008) Phenolics, depsides, triterpenes from Chilean lichen Pseudophellaria nudata (Zahlbr.) D.J Galloway. J Chilean Chem Soc 53(3):1624–1625

    CAS  Google Scholar 

  • Culberson CF (1969) Chemical and botanical guide to lichen products. University of North Carolina Press, Chapel Hill

    Google Scholar 

  • Culberson CF, Johnson A (1976) A standardized two dimensional thin-layer chromatographic method for lichen products. J Chromatogr 128:253–259

    CAS  Google Scholar 

  • Cuny D, Van Haluwyn C, Shirali P, Zerimech F, Jerome L, Haguenoer JM (2004) Cellular impact of metal trace elements in terricolous lichen Diploschistis muscorum Scop.) R. Sant.–Identification of oxidative stress biomarkers. Water Air Soil Pollut 152:55–69

    CAS  Google Scholar 

  • Czeczuga B, Cifuentes B, Reynaud PA (1988) Carotenoids in lichens from the Canary Islands. Biochemical systematics and ecology. Biochem Sysemat Eco 16(2):117

    CAS  Google Scholar 

  • Dayan FE, Romagini JG (2001) Lichens as a potential source of pesticides. Pestic Outlook 12:229–232

    CAS  Google Scholar 

  • Dayan FE, Romagini JG (2002) Structural diversity of lichen metabolites and their potential for use. In: Upadhyaya R (ed) Advances in microbial toxin research and its biotechnological Exploration. Kluwer Academic/Plenum Publisher, New York, p 151

    Google Scholar 

  • Dembitsky VM, Bychek IA, Kashin AG (1992) Chemical constituents of some lichen species. J Hatt Bot Lab 255–262

  • Duman DC, Aras S, Atakol O (2008) Determination of Usnic Acid Content in Some Lichen Species Found in Anatolia. J Appl Biol Sci 2(3):41–44

    Google Scholar 

  • Endo T, Takahagi T, Kinoshita Y, Yamamoto Y, Sato F (1998) Inhibition of photosystem II of spinach by lichen-derived depsides. Biosci Biotech Biochem 62(10):2023

    CAS  Google Scholar 

  • Ernst-Russell MA, Elix JA, Chai CLL, Willis AC, Hamada N, Nash TH (1999) Hybocarpone, a novel cytotoxic naphthazarin derivative from mycobiont cultures of the lichen Lecanora hybocarpa. Tetrahedron Lett 40:6321–6324

    CAS  Google Scholar 

  • Falk A, Green TK, Barboza P (2008) Quantitative determination of secondary metabolites in Cladina stellaris and other lichens by micellar electrokinetic chromatography. J Chromatogr A 1182:141–144

    PubMed  CAS  Google Scholar 

  • Feige GB, Lumbsch HT, Huneck S, Elix JA (1993) The identification of lichen products by a standardized high-performance liquid chromatographic method. J Chromatogr 646:417–427

    CAS  Google Scholar 

  • Goncalo S (1987) Contact sensitivity to lichens and Compositae in Frullania dermatitis. Cont Derm 16(2):84

    CAS  Google Scholar 

  • González-Tejero MR, Molero-Mesa J, Casares-Porcel M, Martinez Lirrola MJ (1995) New contributions to the ethnopharmacology of Spain. J Ethnopharmacol 45:157–165

    PubMed  Google Scholar 

  • Gutkind GO, Martino V, Grana N, Coussio JD, Torres RA (1981) Screening of South American plants for biological activities. Antibacterial and antifungal activity. Fitoterapia 52(5):213

    Google Scholar 

  • Hager A, Brunauer G, Türk R, Stocker-Wörgötter E (2008) Production and Bioactivity of Common Lichen Metabolites as Exemplified by Heterodea muelleri (Hampe) Nyl. J Chem Ecol 34:113–120

    PubMed  CAS  Google Scholar 

  • Halama P, Van Haluwyn C (2004) Antifungal activity of lichen extracts and lichenic acids. Bio Control 49:95–107

