Skip to main content

Advertisement

Log in

Plant-based meat analogue (PBMA) as a sustainable food: a concise review

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The global community is in a quest for nutritional and environment-friendly resources as a part of their food habit. The ubiquitous trend of veganism tied with the increasing apprehensions towards animal welfare, negative impact on human health and the environment has escalated the demand for meat alternatives mainly plant-based meat analogues (PBMA). Protein-rich bioresources such as cereals, vegetables, and algae have been explored to mimic animal meat in a similar flavour, texture, sensory and aromatic properties. This review aims to summarize the recent advancements in functional food technology based on vegetal proteins, a comparative account of traditional and commercially available meat alternates. The literature search for the last 10 years shows the rise in research on plant ingredients to develop novel human foods. A brief account of various production methods and their processing effects to improve the structural and techno-functionality of PBMA is suggested for designing sustainable food. The different combinations of plant and animal proteins are discussed to enhance the nutritional aspect, organoleptic profile and shelf-life of available food products. The positive feedback resulted in booming food industries across the world, incorporating vegetal proteins. The global market trend introducing well-established and promising food brands is listed to discuss the prospects of PBMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmedna M, Prinyawiwatkul W, Rao RM (1999) Solubilized wheat protein isolate: functional properties and potential food applications. J Agric Food Chem 47(4):1340–1345. https://doi.org/10.1021/jf981098s

    Article  CAS  PubMed  Google Scholar 

  2. Aiking H (2011) Future protein supply. Trends Food Sci Technol 22(2–3):112–120. https://doi.org/10.1016/j.tifs.2010.04.005

    Article  CAS  Google Scholar 

  3. Alting AC, Pouvreau L, Giuseppin MLF, van Nieuwenhuijzen NH (2011) Potato proteins. In: Phillips GO, Williams PA (eds) Handbook of food proteins. Woodhead Publishing, Cambridge, pp 316–334. https://doi.org/10.1533/9780857093639.316

    Chapter  Google Scholar 

  4. Amagliani L, O’Regan J, Kelly AL, O’Mahony JA (2017) The composition, extraction, functionality and applications of rice proteins: a review. Trends Food Sci Technol 64:1–12. https://doi.org/10.1016/j.tifs.2017.01.008

    Article  CAS  Google Scholar 

  5. Anand SS, Hawkes C, De Souza RJ, Mente A, Dehghan M, Nugent R, Zulyniak MA, Weis T, Bernstein AM, Krauss RM, Kromhout D, Jenkins DJA, Malik V, Martinez-Gonzalez MA, Mozaffarian D, Yusuf S, Willett WC, Popkin BM (2015) Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system. A report from the workshop convened by the World Heart Federation. J Am Coll Cardiol 66(14):1590–1614. https://doi.org/10.1016/j.jacc.2015.07.050

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arntfield SD, Maskus HD (2011) Peas and other legume proteins. Handb Food Proteins. https://doi.org/10.1533/9780857093639.233

    Article  Google Scholar 

  7. Asgar MA, Fazilah A, Huda N, Bhat R, Karim AA (2010) Nonmeat protein alternatives as meat extenders and meat Analogues. Comp Rev Food Sci Food Saf 9(5):513–529. https://doi.org/10.1111/j.1541-4337.2010.00124.x

    Article  CAS  Google Scholar 

  8. Babault N, Christos P, Deley G, Laetitia G-D, Marie-Hélène S, Lefranc-Millot C, Allaert FA (2015) Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, placebo-controlled clinical trial vs. whey protein. J Int Soc Sports Nutr 12(1):1–9. https://doi.org/10.1186/s12970-014-0064-5

    Article  CAS  Google Scholar 

  9. Beck SM, Knoerzer K, Foerster M, Mayo S, Philipp C, Arcot J (2018) Low moisture extrusion of pea protein and pea fibre fortified rice starch blends. J Food Eng 231:61–71. https://doi.org/10.1016/j.jfoodeng.2018.03.004

    Article  CAS  Google Scholar 

  10. Berghout JAM, Venema P, Boom RM, Van der Goot AJ (2015) Comparing functional properties of concentrated protein isolates with freeze-dried protein isolates from lupin seeds. Food Hydrocolloids 51:346–354. https://doi.org/10.1016/j.foodhyd.2015.05.017

    Article  CAS  Google Scholar 

  11. Baiano A (2020) 3D Printed Foods: a comprehensive review of technologies, nutritional value, safety, consumer attitude, regulatory framework, and economic and sustainability issues. Food Rev Int. https://doi.org/10.1080/87559129.2020.1762091

