Skip to main content
Log in

Plant-based meat analogues: from niche to mainstream

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Meat analogues are gradually moving from niche to mainstream products. These products are gaining popularity due to surging consumer demand for plant-based products as “better for you” and “better for the planet” alternatives. In this frame, this review aimed to provide the current and forthcoming challenges for meat analogues industry by addressing their market growth drivers, formulation, the pros and cons of conventional and innovative processing, safety and healthiness as well as consumers’ perception and acceptance. Despite the significant improvements made in the flavor and texture of plant-based meat analogues, food industries still have difficulties in delivering the right sensory experience and there is increased request for sustainable, nutritious and clean label ingredients. For shaping the future of plant-based meat analogues, the main driver is sustainable nutrition through prompting further improvements in formulation [by enhancing proteins functionally (pre/post-processing) and healthiness (blending plant proteins with tailored nutritional makeup and reducing salt contents)] and processing [by finding solutions to their “processed” and “ultra-processed” nature]. In the future, meat analogue companies will keep pushing the boundaries to mimic meat experience (by improving taste and healthiness) as well as reduce product price and increase product convenience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. de Pereira PM, CC, Vicente AF dos RB, (2013) Meat nutritional composition and nutritive role in the human diet. Meat Sci 93:586–592

    Article  CAS  PubMed  Google Scholar 

  2. Research and Markets (2020) Processed Poultry & Meat Market Analysis 2020–2025 - Global Market Forecast to Grow at a CAGR of 7.35% During 2020 and 2025. https://www.globenewswire.com/news-release/2020/06/08/2044720/0/en/Processed-Poultry-Meat-Market-Analysis-2020-2025-Global-Market-Forecast-to-Grow-at-a-CAGR-of-7-35-During-2020-and-2025.html. Accessed 20 Jul 2020

  3. Säll S, Gren IM (2015) Effects of an environmental tax on meat and dairy consumption in Sweden. Food Policy 55:41–53. https://doi.org/10.1016/j.foodpol.2015.05.008

    Article  Google Scholar 

  4. Röös E, Ekelund L, Tjärnemo H (2014) Communicating the environmental impact of meat production: challenges in the development of a Swedish meat guide. J Clean Prod 73:154–164. https://doi.org/10.1016/j.jclepro.2013.10.037

    Article  Google Scholar 

  5. Xazela N, Hugo A, Marume U, Muchenje V (2017) Perceptions of rural consumers on the aspects of meat quality and health implications associated with meat consumption. Sustainability 9:830. https://doi.org/10.3390/su9050830

    Article  Google Scholar 

  6. Apostolidis C, McLeay F (2016) Should we stop meating like this? reducing meat consumption through substitution. Food Policy 65:74–89. https://doi.org/10.1016/j.foodpol.2016.11.002

    Article  Google Scholar 

  7. Vang A, Singh PN, Lee JW et al (2008) Meats, processed meats, obesity, weight gain and occurrence of diabetes among adults: findings from adventist health studies. Ann NutrMetab 52:96–104. https://doi.org/10.1159/000121365

    Article  CAS  Google Scholar 

  8. Wang Y, Beydoun MA (2009) Meat consumption is associated with obesity and central obesity among US adults. Int J Obes 33:621–628. https://doi.org/10.1038/ijo.2009.45

    Article  CAS  Google Scholar 

  9. Farmer B, Larson BT, Fulgoni VL et al (2011) A vegetarian dietary pattern as a nutrient-dense approach to weight management: an analysis of the national health and nutrition examination survey 1999–2004. J Am Diet Assoc 111:819–827. https://doi.org/10.1016/j.jada.2011.03.012

    Article  PubMed  Google Scholar 

  10. Springmann M, Wiebe K, Mason-D’Croz D et al (2018) Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet Heal 2:e451–e461. https://doi.org/10.1016/S2542-5196(18)30206-7

    Article  Google Scholar 

  11. Mohamed Z, Terano R, Yeoh SJ, Iliyasu A (2017) Opinions of non-vegetarian consumers among the chinese community in malaysia toward vegetarian food and diets. J Food Prod Mark 23:80–98. https://doi.org/10.1080/10454446.2017.1244795

    Article  Google Scholar 

  12. Palanisamy M, Töpfl S, Berger RG, Hertel C (2019) Physico-chemical and nutritional properties of meat analogues based on Spirulina/lupin protein mixtures. Eur Food Res Technol 245:1889–1898. https://doi.org/10.1007/s00217-019-03298-w

    Article  CAS  Google Scholar 

  13. Dekkers BL, Boom RM, van der Goot AJ (2018) Structuring processes for meat analogues. Trends Food Sci Technol 81:25–36