    CAS  Google Scholar 

  • Heide R, Provatoroff N, Taas PC, Valois J, Plasse N, Wobben HJ, Timmer R (1975) Qualitative analysis of the odoriferous fraction of oakmoss (Evernia prunastri (L.) Ach.). J Agri Food Chem 23(5):950–957

    Google Scholar 

  • Hickey BJ, Lumsden AJ, Cole ALJ, Walker JRL (1990) Antibiotic compounds from New Zealand plants: methyl haematomate, an anti-fungal agent from Stereocaulon ramulosum. New Zealand Nat Sci 17:49–53

    Google Scholar 

  • Hidalgo ME, Fernández E, Quilhot W, Lissi EA (1994) Antioxidant capacity of depsides and depsidones. Phytochemistry 37:1585–1587

    PubMed  CAS  Google Scholar 

  • Hirabayashi K, Iwata S, Ito M, Shigeta S, Narui T, Mori T, Shibata S (1989) Inhibitory effect of a lichen polysaccharide sulfate, GE-3-S, on the replication of human immunodeficiency virus (HIV) in vitro. Chem Pharm Bull 37:2410–2412

    PubMed  CAS  Google Scholar 

  • Hirayama T, Fujikawa F, Kasahara T, Otsuka M, Nishida N, Mizuno D (1980) Anti-tumor activities of some lichen products and their degradation products. Yaku Zasshi 100:755–759

    CAS  Google Scholar 

  • Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570

    PubMed  CAS  Google Scholar 

  • Huneck S (2001) New Results on the Chemistry of Lichen Substances. In: Herz W, Falk H, Kirby GW, Moore RE (eds) Progress in the chemistry of organic natural products. Springer. Wien, New York, p 81

    Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin, pp 1–493

    Google Scholar 

  • Huovinen K (1987) A standard HPLC method for the analysis of aromatic lichen in Progress and Problems in Lichenology in the Eighties. Bibliotheca Lichenolog 25:457–466

    Google Scholar 

  • Huovinen K, Lampero M (1989) Usnic acid as a mitotic inhibitor in the Allium Test. Planta Med 55:98

    Google Scholar 

  • Ingólfdóttir K (2002) Usnic acid. Phytochemistry 61:729–736

    Google Scholar 

  • Ingólfsdóttir K, Gissurarson SR, Müller-Jakic B, Breu W, Wagner H (1996) Inhibitory effects of the lichen metabolite lobaric acid on arachidonate metabolism in vitro. Phytomedicine 2:243–246

    Google Scholar 

  • Ingólfsdóttir K, Chung GAC, Skúlason VG, Gissurarson SR, Vilhelmsdóttir M (1998) Antimycobacterial activity of lichen metabolites in vitro. Eur J Pharm Sci 6:141–144

    PubMed  Google Scholar 

  • Inoue H, Noguchi M, Kubo K (1987) Site of inhibition of usnic acid at oxisidizing side of photosystem 2 of spinach chloroplast. Photosynthetica 21:88

    CAS  Google Scholar 

  • Karthikaidevi G, Thirumaran G, Manivannan K, Anantharaman P, Kathiresan K, Balasubaramanian T (2009) Screening of the Antibacterial Properties of Lichen Roccella belangeriana (Awasthi) from Pichavaram Mangrove (Rhizophora Sp.). Adv Biol Res 3(3–4):127–131

    Google Scholar 

  • Kinoshita K, Matsubara H, Koyama K, Takahashi K, Youhimura I, Yamamoto Y, Higuchi M, Miura Y, Kinoshita K, Kawai K (1994) New phenolics from Protousnea species. J Hatt Bot Lab 75:359–364

    Google Scholar 

  • Kinoshita K, Saito D, Koyama K, Takahashi K, Sato Y, Okuyama E, Fujimoto H, Yamazaki M (2002) Monoamino oxidase inhibitory effects of some lichen compounds and their synthetic analogues. J Hatt Bot Lab 92:277–284

    Google Scholar 

  • Kirtikar KR, Basu BD (1984) Indian Medicinal Plants. Lalit Mohan Basu Publication 49, Leader Road, Allahabad, India, 4, 2760