    Article  Google Scholar 

  12. Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6(5):33. https://doi.org/10.3390/foods6050033

    Article  CAS  PubMed Central  Google Scholar 

  13. Bodenkultur Der D (2012) Worldwide alternatives to animal derived foods—overview and evaluation models

  14. Bohrer BM (2017) Review: nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci Technol 65:103–112. https://doi.org/10.1016/j.tifs.2017.04.016

    Article  CAS  Google Scholar 

  15. Bohrer BM (2019) An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci Hum Wellness 8(4):320–329. https://doi.org/10.1016/j.fshw.2019.11.006

    Article  Google Scholar 

  16. Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallia L, Guha N, Mattock H, Straif K, Stewart BW, Smet SD, Corpet D, Meurillon M, Caderni G, Rohrmann S, Verger P, Sasazuki S, Wakabayashi K, Weijenberg MP, Wu K (2015) Carcinogenicity of consumption of red and processed meat. Lancet Oncol 2045(15):1599–1600. https://doi.org/10.1016/S1470-2045(15)00444-1

    Article  Google Scholar 

  17. Boye JI, Aksay S, Roufik S, Ribéreau S, Mondor M, Farnworth E, Rajamohamed SH (2010) Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res Int 43(2):537–546. https://doi.org/10.1016/j.foodres.2009.07.021

    Article  CAS  Google Scholar 

  18. Bryant C, Szejda K, Parekh N, Desphande V, Tse B (2019) A survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2019.00011

    Article  Google Scholar 

  19. Buchmann L, Bertsch P, Böcker L, Krähenmann U, Fischer P, Mathys A (2019) Adsorption kinetics and foaming properties of soluble microalgae fractions at the air/water interface. Food Hydrocolloids 97(June):105182. https://doi.org/10.1016/j.foodhyd.2019.105182

    Article  CAS  Google Scholar 

  20. Caporgno MP, Böcker L, Müssner C, Stirnemann E, Haberkorn I, Adelmann H, Handschin S, Windhab EJ, Mathys A (2020) Extruded meat Analogues based on yellow, heterotrophically cultivated Auxenochlorella protothecoides microalgae. Innov Food Sci Emerg Technol 59:102275. https://doi.org/10.1016/j.ifset.2019.102275

    Article  CAS  Google Scholar 

  21. Caporgno MP, Mathys A (2018) Trends in microalgae incorporation into innovative food products with potential health benefits. Front Nutr 5(July):1–10. https://doi.org/10.3389/fnut.2018.00058

    Article  CAS  Google Scholar 

  22. Cherney JH, Small E (2016) Industrial hemp in North America: production, politics and potential. Agronomy. https://doi.org/10.3390/agronomy6040058

    Article  Google Scholar 

  23. Chiang JH, Loveday SM, Hardacre AK, Parker ME (2019) Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues. Food Struct 19:1. https://doi.org/10.1016/j.foostr.2018.11.002

    Article  Google Scholar 

  24. Chronakis IS, Madsen M (2011) Algal proteins. In: Handbook of food proteins. Woodhead Publishing Limited. https://doi.org/10.1533/9780857093639.353

  25. Curtain F, Grafenauer S (2019) Plant-based meat substitutes in the flexitarian age: An audit of products on supermarket shelves. Nutrients 11(11):1–14. https://doi.org/10.3390/nu11112603

    Article  CAS  Google Scholar 

  26. Dankar I, Haddarah A, Omar FE, Sepulcre F, Pujolà M (2018) 3D printing technology: the new era for food customization and elaboration. Trends Food Sci Technol 75:231–242. https://doi.org/10.1016/j.tifs.2018.03.018

    Article  CAS  Google Scholar 

  27. Day L (2011) Wheat gluten: production, properties and application. In: Handbook of food proteins. Woodhead Publishing Limited.https://doi.org/10.1533/9780857093639.267

  28. De Boer IH, Bangalore S, Benetos A, Davis AM, Michos ED, Muntner P, Rossing P, Zoungas S, Bakris G (2017) Diabetes and hypertension: a position statement by the American diabetes association. Diabetes Care 40(9):1273–1284. https://doi.org/10.2337/dci17-0026

    Article  CAS  PubMed  Google Scholar 

  29. Dekkers BL, Boom RM, van der Goot AJ (2018) Structuring processes for meat analogues. Trends Food Sci Technol 81(May):25–36. https://doi.org/10.1016/j.tifs.2018.08.011

    Article  CAS  Google Scholar 

  30. Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotechnol 24(2):169–177. https://doi.org/10.1016/j.copbio.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  31. Egbert R, Borders C (2006) Achieving success with meat analogues. Food Technol 60(1):28–34