    Article  CAS  Google Scholar 

  14. Hartmann C, Siegrist M (2017) Consumer perception and behaviour regarding sustainable protein consumption: a systematic review. Trends Food Sci Technol 61:11–25

    Article  CAS  Google Scholar 

  15. Malek L, Umberger WJ, Goddard E (2019) Committed vs. uncommitted meat eaters: understanding willingness to change protein consumption. Appetite 138:115–126. https://doi.org/10.1016/j.appet.2019.03.024

    Article  PubMed  Google Scholar 

  16. Fresán U, Marrin D, Mejia M, Sabaté J (2019) Water footprint of meat analogs: selected indicators according to life cycle assessment. Water 11:728. https://doi.org/10.3390/w11040728

    Article  CAS  Google Scholar 

  17. Smetana S, Mathys A, Knoch A, Heinz V (2015) Meat alternatives: life cycle assessment of most known meat substitutes. Int J Life Cycle Assess 20:1254–1267. https://doi.org/10.1007/s11367-015-0931-6

    Article  CAS  Google Scholar 

  18. Ritchie H, Reay DS, Higgins P (2018) Potential of meat substitutes for climate change mitigation and improved human health in high-income markets. Front Sustain Food Syst 2:16. https://doi.org/10.3389/fsufs.2018.00016

    Article  Google Scholar 

  19. van der Weele C, Feindt P, Jan van der Goot A et al (2019) Meat alternatives: an integrative comparison. Trends Food Sci Technol 88:505–512

    Article  Google Scholar 

  20. Joshi V, Kumar S (2015) Meat analogues: plant based alternatives to meat products—a review. Int J Food Ferment Technol 5:107. https://doi.org/10.5958/2277-9396.2016.00001.5

    Article  Google Scholar 

  21. Kumar P, Chatli MK, Mehta N et al (2017) Meat analogues: health promising sustainable meat substitutes. Crit Rev Food Sci Nutr 57:923–932. https://doi.org/10.1080/10408398.2014.939739

    Article  CAS  PubMed  Google Scholar 

  22. Sha L, Xiong YL (2020) Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci Technol 102:51–61

    Article  CAS  Google Scholar 

  23. Mintel (2020) GNPD - Plant proteins in meat substitutes. https://www.gnpd.com/sinatra/analysis/chart_results/search/FlMf6yv1YN/?analysis_id=cc8808dc-ef15-4dc6-b442-bb162fc327f5&current_tab=cc8808dc-ef15-4dc6-b442-bb162fc327f5. Accessed 17 Jul 2020

  24. Curtain F, Grafenauer S (2019) Plant-based meat substitutes in the flexitarian age: an audit of products on supermarket shelves. Nutrients. https://doi.org/10.3390/nu11112603

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fresán U, Mejia MA, Craig WJ et al (2019) Meat analogs from different protein sources: a comparison of their sustainability and nutritional content. Sustain. https://doi.org/10.3390/SU11123231

    Article  Google Scholar 

  26. Caporgno MP, Böcker L, Müssner C et al (2020) Extruded meat analogues based on yellow, heterotrophically cultivated Auxenochlorellaprotothecoides microalgae. Innov Food Sci EmergTechnol 59:102275. https://doi.org/10.1016/j.ifset.2019.102275

    Article  CAS  Google Scholar 

  27. Asgar MA, Fazilah A, Huda N et al (2010) Nonmeat protein alternatives as meat extenders and meat analogs. Compr Rev Food Sci Food Saf 9:513–529. https://doi.org/10.1111/j.1541-4337.2010.00124.x

    Article  CAS  PubMed  Google Scholar 

  28. Markets and Markets (2020) Meat Substitutes Market Insights, Share, Analysis And Research Report | COVID-19 impact on Meat Substitutes Market. https://www.marketsandmarkets.com/Market-Reports/meat-substitutes-market-979.html. Accessed 17 Jul 2020

  29. Guo Z, Teng F, Huang Z et al (2020) Effects of material characteristics on the structural characteristics and flavor substances retention of meat analogs. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2020.105752

    Article  Google Scholar 

  30. Bronzato S, Durante A (2017) A contemporary review of the relationship between red meat consumption and cardiovascular risk. Int J Prev Med 8:40

    Article  PubMed  PubMed Central  Google Scholar 

  31. Siegrist M, Hartmann C (2019) Impact of sustainability perception on consumption of organic meat and meat substitutes. Appetite 132:196–202. https://doi.org/10.1016/j.appet.2018.09.016

    Article  PubMed  Google Scholar 

  32. Lemken D, Spiller A, Schulze-Ehlers B (2019) More room for legume—consumer acceptance of meat substitution with classic, processed and meat-resembling legume products. Appetite. https://doi.org/10.1016/j.appet.2019.104412