  • Kumar KCS, Müller K (1999a) Lichen metabolites. 1. Inhibitory action against leukotriene B4 biosynthesis by a nonredox mechanism. J Nat Pro 62:817–820

    CAS  Google Scholar 

  • Kumar KCS, Müller K (1999b) Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth. J Nat Pro 62:821–823

    CAS  Google Scholar 

  • Kumar KCS, Müller K (1999c) Depsides as non-redox inhibitors of leukotriene B4 biosynthesis and HaCaT cell growth. 1. Novel analogs of barbatic and diffractaic acid. Eur J Med Chem 34:1035–1042

    CAS  Google Scholar 

  • Kumar KCS, Banskota AH, Manandhar MD (1995) Chemical constituents and antibacterial activity of Ramalina subcomplanata. J Nepal Chem Soc 14:28–35

    Google Scholar 

  • Kumar KCS, Banskota AH, Manandhar MD (1996) Isolation and identification of some chemical constituents of Parmelia nepalensis. Planta Med 62:93–94

    PubMed  CAS  Google Scholar 

  • Kupchan SM, Kopperman HL (1975) L-Usnic acid: tumor inhibitor isolated from lichens. Experientia 31:625

    PubMed  CAS  Google Scholar 

  • Lauterwein M, Oethinger M, Belsner K, Peters T, Marre R (1995) In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (−)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob Agents Chemother 39:2541–2543

    PubMed  CAS  Google Scholar 

  • Legaz ME, Vicente C, Pedrosa MM (2001) Binding of lichen phenolics to purified secreted arginase from the lichen Evernia prunastri. J Biochem Mol Bio 34:194–200

    CAS  Google Scholar 

  • Lenton JR, Goad LJ, Goodwin TW (1973) Sterols of Xanthoria parietina evidence for 2 sterol pools and the identification of a novel 28 carbon triene erosta-5–8, 22–trien-3- beta -ol. Phytochemistry 12:1135–1140

    CAS  Google Scholar 

  • Maass WSG (1975) The phenolic constituents of Peltigera aphthosa. Phytochemistry 14:2487

    CAS  Google Scholar 

  • Manojlovic NT, Novakovic M, Stevovic V, Solujic S (2005) Antimicrobial metabolites from three serbian Caloplaca. Pharm Bio 43(8):718–722

    CAS  Google Scholar 

  • Matsubara H, Kinoshita K, Koyama K, Ye Y, Takahashi K, Yoshimura I, Yamamoto Y, Miura Y, Kinoshita Y (1997) Antityrosinase activity of lichen metabolites and their synthetic analogues. J Hatt Bot Lab 83:179–185

    Google Scholar 

  • Matsubara H, Miharu K, Kinoshita K, Koyama K, Ye Y, Takahashi K, Yoshimura I, Yamamoto Y, Miura Y, Kinoshita Y (1998) Inhibitory effect of lichen metabolites and their synthetic analogues on melanin biosynthesis in cultured B-16 mouse melanoma cells. Nat Pro Sci 4:161–169

    Google Scholar 

  • Mayer M, O’Neill MA, Murray KE, Santos-Magalhaes NS, Carneiro-Leao AM, Thompson AM, Appleyard VCL (2005) Usnic acid: a non-genotoxic compound with anti-cancer properties. Anti Canc Drugs 16:805–809

    CAS  Google Scholar 

  • McEvoy M, Nybakken L, Solhaug KA, Gauslaa Y (2006) UV triggers the synthesis of the widely distributed secondary compound usnic acid. Mycol Prog 5:221–229

    Google Scholar 

  • McEvoy M, Gauslaa Y, Solhaug KA (2007a) Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in the lichen Lobaria pulmonaria. New Phytol 175:271–282

    PubMed  CAS  Google Scholar 

  • McEvoy M, Solhaug KA, Gauslaa Y (2007b) Solar radiation screening in usnic acid containing cortices of the lichen Nephroma arcticum. Symbiosis 43:143–150