    Google Scholar 

  32. Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Effect of the film-processing conditions, relative humidity and ageing on wheat gluten films coated with electrospun polyhydroxyalkanoate. Food Hydrocolloids 44:292–299. https://doi.org/10.1016/j.foodhyd.2014.09.032

    Article  CAS  Google Scholar 

  33. Fabra MJ, López-Rubio A, Lagaron JM (2015) Three-layer films based on wheat gluten and electrospun PHA. Food Bioprocess Technol 8(11):2330–2340. https://doi.org/10.1007/s11947-015-1590-0

    Article  CAS  Google Scholar 

  34. Fehér A, Gazdecki M, Véha M, Szakály M, Szakály Z (2020) A comprehensive review of the benefits and barriers to the switch to a plant-based diet. Sustainability (Switzerland) 12(10):1–18. https://doi.org/10.3390/su12104136

    Article  Google Scholar 

  35. Fresán U, Mejia MA, Craig WJ, Jaceldo-Siegl K, Sabaté J (2019) Meat analogs from different protein sources: a comparison of their sustainability and nutritional content. Sustainability 11:3231. https://doi.org/10.3390/su11123231

    Article  CAS  Google Scholar 

  36. Fukushima D (2011) Soy proteins. Handb Food Proteins. https://doi.org/10.1533/9780857093639.210

    Article  Google Scholar 

  37. Geerts MEJ, Dekkers BL, van der Padt A, van der Goot AJ (2018) Aqueous fractionation processes of soy protein for fibrous structure formation. Innov Food Sci Emerg Technol 45(11):313–319. https://doi.org/10.1016/j.ifset.2017.12.002

    Article  CAS  Google Scholar 

  38. Gershfeld M, Sheine JE, LeMarr McGavin G (2011) AE studio—beyond pedestrian access: creating bridges for learning. In: ASEE annual conference and exposition, conference Proceedings, vol 91, pp 1461–1467https://doi.org/10.3945/ajcn.2010.28674F.Am

  39. Godoi FC, Prakash S, Bhandari BR (2016) 3D printing technologies applied for food design: status and prospects. J Food Eng 179:44–54

    Article  Google Scholar 

  40. González-Pérez S, Arellano JB (2009) Vegetable protein isolates. Handbook of hydrocolloids, 2nd edn, pp 383–419https://doi.org/10.1533/9781845695873.383

  41. González-Pérez S (2015) Sunflower proteins. Sunflower Chem Prod Process Utiliz. https://doi.org/10.1016/B978-1-893997-94-3.50018-0

    Article  Google Scholar 

  42. Gorinstein S, Pawelzik E, Delgado-Licon E, Haruenkit R, Weisz M, Trakhtenberg S (2002) Characterisation of pseudocereal and cereal proteins by protein and amino acid analyses. J Sci Food Agric 82(8):886–891. https://doi.org/10.1002/jsfa.1120

    Article  CAS  Google Scholar 

  43. Gorissen SHM, Crombag JJR, Senden JMG, Waterval WAH, Bierau J, Verdijk LB, van Loon LJC (2018) Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 50(12):1685–1695. https://doi.org/10.1007/s00726-018-2640-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grabowska KJ, Zhu S, Dekkers BL, De Ruijter NCA, Gieteling J, Van Der Goot AJ (2016) Shear-induced structuring as a tool to make anisotropic materials using soy protein concentrate. J Food Eng 188:77–86. https://doi.org/10.1016/j.jfoodeng.2016.05.010

    Article  Google Scholar 

  45. Grahl S, Palanisamy M, Strack M, Meier-Dinkel L, Toepfl S, Mörlein D (2018) Towards more sustainable meat alternatives: How technical parameters affect the sensory properties of extrusion products derived from soy and algae. J Clean Prod 198:962–971. https://doi.org/10.1016/j.jclepro.2018.07.041

    Article  Google Scholar 

  46. Greene CH, Huntley ME, Archibald I, Gerber LN, Sills DL, Granados J, Beal CM, Walsh MJ (2017) Geoengineering, marine microalgae, and climate stabilization in the 21st century. Earth’s Future 5(3):278–284. https://doi.org/10.1002/2016EF000486

    Article  Google Scholar 

  47. Guasch-Ferré M, Satija A, Blondin SA, Janiszewski M, Emlen E, O’Connor LE, Campbell WW, Hu FB, Willett WC, Stampfer MJ (2019) Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors. Circulation 139(15):1828–1845. https://doi.org/10.1161/CIRCULATIONAHA.118.035225