    Article  PubMed  Google Scholar 

  33. Boukid F, Zannini E, Carini E, Vittadini E (2019) Pulses for bread fortification: a necessity or a choice? Trends Food Sci Technol 88:416–428

    Article  CAS  Google Scholar 

  34. Nemecek T, Jungbluth N, Canals LM, Schenck R (2016) Environmental impacts of food consumption and nutrition: where are we and what is next? Int J Life Cycle Assess 21:607–620

    Article  Google Scholar 

  35. Hartmann C, Siegrist M (2020) Our daily meat: justification, moral evaluation and willingness to substitute. Food Qual Prefer. https://doi.org/10.1016/j.foodqual.2019.103799

    Article  Google Scholar 

  36. de Boer J, Schösler H, Aiking H (2017) Towards a reduced meat diet: mindset and motivation of young vegetarians, low, medium and high meat-eaters. Appetite 113:387–397. https://doi.org/10.1016/j.appet.2017.03.007

    Article  PubMed  Google Scholar 

  37. Weinrich R (2019) Opportunities for the adoption of health-based sustainable dietary patterns: a review on consumer research of meat substitutes. Sustain 11:4028

    Article  Google Scholar 

  38. Dagevos H, Voordouw J (2013) Sustainability and meat consumption: is reduction realistic? Sustain Sci Pract Policy 9:60–69. https://doi.org/10.1080/15487733.2013.11908115

    Article  Google Scholar 

  39. Stephens N, Di Silvio L, Dunsford I et al (2018) Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci Technol 78:155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chriki S, Hocquette JF (2020) The myth of cultured meat: a review. Front Nutr 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chauvet DJ (2018) Should cultured meat be refused in the name of animal dignity? Ethical Theory Moral Pract 21:387–411. https://doi.org/10.1007/s10677-018-9888-4

    Article  Google Scholar 

  42. Gómez-Luciano CA, de Aguiar LK, Vriesekoop F, Urbano B (2019) Consumers’ willingness to purchase three alternatives to meat proteins in the United Kingdom, Spain, Brazil and the Dominican Republic. Food Qual Prefer. https://doi.org/10.1016/j.foodqual.2019.103732

    Article  Google Scholar 

  43. Gourmey (2020) GOURMEY - Ethical foie gras without force-feeding. https://gourmey.com/en/. Accessed 23 Jul 2020

  44. Fu-Hung Hsieh, Harold E. Huff (2011) Meat Analog Compositions and Process. US20120093994A1

  45. Mattice KD, Marangoni AG (2020) Comparing methods to produce fibrous material from zein. Food Res Int. https://doi.org/10.1016/j.foodres.2019.108804

    Article  PubMed  Google Scholar 

  46. Chiang JH, Loveday SM, Hardacre AK, Parker ME (2019) Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues. Food Struct. https://doi.org/10.1016/j.foostr.2018.11.002

    Article  Google Scholar 

  47. Schreuders FKG, Dekkers BL, Bodnár I et al (2019) Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation. J Food Eng 261:32–39. https://doi.org/10.1016/j.jfoodeng.2019.04.022

    Article  CAS  Google Scholar 

  48. Hoehnel A, Axel C, Bez J et al (2019) Comparative analysis of plant-based high-protein ingredients and their impact on quality of high-protein bread. J Cereal Sci. https://doi.org/10.1016/j.jcs.2019.102816

    Article  Google Scholar 

  49. Yuliarti O, Kiat Kovis TJ, Yi NJ (2021) Structuring the meat analogue by using plant-based derived composites. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2020.110138

    Article  Google Scholar 

  50. Mintel (2019) The meat substitute ingredients to watch - Mintel. https://clients.mintel.com/insight/the-meat-substitute-ingredients-to-watch?fromSearch=%3Ffreetext%3DPlant%2520meat%2520substitutes. Accessed 20 Jul 2020

  51. Samard S, Gu B, Ryu G (2019) Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues. J Sci Food Agric 99:4922–4931. https://doi.org/10.1002/jsfa.9722

    Article  CAS  PubMed  Google Scholar 

  52. Avebe (2020) Vegan meat analogues. https://www.avebe.com/vegan-meat-analogues-2/. Accessed 23 Jul 2020

  53. Beyond Meat (2020) Our Ingredients - Beyond Meat - Go Beyond®. https://www.beyondmeat.com/about/our-ingredients/. Accessed 23 Jul 2020

  54. Stephan A, Ahlborn J, Zajul M, Zorn H (2018) Edible mushroom mycelia of Pleurotussapidus as novel protein sources in a vegan boiled sausage analog system: functionality and sensory tests in comparison to commercial proteins and meat sausages. Eur Food Res Technol 244:913–924. https://doi.org/10.1007/s00217-017-3012-1