    Google Scholar 

  • Min KR, Kim Y, Kang SH, Mar W, Lee KS, Ro JS, Lee SH, Kim Y (1996) Inhibitory Effects of Herbal Extracts on Cyclooxygenase Activity of Prostaglandin H2 Synthase from Sheep Seminal Vesicle. Nat Pro Sci 2(1):56

    CAS  Google Scholar 

  • Mischenko NP, Maximo OB, Krivoschekova OE, Stepanenko LS (1984) Depsidones and fatty acids of Parmelia stygia. Phytochemistry 23(1):180

    Google Scholar 

  • Miyagawa H, Hamada N, Sato M, Ueno T (1994) Pigments from the cultured lichen mycobionts of Graphis scripta and G. desquamescens. Phytochemistry 36:1319–1332

    PubMed  CAS  Google Scholar 

  • Müller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16

    PubMed  Google Scholar 

  • Mustafa MR, Mohammad R, Din L, Wahid S (1995) Smooth muscle relaxant activities of compounds isolated from Malaysian medicinal plants on rat aorta and guinea-pig ileum. Phytotherapy Res 9(8):555

    CAS  Google Scholar 

  • Neamati N, Hong H, Mazumder A, Wang S, Sunder S, Nicklaus MC, Milne GWA, Proksa B, Pommier Y (1997) Depsides and depsidones as inhibitors of HIV-1 integrase: discovery of novel inhibitors through 3D database searching. J Med Chem 40:942–951

    PubMed  CAS  Google Scholar 

  • Nishitoba Y, Nishimura H, Nishiyama T, Mizutami J (1987) Lichen acids, plant growth inhibitors from Usnea longissima. Phytochemistry 26:3181

    CAS  Google Scholar 

  • Nybakken L, Julkunen-Tiitto R (2006) UV-B induces usnic acid in reindeer lichens. Lichenologist 38:477–485

    Google Scholar 

  • Okuyama E, Umeyama K, Yamazaki M, Kinoshita Y, Yamamoto Y (1995) Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta Med 61:113–115

    PubMed  CAS  Google Scholar 

  • Olafsdottir ES, Ingólfsdottir K (2001) Polysaccharides from lichens: structural characteristics and biological activity. Planta Med 67:99–208

    Google Scholar 

  • Olafsdottir ES, Omarsottir S, Paulsen B, Turcic K, Wagner H (1999) Rhamnopyranosylgalactofuranan, a new immunilogically active polysaccharide from Thamnolia subuliformis. Phytomed 6(4):273

    CAS  Google Scholar 

  • Otsuka H, Komiya T, Tsukumi M, Toyosato T, Fujimura H (1972) Studies on anti-inflammatory drugs. Anti-inflammatory activity of crude drugs and plants. (II). J Takeda Res Lab 31:247–254

    CAS  Google Scholar 

  • Papadopoulou P, Tzakou O, Vagias C, Kefalas P, Roussis V (2007) β-Orcinol Metabolites from the Lichen Hypotrachyna revolute. Molecules 12:997–1005

    PubMed  CAS  Google Scholar 

  • Pengsuparp T, Cai L, Constant H, Fong HHS, Lin L-Z, Kinghorn AD, Pezzuto JM, Cordell GA, Ingólfsdóttir K, Wagner H, Hughes SH (1995) Mechanistic evaluation of new plant derived compounds that inhibit HIV-1 reverse transcriptase. J Nat Prot 58:1024–1031

    CAS  Google Scholar 

  • Perry NB, Benn MH, Brennan NJ, Burgess NJ, Ellis D, Galloway DJ, Lorimer SD, Tangney RS (1999) Antimicrobial, Antiviral and Cytotoxic Activity of New Zealand Lichens. Lichenologist 31:627–636

    Google Scholar 

  • Proksa B, Adamcova J, Sturdikova M, Fuska J. (1994) Metabolites of Pseudevernia furfuracea (L.) Zopf. and their inhibition potential of proteolytic enzymes. Pharmazie 49:282

