Skip to main content

Advertisement

Log in

The significance of scirrhous gastric cancer cell lines: the molecular characterization using cell lines and mouse models

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Scirrhous gastric cancer (SGC) exhibits aggressiveness of the rapid infiltrating tumor cells with abundant fibroblasts. Experimental studies using SGC cell lines have obtained useful information about this cancer. Our literature search divulged a total of 18 SGC cell lines; two cell lines were established from primary SGC and the other lines were established from a metastatic lesion of SGC. Fibroblast growth factor receptor 2 (FGFR2) and transforming growth factor-beta receptor (TβR) are linked to the rapid development of SGC. Cross-talk between the cancer cells and cancer-associated fibroblasts (CAFs) has been shown to contribute to the progression of SGC. Chemokine (C-X-C motif) receptor 1 (CXCR1) from SGC cells might be associated with the abundant CAFs in cancer microenvironments. The in vivo models established using SGC cell lines are expected to serve as a useful tool for the development of drugs such as FGFR2 inhibitors, TβR inhibitors, and CXCR1 inhibitors, which might be promising as SGC treatments. However, the number of available SGC cell lines is insufficient for the clarification of the entire biologic behavior of SGC. Since the mechanisms responsible for the characteristic aggressiveness of SGC are not fully elucidated, the establishment of new SGC cell lines could help clarify the biological behavior of SGC and contribute to its treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  PubMed  CAS  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  3. Yashiro M, Hirakawa K. Cancer-stromal interactions in scirrhous gastric carcinoma. Cancer Microenviron. 2010;3:127–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kurihara M, Aiko T, Japanese Gastric Cancer Association. The new Japanese classification of gastric carcinoma: revised explanation of “response assessment of chemotherapy and radiotherapy for gastric carcinoma”. Gastric Cancer. 2001;4(1):9–13.

    Article  PubMed  CAS  Google Scholar 

  5. Nashimoto A, Akazawa K, Isobe Y, et al. Gastric cancer treated in 2002 in Japan: 2009 annual report of the JGCA nationwide registry. Gastric Cancer. 2013;16:1–27.

    Article  PubMed  Google Scholar 

  6. Yashiro M, Nishioka N, Hirakawa K. Decreased expression of the adhesion molecule desmoglein-2 is associated with diffuse-type gastric carcinoma. Eur J Cancer. 2006;42:2397–403.

    Article  PubMed  CAS  Google Scholar 

  7. Yashiro M, Shinto O, Nakamura K, et al. Synergistic antitumor effects of FGFR2 inhibitor with 5-fluorouracil on scirrhous gastric carcinoma. Int J Cancer. 2010;126:1004–16.

    PubMed  CAS  Google Scholar 

  8. Noda S, Yashiro M, Toyokawa T, et al. Borrmann’s macroscopic criteria and p-Smad2 expression are useful predictive prognostic markers for cytology-positive gastric cancer patients without overt peritoneal metastasis. Ann Surg Oncol. 2011;18:3718–25.

    Article  PubMed  Google Scholar 

  9. Kohli Y, Takeda S, Kawai K. Earlier diagnosis of gastric infiltrating carcinoma (scirrhous cancer). J Clin Gastroenterol. 1981;3:17–20.

    Article  PubMed  CAS  Google Scholar 

  10. Yashiro M, Chung YS, Nishimura S, Inoue T, Sowa M. Peritoneal metastatic model for human scirrhous gastric carcinoma in nude mice. Clin Exp Metastasis. 1996;14:43–54.

    Article  PubMed  CAS  Google Scholar 

  11. Sekiguchi M, Sakakibara K, Fujii G. Establishment of cultured cell lines derived from a human gastric carcinoma. Jpn J Exp Med. 1978;48:61–8.

    PubMed  CAS  Google Scholar 

  12. Kuniyasu H, Yasui W, Kitadai Y, Yokozaki H, Ito H, Tahara E. Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem Biophys Res Commun. 1992;189:227–32.

    Article  PubMed  CAS  Google Scholar 

  13. Yashiro M, Nishioka N, Hirakawa K. K-ras mutation influences macroscopic features of gastric carcinoma. J Surg Res. 2005;124:74–8.