    Article  PubMed  Google Scholar 

  48. Guichard E (2006) Flavour retention and release from protein solutions. Biotechnol Adv 24(2):226–229. https://doi.org/10.1016/j.biotechadv.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  49. Haque MA, Timilsena YP, Adhikari B (2016) Food proteins, structure, and function. In: Reference module in food science. Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.03057-2

  50. Haug A, Høstmark AT, Harstad OM (2007) Bovine milk in human nutrition—a review. Lipids Health Dis 6:1–16. https://doi.org/10.1186/1476-511X-6-25

    Article  CAS  Google Scholar 

  51. Hoek AC, Elzerman JE, Hageman R, Kok FJ, Luning PA, de Graaf C (2013) Are meat substitutes liked better over time? A repeated in-home use test with meat substitutes or meat in meals. Food Qual Prefer 28(1):253–263. https://doi.org/10.1016/j.foodqual.2012.07.002

    Article  Google Scholar 

  52. Hoek AC, Luning PA, Weijzen P, Engels W, Kok FJ, de Graaf C (2011) Replacement of meat by meat substitutes. A survey on a person- and product-related factors in consumer acceptance. Appetite 56(3):662–673. https://doi.org/10.1016/j.appet.2011.02.001

    Article  PubMed  Google Scholar 

  53. Hojilla-Evangelista MP (2014) Improved solubility and emulsification of wet-milled corn germ protein recovered by ultrafiltration-diafiltration. J Am Oil Chem Soc 91(9):1623–1631. https://doi.org/10.1007/s11746-014-2503-5

    Article  CAS  Google Scholar 

  54. Huang S, Liu Y, Zhang W, Dale KJ, Liu S, Zhu J, Serventi L (2018) Composition of legume soaking water and emulsifying properties in gluten-free bread. Food Sci Technol Int 24(3):232–241. https://doi.org/10.1177/1082013217744903

    Article  CAS  PubMed  Google Scholar 

  55. Ismail I, Hwang Y-H, Joo S-T (2020) Meat analogue as future food: a review. J Anim Sci Technol 62(2):111–120. https://doi.org/10.5187/jast.2020.62.2.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jin J, Ma H, Zhou C, Luo M, Liu W, Qu W, He R, Luo L, Yagoub AEGA (2015) Effect of degree of hydrolysis on the bioavailability of corn gluten meal hydrolysates. J Sci Food Agric 95(12):2501–2509. https://doi.org/10.1002/jsfa.6982

    Article  CAS  PubMed  Google Scholar 

  57. Johnston JL, Fanzo JC, Cogill B (2014) Understanding sustainable diets: a descriptive analysis of the determinants and processes that influence diets and their impact on Health, Food Security, and Environmental Sustainability. Adv Nutr 5(4):418–429. https://doi.org/10.3945/an.113.005553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Joshi V, Kumar S (2015) Meat analogues: plant-based alternatives to meat products—a review. Int J Food Fermentation Technol 5(2):107. https://doi.org/10.5958/2277-9396.2016.00001.5

    Article  Google Scholar 

  59. Kiosseoglou V, Paraskevopoulou A (2011) Functional and physicochemical properties of pulse proteins. In: Pulse foods, 1st edn. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-382018-1.00003-4

  60. Kowalski RJ (2019) Sustainability impacts of pulses in meat-analogue food products. Cereal Foods World 64:5. https://doi.org/10.1094/CFW-64-5-0052

    Article  Google Scholar 

  61. Krintiras GA, Gadea Diaz J, Van Der Goot AJ, Stankiewicz AI, Stefanidis GD (2016) On the use of the Couette cell technology for large scale production of textured soy-based meat replacers. J Food Eng 169:205–213. https://doi.org/10.1016/j.jfoodeng.2015.08.021

    Article  CAS  Google Scholar 

  62. Krintiras GA, Göbel J, Van Der Goot AJ, Stefanidis GD (2015) Production of structured soy-based meat analogues using simple shear and heat in a Couette Cell. J Food Eng 160:34–41. https://doi.org/10.1016/j.jfoodeng.2015.02.015

    Article  CAS  Google Scholar 

  63. Kumar S, Kumar V, Sharma R, Paul AA, Suthar P, Saini Plant R (2020) Proteins as healthy, sustainable and integrative meat alternates, IntechOpen. https://doi.org/10.5772/intechopen.94094

  64. Kyriakopoulou K, Dekkers B, van der Goot AJ (2019) Plant-based meat analogues. 103-126 In: Sustainable meat production and processing. Charis M. Galanakis (Eds) , Elsevier Inc. The Netherlands, https://doi.org/10.1016/b978-0-12-814874-7.00006-7