    Google Scholar 

  • Proksa B, Sturdikova M, Na Pronayova, Liptaj T (1996) (–)-Usnic acid and its derivatives: Their inhibition of fungal growth and enzyme activity. Pharmazie 51:195–196

    CAS  Google Scholar 

  • Quilhot W, Didyk B, Gambaro V, Garbarino JA (1983) Studies on Chilean lichens VI. Depsidones from Erioderma chilense. J Nat Pro 46(6):942–943

    CAS  Google Scholar 

  • Rastogi RP, Mehrotra BN. (1991) Compendium of Indian medicinal plants. Central Drug Research Institute, Lucknow and Publication and Information Directorate, New Delhi, 1(1970–1979), 425

  • Rastogi RP, Mehrotra BN. (1993). Central Drug Research Institute, Lucknow and Publication and Information Directorate, New Delhi, 2(1970–1979), 577

  • Safe S, Safe LM, Maass WSG (1975) Sterols of three lichen species: Lobaria pulmonaria, Lobaria scrobiculata and Usnea longissima. Phytochemistry 14:1821–1823

    CAS  Google Scholar 

  • Saraswathy A, Rajendiran A, Sarada A, Purushothamam KK (1990) Lichen substances of Parmelia caperata. Indian Drugs 27(9):4602

    Google Scholar 

  • Schmeda-Hirschmann G, Tapia A, Lima B, Pertino M, Sortino M, Zacchino S, Rojas de Arias A, Feresin GF (2007) A new antifungal and antiprotozoal depside from the andean lichen Protousnea poeppigii. Phytotherapy Res 22(3):349–355

    Google Scholar 

  • Seo C, Choi Y, Ahn JS, Yim JH, Lee HK, Oh H (2009) PTP1B inhibitory effects of tridepside and related metabolites isolated from the Antarctic lichen Umbilicaria antarctica. J Enz Inhibit Med Chem 24(5):1133–1137

    CAS  Google Scholar 

  • Shibata S, Taguchi H (1967) Occurrence of isousnic acid in lichens with reference the “isodihydrousnic acid” derived from dihydrousnic acid. Tetrahedron Lett 48:867–4871

    Google Scholar 

  • Shukla V, Negi S, Rawat MSM, Pant G, Nagatsu A (2004) Chemical Study of Ramalina africana (Ramaliniaceae) from Garhwal Himalayas. Biochem Systemat Ecol 32:449–453

    CAS  Google Scholar 

  • Smriga M, Saito H, Shibata S, Narui T, Okuyama T, Nishiyama N (1996) PC-2, Linear Homoglucan with.ALPHA.-linkages, Peripherally Enhances the Hippocampal Long-Term Potentiation. Pharm Res 13(9):1322–1326

    PubMed  CAS  Google Scholar 

  • Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV-induction of sun- creening pigments in lichens. New Phytol 158:91–100

    CAS  Google Scholar 

  • Stocker-Wörgötter E (1998) Culture methods and culture of selected mycobionts and photobionts as exemplified by South American lichens. In: Marcelli MP, Seaward MRD (eds) Lichenology in Latin Ameria: history, current knowledge and applications. CETESB, São Paulo, p 143

    Google Scholar 

  • Stocker-Wörgötter E (2001a) Experimental studies of the lichen symbiosis: DNA- analyses, differentiation and secondary chemistry of selected mycobionts, artificial resynthesis of two- and tripartite symbioses. Symbiosis 30:207–227

    Google Scholar 

  • Stocker-Wörgötter E (2001b) Experimental lichenology and microbiology of lichens: culture experiments, secondary chemistry of cultured mycobionts, resynthesis and thallus morphogenesis. The Bryologist 104:576–581

    Google Scholar 

  • Stocker-Wörgötter E. (2002a) Laboratory cultures of selected lichen fungi from Brazil and Chile. Mitteilungen des Instituts für Allgemeine Botanik, Hamburg 30:253–270