    Article  PubMed  CAS  Google Scholar 

  14. Tahara E. Molecular biology of gastric cancer. World J Surg. 1995;19:484–8. (discussion 89–90).

    Article  PubMed  CAS  Google Scholar 

  15. Nomura H, Tokumitsu SI, Takeuchi T. Ultrastructural, cytochemical, and biochemical characterization of alpha-amylase produced by human gastric cancer cells in vitro. J Natl Cancer Inst. 1980;64:1015–24.

    PubMed  CAS  Google Scholar 

  16. Akiyama S, Amo H, Watanabe T, et al. Characteristics of three human gastric cancer cell lines, NU-GC-2, NU-GC-3 and NU-GC-4. Jpn J Surg. 1988;18:438–46.

    Article  PubMed  CAS  Google Scholar 

  17. Kubo T. Establishment and characterization of a new gastric cancer cell line (OCUM-1), derived from Borrmann type IV tumor. Nihon Geka Gakkai Zasshi. 1991;92:1451–60.

    PubMed  CAS  Google Scholar 

  18. Terano A, Nakada R, Mutoh H, et al. [Establishment and characterization of a tumor marker producing cell line (JR-1) derived from a gastric scirrhous cancer]. Hum Cell. 1989;2:307–9.

    PubMed  CAS  Google Scholar 

  19. Nozue M, Nishida M, Todoroki T, Iwasaki Y. Establishment and characterization of a human scirrhus type gastric cancer cell line, GCIY, producing CA19-9. Hum Cell. 1991;4:71–5.

    PubMed  CAS  Google Scholar 

  20. Arimura A, Nakamura Y, Shimizu A, Harada M, Yanoma S. Establishment and characterization of a CA19-9 producing human gastric cancer cell line, STKM-1. Hum Cell. 1991;4:67–70.

    PubMed  CAS  Google Scholar 

  21. Yanagihara K, Seyama T, Tsumuraya M, Kamada N, Yokoro K. Establishment and characterization of human signet ring cell gastric carcinoma cell lines with amplification of the c-myc oncogene. Cancer Res. 1991;51:381–6.

    PubMed  CAS  Google Scholar 

  22. Terano A, Nakada R, Mutoh H, et al. Characterization of a newly established cell line (JR-St) derived from human gastric signet ring cell cancer, producing tumor markers. Gastroenterol Jpn. 1991;26:7–13.

    Article  PubMed  CAS  Google Scholar 

  23. Yanagihara K, Kamada N, Tsumuraya M, Amano F. Establishment and characterization of a human gastric scirrhous carcinoma cell line in serum-free chemically defined medium. Int J Cancer. 1993;54:200–7.

    Article  PubMed  CAS  Google Scholar 

  24. Yashiro M, Chung YS, Nishimura S, Inoue T, Sowa M. Establishment of two new scirrhous gastric cancer cell lines: analysis of factors associated with disseminated metastasis. Br J Cancer. 1995;72:1200–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Takemura S, Yashiro M, Sunami T, Tendo M, Hirakawa K. Novel models for human scirrhous gastric carcinoma in vivo. Cancer Sci. 2004;95:893–900.

    Article  PubMed  CAS  Google Scholar 

  26. Yanagihara K, Ito A, Toge T, Numoto M. Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. Cancer Res. 1993;53:5815–21.

    PubMed  CAS  Google Scholar 

  27. Murahashi K, Yashiro M, Takenaka C, Matsuoka T, Ohira M, Chung KH. Establishment of a new scirrhous gastric cancer cell line with loss of heterozygosity at E-cadherin locus. Int J Oncol. 2001;19:1029–33.

    PubMed  CAS  Google Scholar 

  28. Yanagihara K, Tanaka H, Takigahira M, et al. Establishment of two cell lines from human gastric scirrhous carcinoma that possess the potential to metastasize spontaneously in nude mice. Cancer Sci. 2004;95:575–82.

    Article  PubMed  CAS  Google Scholar 

  29. Kato Y, Yashiro M, Noda S, et al. Establishment and characterization of a new hypoxia-resistant cancer cell line, OCUM-12/Hypo, derived from a scirrhous gastric carcinoma. Br J Cancer. 2010;102:898–907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kuramitsu Y, Baron B, Yoshino S, et al. Proteomic differential display analysis shows up-regulation of 14-3-3 sigma protein in human scirrhous-type gastric carcinoma cells. Anticancer Res. 2010;30:4459–65.