  65. Lam ACY, Can Karaca A, Tyler RT, Nickerson MT (2018) Pea protein isolates: Structure, extraction, and functionality. Food Rev Int 34:126–147. https://doi.org/10.1080/87559129.2016.1242135

    Article  CAS  Google Scholar 

  66. https://www.foodnavigator.com/Article/2020/01/07/NovaMeat-develops-meat-analogue-with-look-and-feel-of-whole-beef-muscle-cuthttps://www.foodnavigator.com/Article/2020/01/07/NovaMeat-develops-meat-analogue-with-look-and-feel-of-whole-beef-muscle-cut

  67. Lechevin AS, Tobo L, Hood-Niefier S (2019) The ultimate meat substitutes guide. CLEXTRAL, Firminy, France

  68. Levent H (2018) The nutritional and functional properties of wheat. In: Flour: production, varieties and nutrition, pp 31–45. https://hdl.handle.net/11492/2087

  69. Liu KS, Hsieh FH (2007) Protein-protein interactions in high moisture-extruded meat analogues and heat-induced soy protein gels. J Am Oil Chem Soc 84(8):741–748. https://doi.org/10.1007/s11746-007-1095-8

    Article  CAS  Google Scholar 

  70. Liu KS, Hsieh FH (2008) Protein-protein interactions during high-moisture extrusion for fibrous meat analogueues and comparison of protein solubility methods using different solvent systems. J Agric Food Chem 56(8):2681–2687. https://doi.org/10.1021/jf073343q

    Article  CAS  PubMed  Google Scholar 

  71. Liu SX, Peng M, Tu S, Li H, Cai L, Yu X (2005) Development of a new meat analogue through the twin-screw extrusion of defatted soy flour-Lean pork blend. Food Sci Technol Int 11(6):463–470. https://doi.org/10.1177/1082013205060130

    Article  Google Scholar 

  72. Løkra S, Strætkvern K (2009) Industrial proteins from potato juice. A review. Food 3(1):88–95 

  73. Machovina B, Feeley KJ, Ripple WJ (2015) Biodiversity conservation: the key is reducing meat consumption. Sci Total Environ 536:419–431. https://doi.org/10.1016/j.scitotenv.2015.07.022

    Article  CAS  PubMed  Google Scholar 

  74. Mäkinen OE, Sozer N, Ercili-Cura D, Poutanen K (2016) Protein from oat: structure, processes, functionality, and nutrition. Sustain Protein Sources. https://doi.org/10.1016/B978-0-12-802778-3.00006-8

    Article  Google Scholar 

  75. Malav OP, Talukder S, Gokulakrishnan P, Chand S (2015) Meat analogue: a review. Crit Rev Food Sci Nutr 55(9):1241–1245. https://doi.org/10.1080/10408398.2012.689381

    Article  CAS  PubMed  Google Scholar 

  76. Manski JM, van der Goot AJ, Boom RM (2007) Advances in structure formation of anisotropic protein-rich foods through novel processing concepts. Trends Food Sci Technol 18(11):546–557. https://doi.org/10.1016/j.tifs.2007.05.002

    Article  CAS  Google Scholar 

  77. Manski JM, van der Goot AJ, Boom RM (2007) Formation of fibrous materials from dense calcium caseinate dispersions. Biomacromol 8(4):1271–1279. https://doi.org/10.1021/bm061008p

    Article  CAS  Google Scholar 

  78. Manski JM, van der Zalm EEJ, van der Goot AJ, Boom RM (2008) Influence of process parameters on the formation of fibrous materials from dense calcium caseinate dispersions and fat. Food Hydrocolloids 22(4):587–600. https://doi.org/10.1016/j.foodhyd.2007.02.006

    Article  CAS  Google Scholar 

  79. Mariotti F, Gardner CD (2019) Dietary protein and amino acids in vegetarian diets—a review. Nutrients 11(11):1–19. https://doi.org/10.3390/nu11112661

    Article  CAS  Google Scholar 

  80. Maurya AK, Said PP (2014) Extrusion processing on physical and chemical properties of protein-rich products—an overview. J Bioresour Eng Technol 2(4):61–67

    Google Scholar 

  81. Mehran R, Andreas G, Wolfgang M (2013) EP2945490B1—method for producing meat substitute products. https://patents.google.com/patent/EP2945490B1/en. Accessed 27 July 2020