    Article  CAS  Google Scholar 

  55. Palanisamy M, Franke K, Berger RG et al (2019) High moisture extrusion of lupin protein: influence of extrusion parameters on extruder responses and product properties. J Sci Food Agric 99:2175–2185. https://doi.org/10.1002/jsfa.9410

    Article  CAS  PubMed  Google Scholar 

  56. Azzollini D, Wibisaphira T, Lakemond CMM, Fogliano V (2019) Toward the design of insect-based meat analogue: the role of calcium and temperature in coagulation behavior of Alphitobiusdiaperinus proteins. LWT 100:75–82. https://doi.org/10.1016/j.lwt.2018.10.037

    Article  CAS  Google Scholar 

  57. Smetana S, Pernutz C, Toepfl S et al (2019) High-moisture extrusion with insect and soy protein concentrates: cutting properties of meat analogues under insect content and barrel temperature variations. J Insects as Food Feed 5:29–34. https://doi.org/10.3920/JIFF2017.0066

    Article  Google Scholar 

  58. Bohrer BM (2019) An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci Hum Wellness 8:320–329

    Article  Google Scholar 

  59. Dekkers BL, Emin MA, Boom RM, van der Goot AJ (2018) The phase properties of soy protein and wheat gluten in a blend for fibrous structure formation. Food Hydrocoll 79:273–281. https://doi.org/10.1016/j.foodhyd.2017.12.033

    Article  CAS  Google Scholar 

  60. Pietsch VL, Bühler JM, Karbstein HP, Emin MA (2019) High moisture extrusion of soy protein concentrate: Influence of thermomechanical treatment on protein-protein interactions and rheological properties. J Food Eng 251:11–18. https://doi.org/10.1016/j.jfoodeng.2019.01.001

    Article  CAS  Google Scholar 

  61. Lin S, Huff HE, Hsieh F (2000) Texture and chemical characteristics of soy protein meat analog extruded at high moisture. J Food Sci 65:264–269. https://doi.org/10.1111/j.1365-2621.2000.tb15991.x

    Article  CAS  Google Scholar 

  62. Emin MA, Quevedo M, Wilhelm M, Karbstein HP (2017) Analysis of the reaction behavior of highly concentrated plant proteins in extrusion-like conditions. Innov Food Sci EmergTechnol 44:15–20. https://doi.org/10.1016/j.ifset.2017.09.013

    Article  CAS  Google Scholar 

  63. Diez-Simon C, Mumm R, Hall RD (2019) Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. Metabolomics 15:41

    Article  PubMed  PubMed Central  Google Scholar 

  64. Klonoff DC (2007) Replacements for trans fats—will there be an oil shortage? J Diabetes Sci Technol 1:415–422. https://doi.org/10.1177/193229680700100316

    Article  PubMed  PubMed Central  Google Scholar 

  65. Martins AJ, Lorenzo JM, Franco D et al (2019) Omega-3 and polyunsaturated fatty acids-enriched hamburgers using sterol-based oleogels. Eur J Lipid Sci Technol 121:1900111. https://doi.org/10.1002/ejlt.201900111

    Article  CAS  Google Scholar 

  66. Piñero MP, Parra K, Huerta-Leidenz N et al (2008) Effect of oat’s soluble fibre (β-glucan) as a fat replacer on physical, chemical, microbiological and sensory properties of low-fat beef patties. Meat Sci 80:675–680. https://doi.org/10.1016/j.meatsci.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  67. Summo C, De Angelis D, Difonzo G et al (2020) Effectiveness of oat-hull-based ingredient as fat replacer to produce low fat burger with high beta-glucans content. Foods 9:1057. https://doi.org/10.3390/foods9081057

    Article  CAS  PubMed Central  Google Scholar 

  68. Lin S, Huff HE, Hsieh F (2002) Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog. J Food Sci 67:1066–1072. https://doi.org/10.1111/j.1365-2621.2002.tb09454.x

    Article  CAS  Google Scholar 

  69. Yao G, Liu KS, Hsieh F (2006) A new method for characterizing fiber formation in meat analogs during high-moisture extrusion. J Food Sci 69:303–307. https://doi.org/10.1111/j.1365-2621.2004.tb13634.x

    Article  Google Scholar 

  70. Krintiras GA, Göbel J, Van Der Goot AJ, Stefanidis GD (2015) Production of structured soy-based meat analogues using simple shear and heat in a Couette Cell. J Food Eng 160:34–41. https://doi.org/10.1016/j.jfoodeng.2015.02.015