    PubMed  CAS  Google Scholar 

  31. Nakazawa K, Yashiro M, Hirakawa K. Keratinocyte growth factor produced by gastric fibroblasts specifically stimulates proliferation of cancer cells from scirrhous gastric carcinoma. Cancer Res. 2003;63:8848–52.

    PubMed  CAS  Google Scholar 

  32. Liu YJ, Shen D, Yin X, et al. HER2, MET and FGFR2 oncogenic driver alterations define distinct molecular segments for targeted therapies in gastric carcinoma. Br J Cancer. 2014;110:1169–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251:802–4.

    Article  PubMed  CAS  Google Scholar 

  34. Dang CV, Resar LM, Emison E, et al. Function of the c-Myc oncogenic transcription factor. Exp Cell Res. 1999;253:63–77.

    Article  PubMed  CAS  Google Scholar 

  35. Yokozaki H. Molecular characteristics of eight gastric cancer cell lines established in Japan. Pathol Int. 2000;50:767–77.

    Article  PubMed  CAS  Google Scholar 

  36. Takahashi K, Mitsui K, Yamanaka S. Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature. 2003;423:541–5.

    Article  PubMed  CAS  Google Scholar 

  37. Yashiro M, Yasuda K, Nishii T, et al. Epigenetic regulation of the embryonic oncogene ERas in gastric cancer cells. Int J Oncol. 2009;35:997–1003.

    Article  PubMed  CAS  Google Scholar 

  38. Kaizaki R, Yashiro M, Shinto O, et al. Expression of ERas oncogene in gastric carcinoma. Anticancer Res. 2009;29:2189–93.

    PubMed  CAS  Google Scholar 

  39. Akama Y, Yasui W, Kuniyasu H, et al. Genetic status and expression of the cyclin-dependent kinase inhibitors in human gastric carcinoma cell lines. Jpn J Cancer Res. 1996;87:824–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yasui W, Ayhan A, Kitadai Y, et al. Increased expression of p34cdc2 and its kinase activity in human gastric and colonic carcinomas. Int J Cancer. 1993;53:36–41.

    Article  PubMed  CAS  Google Scholar 

  41. Schneider MR, Werner S, Paus R, Wolf E. Beyond wavy hairs: the epidermal growth factor receptor and its ligands in skin biology and pathology. Am J Pathol. 2008;173:14–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kobayashi M, Iwamatsu A, Shinohara-Kanda A, Ihara S, Fukui Y. Activation of ErbB3-PI3-kinase pathway is correlated with malignant phenotypes of adenocarcinomas. Oncogene. 2003;22:1294–301.

    Article  PubMed  CAS  Google Scholar 

  43. Shan X, Wen W, Zhu D, et al. miR 1296-5p inhibits the migration and invasion of gastric cancer cells by repressing ERBB2 expression. PLoS One. 2017;12:e0170298.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mahara K, Kato J, Terui T, et al. Transforming growth factor beta 1 secreted from scirrhous gastric cancer cells is associated with excess collagen deposition in the tissue. Br J Cancer. 1994;69:777–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Shinto O, Yashiro M, Kawajiri H, et al. Inhibitory effect of a TGFbeta receptor type-I inhibitor, Ki26894, on invasiveness of scirrhous gastric cancer cells. Br J Cancer. 2010;102:844–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Shitara Y, Yokozaki H, Yasui W, Takenoshita S, Nagamachi Y, Tahara E. Mutation of the transforming growth factor-beta type II receptor gene is a rare event in human sporadic gastric carcinomas. Int J Oncol. 1998;12:1061–5.

    PubMed  CAS  Google Scholar 

  47. Komuro A, Yashiro M, Iwata C, et al. Diffuse-type gastric carcinoma: progression, angiogenesis, and transforming growth factor beta signaling. J Natl Cancer Inst. 2009;101:592–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Richmond A. Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol. 2002;2:664–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Oda T, Kanai Y, Oyama T, et al. E-cadherin gene mutations in human gastric carcinoma cell lines. Proc Natl Acad Sci USA. 1994;91:1858–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Kawanishi J, Kato J, Sasaki K, Fujii S, Watanabe N, Niitsu Y. Loss of E-cadherin-dependent cell-cell adhesion due to mutation of the beta-catenin gene in a human cancer cell line, HSC-39. Mol Cell Biol. 1995;15:1175–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Matsuoka T, Yashiro M, Nishioka N, Hirakawa K, Olden K, Roberts JD. PI3K/Akt signalling is required for the attachment and spreading, and growth in vivo of metastatic scirrhous gastric carcinoma. Br J Cancer. 2012;106:1535–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Nakashio T, Narita T, Sato M, et al. The association of metastasis with the expression of adhesion molecules in cell lines derived from human gastric cancer. Anticancer Res. 1997;17:293–9.