  82. McEvoy CT, Temple N, Woodside JV (2012) Vegetarian diets, low-meat diets and health: a review. Public Health Nutr 15(12):2287–2294. https://doi.org/10.1017/S1368980012000936

    Article  PubMed  Google Scholar 

  83. Mulder W, van der Peet-Schwering C, Hua N-P, van Ree R (2016) Proteins for food, feed and biobased applications. IEA Bioenergy 42:1–67

    Google Scholar 

  84. Multari S, Neacsu M, Scobbie L, Cantlay L, Duncan G, Vaughan N, Stewart D, Russell WR (2016) Nutritional and phytochemical content of high-protein crops. J Agric Food Chem 64(41):7800–7811. https://doi.org/10.1021/acs.jafc.6b00926

    Article  CAS  PubMed  Google Scholar 

  85. Nieuwland M, Geerdink P, Brier P, Van Den Eijnden P, Henket JTMM, Langelaan MLP, Stroeks N, Van Deventer HC, Martin AH (2014) Reprint of “food-grade electrospinning of proteins.” Innov Food Sci Emerg Technol 24(2013):138–144. https://doi.org/10.1016/j.ifset.2014.07.006

    Article  Google Scholar 

  86. Nirmala C, Prakash V, Venkataraman LV (1992) Physico-chemical and functional properties of proteins from spray-dried algae (Spirulina platensis). Food Nahrung 36(6):569–577. https://doi.org/10.1002/food.19920360608

    Article  CAS  Google Scholar 

  87. Nivala O, Mäkinen OE, Kruus K, Nordlund E, Ercili-Cura D (2017) Structuring colloidal oat and faba bean protein particles via enzymatic modification. Food Chem 231:87–95. https://doi.org/10.1016/j.foodchem.2017.03.114

    Article  CAS  PubMed  Google Scholar 

  88. Osen R, Schweiggert-Weisz U (2016) High-moisture extrusion: meat analogues. In: Reference module in food science. Elsevier Reference Collection in Food Science, Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.03099-7

  89. Osen R, Toelstede S, Wild F, Eisner P, Schweiggert-Weisz U (2014) High moisture extrusion cooking of pea protein isolates: raw material characteristics, extruder responses, and texture properties. J Food Eng 127:67–74. https://doi.org/10.1016/j.jfoodeng.2013.11.023

    Article  CAS  Google Scholar 

  90. Peighambardoust SH, van Brenk S, van der Goot AJ, Hamer RJ, Boom RM (2007) Dough processing in a Couette-type device with varying eccentricity: effect on glutenin macro-polymer properties and dough micro-structure. J Cereal Sci 45(1):34–48. https://doi.org/10.1016/j.jcs.2006.05.009

    Article  CAS  Google Scholar 

  91. Peltonen R, Nenonen M, Helve T, Hänninen O, Toivanen P, Eerola E (1997) Faecal microbial flora and disease activity in rheumatoid arthritis during a vegan diet. Br J Rheumatol 36(1):64–68. https://doi.org/10.1093/rheumatology/36.1.64

    Article  CAS  PubMed  Google Scholar 

  92. Polaina J, MacCabe AP (Eds) (2007) Industrial enzymes: structure, function and applications. In: Industrial enzymes: structure, function and applications. Springer, The Netherlands. https://doi.org/10.1007/1-4020-5377-0

  93. Reidy PT, Walker DK, Dickinson JM, Gundermann DM, Drummond MJ, Timmerman KL, Cope MB, Mukherjea R, Jennings K, Volpi E, Rasmussen BB (2014) Soy-dairy protein blend and whey protein ingestion after resistance exercise increase amino acid transport and transporter expression in human skeletal muscle. J Appl Physiol 116(11):1353–1364. https://doi.org/10.1152/japplphysiol.01093.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Riaz MN (2011) Texturized vegetable proteins. In: Handbook of food proteins.  Phillips GO, Williams PA (eds), Woodhead Publishing Limited. https://doi.org/10.1533/9780857093639.395

  95. Riaz MN (2015) Processing, characteristics and uses of extruded plant protein ingredients. Protein Trends Technol Semin 1(7):12–16. Oak Brook, Illinois, USA

  96. Röös E, Bajželj B, Smith P, Patel M, Little D, Garnett T (2017) Protein futures for Western Europe: potential land use and climate impacts in 2050. Reg Environ Change 17(2):367–377. https://doi.org/10.1007/s10113-016-1013-4

    Article  Google Scholar 

  97. Ruby MB (2012) Vegetarianism. A blossoming field of study. Appetite 58(1):141–150. https://doi.org/10.1016/j.appet.2011.09.019