    Article  CAS  Google Scholar 

  71. Zhang J, Liu L, Jiang Y et al (2020) High-moisture extrusion of peanut protein-/carrageenan/sodium alginate/wheat starch mixtures: effect of different exogenous polysaccharides on the process forming a fibrous structure. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2019.105311

    Article  Google Scholar 

  72. Fraser RZ, Shitut M, Agrawal P et al (2018) Safety evaluation of soy leghemoglobin protein preparation derived from pichiapastoris, intended for use as a flavor catalyst in plant-based meat. Int J Toxicol 37:241–262. https://doi.org/10.1177/1091581818766318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oreopoulou V, Tzia C (2007) Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants, and colorants. Utilization of By-Products and Treatment of Waste in the Food Industry. Springer, US, pp 209–232

    Chapter  Google Scholar 

  74. Michael G. Rayner, Jean Luz Rayner, Rachel Miller (2013) US20180220676A1 - Pseudo-loaf food compositions - Google Patents. https://patents.google.com/patent/US20180220676A1/en. Accessed 23 Jul 2020

  75. Gregory Trottet, Sheldon Fernandes, Gregor Grunz, et al (2017) A process for preparing a meat-analogue food product. US20180064137A1

  76. Damayanti D, Jaceldo-Siegl K, Beeson WL et al (2018) Foods and supplements associated with vitamin B12 biomarkers among vegetarian and non-vegetarian participants of the Adventist Health Study-2 (AHS-2) calibration study. Nutrients. https://doi.org/10.3390/nu10060722

    Article  PubMed  PubMed Central  Google Scholar 

  77. Office of Dietary Supplements (ODS) (2020) Vitamin B12—Health Professional Fact Sheet. https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/. Accessed 28 Sep 2020

  78. Wi G, Bae J, Kim H et al (2020) Evaluation of the physicochemical and structural properties and the sensory characteristics of meat analogues prepared with various non-animal based liquid additives. Foods 9:461. https://doi.org/10.3390/foods9040461

    Article  CAS  PubMed Central  Google Scholar 

  79. Grabowska KJ, Tekidou S, Boom RM, van der Goot AJ (2014) Shear structuring as a new method to make anisotropic structures from soy-gluten blends. Food Res Int 64:743–751. https://doi.org/10.1016/j.foodres.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  80. Grabowska KJ, Zhu S, Dekkers BL et al (2016) Shear-induced structuring as a tool to make anisotropic materials using soy protein concentrate. J Food Eng 188:77–86. https://doi.org/10.1016/j.jfoodeng.2016.05.010

    Article  Google Scholar 

  81. La Von Gene Wenger, Elmer John Osterhaus (1975) Double-extrusion apparatus for producing dense, uniformly layered vegetable protein meat analogue—Google Patents. US4099455A

  82. Wenger La Von G, Oosterhaus Elmer J, Smith Oak B (1976) Method of preparing dense, uniformly layered vegetable protein meat analogue. US4042715, Dec 19 1975

  83. MazaheriTehrani M, Ehtiati A, SharifiAzghandi S (2017) Application of genetic algorithm to optimize extrusion condition for soy-based meat analogue texturization. J Food Sci Technol 54:1119–1125. https://doi.org/10.1007/s13197-017-2524-9

    Article  CAS  Google Scholar 

  84. Kamau EH, Nkhata SG, Ayua EO (2020) Extrusion and nixtamalization conditions influence the magnitude of change in the nutrients and bioactive components of cereals and legumes. Food Sci Nutr 8:1753–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zahari I, Ferawati F, Helstad A et al (2020) Development of high-moisture meat analogues with hemp and soy protein using extrusion cooking. Foods 9:772. https://doi.org/10.3390/foods9060772

    Article  CAS  PubMed Central  Google Scholar 

  86. Zhang J, Liu L, Liu H et al (2019) Changes in conformation and quality of vegetable protein during texturization process by extrusion. Crit Rev Food Sci Nutr 59:3267–3280

    Article  CAS  PubMed  Google Scholar 

  87. Osen R, Toelstede S, Wild F et al (2014) High moisture extrusion cooking of pea protein isolates: raw material characteristics, extruder responses, and texture properties. J Food Eng 127:67–74. https://doi.org/10.1016/j.jfoodeng.2013.11.023

    Article  CAS  Google Scholar 

  88. Alam MS, Kaur J, Khaira H, Gupta K (2016) Extrusion and extruded products: changes in quality attributes as affected by extrusion process parameters: a review. Crit Rev Food Sci Nutr 56:445–473. https://doi.org/10.1080/10408398.2013.779568