  • Stocker-Wörgötter E (2002b) Analysis of secondary compounds in cultured mycobionts. In: Kranner I, Beckett RP, Varma AK (eds) Protocols in lichenology, culturing, biochemistry, ecophysiology and use in biomonitoring. Springer lab manual. Springer, Berlin, pp 296–306

    Google Scholar 

  • Stocker-Wörgötter E, Elix JA (2004) Experimental studies of lichenized fungi: formation of rare depsides and dibenzofuranes by the culture mycobiont of Bunodophoron patagonicum (Sphaerophoraceae, lichenized Ascomycota). Bibliotheca Lichenologica 88:659–669

    Google Scholar 

  • Subramanian SS, Ramakrishnan S (1964) Amino acids of Peltigera canina. Curr Sci 33:522

    CAS  Google Scholar 

  • Swanson A, Fahselt D (1997) Effects of ultraviolet on polyphenolics of Umbilicaria americana. Can J Bot 75:284–289

    CAS  Google Scholar 

  • Takahagi T, Ikezawa N, Endo T, Ifuku K, Yamamoto Y, Kinoshita Y, Takeshita S, Sato F (2006) Inhibition of PSII in atrazine-tolerant tobacco cells by barbatic acid, a lichenderived depside. Biosci Biotech Biochem 70:266–268

    CAS  Google Scholar 

  • Takai M, Uehara Y, Beisler JA (1979) Usnic acid derivatives as potential antineoplastic agents. J Med Chem 22:1380–1384

    PubMed  CAS  Google Scholar 

  • Tay T, Türk AO, Yılmaz M, Türk H, Kıvanc M (2004) Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-Usnic Acid, norstictic acid and protocetraric. Acid Constituents Z Naturforsch 59c:384–388

    Google Scholar 

  • Thompson MJ, Dutky SR, Patterson G-W, Gooden EL (1972) NMR spectra of C-24 isomeric sterols. Phytochemistry 2:1781

    Google Scholar 

  • Toledo Marante FJ, Castellano AG, Rosas FE, Aguiar JQ, Barrera JB (2003) Identification and quantitation of allelochemicals from lichen Lethariella canariensis: Phytotoxicity and antioxidative activity. J Chem Ecol 29(9):2049–2071

    PubMed  CAS  Google Scholar 

  • Türk H, Yılmaz M, Tay T, Türk AO, Kıvanc M (2006) Antimicrobial activity of extracts of chemical races of the lichen Pseudevemia furfuracea and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents. Z Naturforsch 61(7–8):499–507

    Google Scholar 

  • Upreti DK (1994) Lichens: The great Benefactors. Applied Botany Abstract 14(3):64–75

    Google Scholar 

  • Vartia KO (1973) Antibiotics in lichens. In: Ahmadjiian V, Hale ME (eds) The lichens, 3rd edn. Academic, New York, pp 547–561

    Google Scholar 

  • Wilson CO, Gisvold O, Delgado JN, Remers WA (1998) Textbook of organic medicinal and pharmaceutical chemistry, 10th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Wojciechowski ZA, Goad LJ, Goodwin TW (1973) Sterols of lichen Pseudevernia furfuracea. Phytochemistry 12(6):1433–1436

    CAS  Google Scholar 

  • Yamamoto Y, Miura Y, Kinoshita Y, Higuchi M, Murakami A, Ohigashi H, Koshimizu K (1995) Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter-induced Epstein–Barr virus activation. Chem Pharm Bull 43:1388–1390

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kinoshita Y, Matsubara H, Kinoshita K, Koyama K, Takahashi K, Kurokawa T, Yoshimura I (1998) Screening of biological activities and isolation of biological active compounds from lichens. Recent Res Dev Phytochem 2:23–24

    CAS  Google Scholar 

Download references

Acknowledgments

Author (V.S.) wish to thanks Scientific and Engineering Research Council, D.S.T., New Delhi for the financial support vide project no. SR/FT/LS-028/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vertika Shukla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, V., Joshi, G.P. & Rawat, M.S.M. Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9, 303–314 (2010). https://doi.org/10.1007/s11101-010-9189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-010-9189-6

Keywords

Navigation