    Article  PubMed  Google Scholar 

  98. Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M (2006) Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation 113(7):1034–1044. https://doi.org/10.1161/CIRCULATIONAHA.106.171052

    Article  CAS  PubMed  Google Scholar 

  99. Salama ES, Kurade MB, Abou-Shanab RAI, El-Dalatony MM, Yang IS, Min B, Jeon BH (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sustain Energy Rev 79:1189–1211. https://doi.org/10.1016/j.rser.2017.05.091

    Article  CAS  Google Scholar 

  100. Samard S, Gu BY, Ryu GH (2019) Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat Analogues. J Sci Food Agric 99(11):4922–4931. https://doi.org/10.1002/jsfa.9722

    Article  CAS  PubMed  Google Scholar 

  101. Schmidt JM, Larsen LB, Hammershøj M (2017) Appearance and textural properties of sheared low concentration potato protein gels—impact of drying method, pH, and ionic strength. J Food Sci 82(9):2056–2061. https://doi.org/10.1111/1750-3841.13818

    Article  CAS  PubMed  Google Scholar 

  102. Schwartz JM, Solé V, Guéguen J, Ropers MH, Riaublanc A, Anton M (2015) Partial replacement of β-casein by napin, a rapeseed protein, as an ingredient for processed foods: thermoreversible aggregation. LWT Food Sci Technol 63(1):562–568. https://doi.org/10.1016/j.lwt.2015.03.084

    Article  CAS  Google Scholar 

  103. Searchinger TD, Wirsenius S, Beringer T, Dumas P (2018) Assessing the efficiency of changes in land use for mitigating climate change. Nature 564(7735):249–253. https://doi.org/10.1038/s41586-018-0757-z

    Article  CAS  PubMed  Google Scholar 

  104. Shewry PR (2009) Wheat. J Exp Bot 60(6):1537–1553. https://doi.org/10.1093/jxb/erp058

    Article  CAS  PubMed  Google Scholar 

  105. Singh PK, Shrivastava N, Ojha BK (2018) Enzymes in the meat industry. Enzymes Food Biotechnol Prod Appl Future Prospects. https://doi.org/10.1016/B978-0-12-813280-7.00008-6

    Article  Google Scholar 

  106. Singh P, Kumar R, Sabapathy SN, Bawa AS (2008) Functional and edible uses of soy protein products. Comp Rev Food Sci Food Saf 7(1):14–28. https://doi.org/10.1111/j.1541-4337.2007.00025.x

    Article  CAS  Google Scholar 

  107. Souza Filho PF, Andersson D, Ferreira JA, Taherzadeh MJ (2019) Mycoprotein: environmental impact and health aspects. World J Microbiol Biotechnol 35(10):1–8. https://doi.org/10.1007/s11274-019-2723-9

    Article  Google Scholar 

  108. Storer AC, Ménard R (2013) Papain. Handb Proteolytic Enzymes 2:1858–1861. https://doi.org/10.1016/B978-0-12-382219-2.00418-X

    Article  Google Scholar 

  109. Sui Z, Raubenheimer D, Rangan A (2017) Exploratory analysis of meal composition in Australia: meat and accompanying foods. Public Health Nutr 20(12):2157–2165. https://doi.org/10.1017/S1368980017000982

    Article  PubMed  Google Scholar 

  110. Tamayo Tenorio A, Kyriakopoulou KE, Suarez-Garcia E, van den Berg C, van der Goot AJ (2018) Understanding differences in protein fractionation from conventional crops, and herbaceous and aquatic biomass—consequences for industrial use. Trends Food Sci Technol 71:235–245. https://doi.org/10.1016/j.tifs.2017.11.010

    Article  CAS  Google Scholar 

  111. Tan SH, Mailer RJ, Blanchard CL, Agboola SO, Day L (2014) Gelling properties of protein fractions and protein isolate extracted from Australian canola meal. Food Res Int 62:819–828. https://doi.org/10.1016/j.foodres.2014.04.055

    Article  CAS  Google Scholar 

  112. Tang CH, Ten Z, Wang XS, Yang XQ (2006) Physicochemical and functional properties of hemp (Cannabis sativa L.) protein isolate. J Agric Food Chem 54(23):8945–8950. https://doi.org/10.1021/jf0619176

    Article  CAS  PubMed  Google Scholar 

  113. Tulbek MC, Lam RSH, Wang YC, Asavajaru P, Lam A (2016) Pea: a sustainable vegetable protein crop. In: Sudarshan R. Nadathur, Janitha P.D. Wanasundara and Laurie Scanlin (Eds) Sustainable protein sources. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802778-3.00009-3