    Article  CAS  PubMed  Google Scholar 

  89. Estrada PD, Berton-Carabin CC, Schlangen M et al (2018) Protein oxidation in plant protein-based fibrous products: effects of encapsulated iron and process conditions. J Agric Food Chem 66:11105–11112. https://doi.org/10.1021/acs.jafc.8b02844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Krintiras GA, Gadea Diaz J, Van Der Goot AJ et al (2016) On the use of the Couette cell technology for large scale production of textured soy-based meat replacers. J Food Eng 169:205–213. https://doi.org/10.1016/j.jfoodeng.2015.08.021

    Article  CAS  Google Scholar 

  91. Dekkers BL, Nikiforidis CV, van der Goot AJ (2016) Shear-induced fibrous structure formation from a pectin/SPI blend. Innov Food Sci EmergTechnol 36:193–200. https://doi.org/10.1016/j.ifset.2016.07.003

    Article  CAS  Google Scholar 

  92. Krintiras GA, Göbel J, Bouwman WG et al (2014) On characterization of anisotropic plant protein structures. Food Funct 5:3233–3240. https://doi.org/10.1039/c4fo00537f

    Article  CAS  PubMed  Google Scholar 

  93. Hsin Yang J, Olsen RA (1970) Meat analogs having the fiber structure of meat. US3814823, Sept 30 1970

  94. Huang HC, Hammond EG, Reitmeier CA, Myers DJ (1995) Properties of fibers produced from soy protein isolate by extrusion and wet-spinning. J Am Oil Chem Soc 72:1453–1460. https://doi.org/10.1007/BF02577837

    Article  CAS  Google Scholar 

  95. Rampon V, Robert P, Nicolas N, Dufour E (1999) Protein structure and network orientation in edible films prepared by spinning process. J Food Sci 64:313–316. https://doi.org/10.1111/j.1365-2621.1999.tb15890.x

    Article  CAS  Google Scholar 

  96. Tolstoguzov VB (1988) Creation of fibrous structures by spinneretless spinning Food structure. Elsevier, Amsterdam, pp 181–196

    Google Scholar 

  97. Liu P, Xu H, Zhao Y, Yang Y (2017) Rheological properties of soy protein isolate solution for fibers and films. Food Hydrocoll 64:149–156. https://doi.org/10.1016/j.foodhyd.2016.11.001

    Article  CAS  Google Scholar 

  98. Wongkanya R, Chuysinuan P, Pengsuk C et al (2017) Electrospinning of alginate/soy protein isolated nanofibers and their release characteristics for biomedical applications. J Sci Adv Mater Devices 2:309–316. https://doi.org/10.1016/j.jsamd.2017.05.010

    Article  Google Scholar 

  99. Kutzli I, Beljo D, Gibis M et al (2020) Effect of maltodextrin dextrose equivalent on electrospinnability and glycation reaction of blends with pea protein isolate. Food Biophys 15:206–215. https://doi.org/10.1007/s11483-019-09619-6

    Article  Google Scholar 

  100. Nieuwland M, Geerdink P, Brier P et al (2014) Reprint of “food-grade electrospinning of proteins.” Innov Food Sci EmergTechnol 24:138–144. https://doi.org/10.1016/j.ifset.2014.07.006

    Article  Google Scholar 

  101. Kutzli I, Gibis M, Baier SK, Weiss J (2019) Electrospinning of whey and soy protein mixed with maltodextrin—influence of protein type and ratio on the production and morphology of fibers. Food Hydrocoll 93:206–214. https://doi.org/10.1016/j.foodhyd.2019.02.028

    Article  CAS  Google Scholar 

  102. Vogt L, Liverani L, Roether J, Boccaccini A (2018) Electrospun zein fibers incorporating poly(glycerol sebacate) for soft tissue engineering. Nanomaterials 8:150. https://doi.org/10.3390/nano8030150

    Article  CAS  PubMed Central  Google Scholar 

  103. Kutzli I, Griener D, Gibis M et al (2020) Improvement of emulsifying behavior of pea proteins as plant-based emulsifiers: via Maillard-induced glycation in electrospun pea protein-maltodextrin fibers. Food Funct 11:4049–4056. https://doi.org/10.1039/d0fo00292e

    Article  CAS  PubMed  Google Scholar 

  104. Robert A Boyer, John E Middendorf (1971) Method of producing a meat simulating textured food product. US3870808A

  105. Mehran R, Andreas G, Wolfgang M (2013) EP2945490B1 - Method for producing meat substitute products. https://patents.google.com/patent/EP2945490B1/en. Accessed 27 Jul 2020

  106. Novameat (2019) Plant-Based Meat | NOVAMEAT | Barcelona. https://www.novameat.com/. Accessed 27 Jul 2020

  107. Godoi FC, Prakash S, Bhandari BR (2016) 3d printing technologies applied for food design: status and prospects. J Food Eng 179:44–54

    Article  Google Scholar 

  108. Voon SL, An J, Wong G et al (2019) 3D food printing: a categorised review of inks and their development. Virtual PhysPrototyp 14:203–218

    Article  Google Scholar 

  109. Lupton D, Turner B (2018) Food of the future? consumer responses to the idea of 3D-printed meat and insect-based foods. Food Foodways 26:269–289. https://doi.org/10.1080/07409710.2018.1531213

    Article  Google Scholar 

  110. Chuck C, Fernandes SA, Hyers LL (2016) Awakening to the politics of food: Politicized diet as social identity. Appetite 107:425–436. https://doi.org/10.1016/j.appet.2016.08.106

    Article  PubMed  Google Scholar 

  111. Mintel (2020) The Future of Animal Proteins, Meat Alternatives: 2020—Mintel. https://clients.mintel.com/report/the-future-of-animal-proteins-meat-alternatives-2020?fromSearch=%3Ffreetext%3DPlant%2520meat%2520substitutes. Accessed 20 Jul 2020

  112. Poti JM, Braga B, Qin B (2017) Ultra-processed food intake and obesity: what really matters for health-processing or nutrient content? CurrObes Rep 6:420–431

    Google Scholar 

  113. Fiolet T, Srour B, Sellem L et al (2018) Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. BMJ. https://doi.org/10.1136/bmj.k322

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kim K, Choi B, Lee I et al (2011) Bioproduction of mushroom mycelium of Agaricus bisporus by commercial submerged fermentation for the production of meat analogue. J Sci Food Agric 91:1561–1568. https://doi.org/10.1002/jsfa.4348

    Article  CAS  PubMed  Google Scholar 

  115. Lu H, Lou H, Hu J et al (2020) Macrofungi: a review of cultivation strategies, bioactivity, and application of mushrooms. Compr Rev Food Sci Food Saf. https://doi.org/10.1111/1541-4337.12602

    Article  PubMed  Google Scholar 

  116. Noordam MY, van der Fels-Klerx HJ (2013) Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production: safety aspects of novel protein sources…. Compr Rev Food Sci Food Saf 12:662–678. https://doi.org/10.1111/crf3.2013.12.issue-6

    Article  PubMed  Google Scholar 

  117. Weinrich R, Elshiewy O (2019) Preference and willingness to pay for meat substitutes based on micro-algae. Appetite 142:104353

    Article  PubMed  Google Scholar 

  118. Aggarwal A, Rehm CD, Monsivais P, Drewnowski A (2016) Importance of taste, nutrition, cost and convenience in relation to diet quality: evidence of nutrition resilience among US adults using National Health and Nutrition Examination Survey (NHANES) 2007–2010. Prev Med (Baltim) 90:184–192. https://doi.org/10.1016/j.ypmed.2016.06.030

    Article  Google Scholar 

  119. Sanchez-Sabate R, Sabaté J (2019) Consumer attitudes towards environmental concerns of meat consumption: a systematic review. Int J Environ Res Public Health 16:1220

    Article  PubMed Central  Google Scholar 

  120. Van Loo EJ, Caputo V, Nayga RM, Verbeke W (2014) Consumers’ valuation of sustainability labels on meat. Food Policy 49:137–150. https://doi.org/10.1016/j.foodpol.2014.07.002

    Article  Google Scholar 

  121. Stea S, Pickering GJ (2019) Optimizing messaging to reduce red meat consumption. Environ Commun 13:633–648. https://doi.org/10.1080/17524032.2017.1412994

    Article  Google Scholar 

  122. Neff RA, Edwards D, Palmer A et al (2018) Reducing meat consumption in the USA: a nationally representative survey of attitudes and behaviours. Public Health Nutr 21:1835–1844. https://doi.org/10.1017/S1368980017004190

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bryant C, Szejda K, Parekh N et al (2019) A Survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Front Sustain Food Syst 3:11. https://doi.org/10.3389/fsufs.2019.00011

    Article  Google Scholar 

  124. Rozin P, Hormes JM, Faith MS, Wansink B (2012) Is meat male? a quantitative multimethod framework to establish metaphoric relationships. J Consum Res 39:629–643. https://doi.org/10.1086/664970

    Article  Google Scholar 

  125. Hoek AC, Luning PA, Stafleu A, De Graaf C (2004) Food-related lifestyle and health attitudes of Dutch vegetarians, non-vegetarian consumers of meat substitutes, and meat consumers. Appetite 42:265–272. https://doi.org/10.1016/j.appet.2003.12.003