  114. Van Der Goot AJ, Pelgrom PJM, Berghout JAM, Geerts MEJ, Jankowiak L, Hardt NA, Keijer J, Schutyser MAI, Nikiforidis CV, Boom RM (2016) Concepts for further sustainable production of foods. J Food Eng 168:42–51. https://doi.org/10.1016/j.jfoodeng.2015.07.010

    Article  Google Scholar 

  115. Van der Weele C, Feindt P, Jan van der Goot A, van Mierlo B, van Boekel M (2019) Meat alternatives: an integrative comparison. Trends Food Sci Technol 88:505–512. https://doi.org/10.1016/j.tifs.2019.04.018

    Article  CAS  Google Scholar 

  116. Van Vliet S, Kronberg SL, Provenza FD (2020) Health-promoting phytonutrients are higher in grass-fed meat and milk. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2020.555426

    Article  Google Scholar 

  117. Van Vliet S, Kronberg SL, Provenza FD (2020) Plant-based meats, human health, and climate change. Front Sustain Food Syst 4:128. https://doi.org/10.3389/fsufs.2020.00128

    Article  Google Scholar 

  118. Wanasundara JPD (2011) Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit Rev Food Sci Nutr 51(7):635–677. https://doi.org/10.1080/10408391003749942

    Article  CAS  PubMed  Google Scholar 

  119. Wang JK, Seibert M (2017) Prospects for commercial production of diatoms. Biotechnol Biofuels 10(1):1–13. https://doi.org/10.1186/s13068-017-0699-y

    Article  CAS  Google Scholar 

  120. Wani IA, Sogi DS, Sharma P, Gill BS (2016) Physicochemical and pasting properties of unleavened wheat flatbread (Chapatti) as affected by the addition of pulse flour. Cogent Food Agric 2(1):1–9. https://doi.org/10.1080/23311932.2015.1124486

    Article  CAS  Google Scholar 

  121. Westhoek H, Lesschen JP, Rood T, Wagner S, De Marco A, Murphy-Bokern D, Leip A, van Grinsven H, Sutton MA, Oenema O (2014) Food choices, health and environment: effects of cutting Europe’s meat and dairy intake. Glob Environ Change 26(1):196–205. https://doi.org/10.1016/j.gloenvcha.2014.02.004

    Article  Google Scholar 

  122. Wild F (2016) Manufacture of meat analogue through high moisture extrusion. In: Geoffrey, Smithers (eds) Reference module in food science. Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.03281-9

  123. Wild F, Czerny M, Janssen AM, Kole APW, Zunabovic M, Domig KJ (2014) The evolution of a plant-based alternative to meat: from niche markets to widely accepted meat alternatives. Agro Food Ind Hi Tech 25(1):45–49

    Google Scholar 

  124. Yang C, Wang Y, Vasanthan T, Chen L (2014) Impacts of pH and heating temperature on formation mechanisms and properties of thermally induced canola protein gels. Food Hydrocolloids 40:225–236. https://doi.org/10.1016/j.foodhyd.2014.03.011

    Article  CAS  Google Scholar 

  125. Yao G, Liu KS, Hsieh F (2006) A new method for characterizing fibre formation in meat analogues during high-moisture extrusion. J Food Sci 69(7):303–307. https://doi.org/10.1111/j.1365-2621.2004.tb13634.x

    Article  Google Scholar 

  126. Yuliarti O, Kiat Kovis TJ, Yi NJ (2021) Structuring the meat analogue by using plant-based derived composites. J Food Eng 288:110138. https://doi.org/10.1016/j.jfoodeng.2020.110138

    Article  Google Scholar 

  127. Zhang R, Chen J, Zhang X (2018) Extraction of intracellular protein from Chlorella pyrenoidosa using a combination of ethanol soaking, enzyme digest, ultrasonication and homogenization techniques. Biores Technol 247:267–272. https://doi.org/10.1016/j.biortech.2017.09.087

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MS has conceptualized the concept and frames the index of review. MS, NT, MKE, MPN, MC, CK and PP have contributed to writing different sections of the article and critically reviewed the entire manuscript.

Corresponding authors

Correspondence to Meenakshi Singh or Murthy Chavali.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Compliance with ethical requirements

No human Participants and/or Animals were involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Trivedi, N., Enamala, M.K. et al. Plant-based meat analogue (PBMA) as a sustainable food: a concise review. Eur Food Res Technol 247, 2499–2526 (2021). https://doi.org/10.1007/s00217-021-03810-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03810-1

Keywords

Navigation