    Article  PubMed  Google Scholar 

  126. Graça J, Calheiros MM, Oliveira A (2015) Attached to meat? (Un)Willingness and intentions to adopt a more plant-based diet. Appetite 95:113–125. https://doi.org/10.1016/j.appet.2015.06.024

    Article  PubMed  Google Scholar 

  127. Graça J, Oliveira A, Calheiros MM (2015) Meat, beyond the plate. Data-driven hypotheses for understanding consumer willingness to adopt a more plant-based diet. Appetite 90:80–90. https://doi.org/10.1016/j.appet.2015.02.037

    Article  PubMed  Google Scholar 

  128. Milford AB, Le Mouël C, Bodirsky BL, Rolinski S (2019) Drivers of meat consumption. Appetite 141:104313. https://doi.org/10.1016/j.appet.2019.06.005

    Article  PubMed  Google Scholar 

  129. Elzerman JE, Hoek AC, van Boekel MAJS, Luning PA (2011) Consumer acceptance and appropriateness of meat substitutes in a meal context. Food Qual Prefer 22:233–240. https://doi.org/10.1016/j.foodqual.2010.10.006

    Article  Google Scholar 

  130. Hoek AC, van Boekel MAJS, Voordouw J, Luning PA (2011) Identification of new food alternatives: how do consumers categorize meat and meat substitutes? Food Qual Prefer 22:371–383. https://doi.org/10.1016/j.foodqual.2011.01.008

    Article  Google Scholar 

  131. Verbeke W, Pérez-Cueto FJA, Barcellos MD, d, et al (2010) European citizen and consumer attitudes and preferences regarding beef and pork. Meat Sci 84:284–292

    Article  PubMed  Google Scholar 

  132. Bohm I, Lindblom C, Åbacka G et al (2015) “He just has to like ham”—the centrality of meat in home and consumer studies. Appetite 95:101–112. https://doi.org/10.1016/j.appet.2015.06.015

    Article  PubMed  Google Scholar 

  133. Pohjolainen P, Tapio P, Vinnari M et al (2016) Consumer consciousness on meat and the environment—exploring differences. Appetite 101:37–45. https://doi.org/10.1016/j.appet.2016.02.012

    Article  PubMed  Google Scholar 

  134. Macdiarmid JI, Douglas F, Campbell J (2016) Eating like there’s no tomorrow: public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 96:487–493. https://doi.org/10.1016/j.appet.2015.10.011

    Article  PubMed  Google Scholar 

  135. Piazza J, Ruby MB, Loughnan S et al (2015) Rationalizing meat consumption. The 4Ns. Appetite 91:114–128. https://doi.org/10.1016/j.appet.2015.04.011

    Article  PubMed  Google Scholar 

  136. Bastian B, Loughnan S, Haslam N, Radke HRM (2012) Don’t mind meat? the denial of mind to animals used for human consumption. Personal Soc Psychol Bull 38:247–256. https://doi.org/10.1177/0146167211424291

    Article  Google Scholar 

  137. Bratanova B, Loughnan S, Bastian B (2011) The effect of categorization as food on the perceived moral standing of animals. Appetite 57:193–196. https://doi.org/10.1016/j.appet.2011.04.020

    Article  PubMed  Google Scholar 

  138. Clonan A, Wilson P, Swift JA et al (2015) Red and processed meat consumption and purchasing behaviours and attitudes: impacts for human health, animal welfare and environmental sustainability. Public Health Nutr 18:2446–2456. https://doi.org/10.1017/S1368980015000567

    Article  PubMed  Google Scholar 

  139. Rothgerber H (2013) Real men don’t eat (vegetable) quiche: masculinity and the justification of meat consumption. Psychol Men Masculinity 14:363–375. https://doi.org/10.1037/a0030379

    Article  Google Scholar 

  140. Pouta E, Heikkilä J, Forsman-Hugg S et al (2010) Consumer choice of broiler meat: The effects of country of origin and production methods. Food Qual Prefer 21:539–546. https://doi.org/10.1016/j.foodqual.2010.02.004

    Article  Google Scholar 

  141. Verbeke W (2015) Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual Prefer 39:147–155. https://doi.org/10.1016/j.foodqual.2014.07.008

    Article  Google Scholar 

  142. Tuorila H, Hartmann C (2020) Consumer responses to novel and unfamiliar foods. CurrOpin Food Sci 33:1–8

    Google Scholar 

Download references

Acknowledgements

This work was supported by CERCA Programme (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Boukid.

Ethics declarations

Conflict of interest

The author declare that there is no confict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukid, F. Plant-based meat analogues: from niche to mainstream. Eur Food Res Technol 247, 297–308 (2021). https://doi.org/10.1007/s00217-020-03630-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03630-9

Keywords

Navigation