    PubMed  CAS  Google Scholar 

  53. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

    Article  PubMed  CAS  Google Scholar 

  54. Naito Y, Sakamoto N, Oue N, et al. MicroRNA-143 regulates collagen type III expression in stromal fibroblasts of scirrhous type gastric cancer. Cancer Sci. 2014;105:228–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wu L, Zhu Y. The function and mechanisms of action of LOXL2 in cancer (review). Int J Mol Med. 2015;36:1200–4.

    Article  PubMed  CAS  Google Scholar 

  56. Kasashima H, Yashiro M, Kinoshita H, et al. Lysyl oxidase-like 2 (LOXL2) from stromal fibroblasts stimulates the progression of gastric cancer. Cancer Lett. 2014;354:438–46.

    Article  PubMed  CAS  Google Scholar 

  57. Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol. 2009;174:1588–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Katoh M. Epithelial-mesenchymal transition in gastric cancer (review). Int J Oncol. 2005;27:1677–83.

    PubMed  CAS  Google Scholar 

  60. Ridley AJ. Rho GTPases and cell migration. J Cell Sci. 2001;114:2713–22.

    PubMed  CAS  Google Scholar 

  61. Matsuoka T, Yashiro M, Kato Y, Shinto O, Kashiwagi S, Hirakawa K. RhoA/ROCK signaling mediates plasticity of scirrhous gastric carcinoma motility. Clin Exp Metastasis. 2011;28:627–36.

    Article  PubMed  CAS  Google Scholar 

  62. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432:332–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Yashiro M, Chung YS, Sowa M. Role of orthotopic fibroblasts in the development of scirrhous gastric carcinoma. Jpn J Cancer Res. 1994;85:883–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Nakamura K, Yashiro M, Matsuoka T, et al. A novel molecular targeting compound as K-samII/FGF-R2 phosphorylation inhibitor, Ki23057, for Scirrhous gastric cancer. Gastroenterology. 2006;131:1530–41.

    Article  PubMed  CAS  Google Scholar 

  65. Fuyuhiro Y, Yashiro M, Noda S, et al. Cancer-associated orthotopic myofibroblasts stimulates the motility of gastric carcinoma cells. Cancer Sci. 2012;103:797–805.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Semba S, Kodama Y, Ohnuma K, et al. Direct cancer-stromal interaction increases fibroblast proliferation and enhances invasive properties of scirrhous-type gastric carcinoma cells. Br J Cancer. 2009;101:1365–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hasegawa T, Yashiro M, Nishii T, et al. Cancer-associated fibroblasts might sustain the stemness of scirrhous gastric cancer cells via transforming growth factor-beta signaling. Int J Cancer. 2014;134:1785–95.

    Article  PubMed  CAS  Google Scholar 

  68. Fuyuhiro Y, Yashiro M, Noda S, et al. Upregulation of cancer-associated myofibroblasts by TGF-beta from scirrhous gastric carcinoma cells. Br J Cancer. 2011;105:996–1001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ura H, Obara T, Yokota K, Shibata Y, Okamura K, Namiki M. Effects of transforming growth factor-beta released from gastric carcinoma cells on the contraction of collagen-matrix gels containing fibroblasts. Cancer Res. 1991;51:3550–4.

    PubMed  CAS  Google Scholar 

  70. Yamaguchi H, Yoshida N, Takanashi M, et al. Stromal fibroblasts mediate extracellular matrix remodeling and invasion of scirrhous gastric carcinoma cells. PLoS One. 2014;9:e85485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306:1568–71.

    Article  PubMed  CAS  Google Scholar 

  72. Kasashima H, Yashiro M, Nakamae H, et al. CXCL1-chemokine (C-X-C Motif) receptor 2 signaling stimulates the recruitment of bone marrow-derived mesenchymal cells into diffuse-type gastric cancer stroma. Am J Pathol. 2016;186:3028–39.

    Article  PubMed  CAS  Google Scholar 

  73. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15:669–82.

    Article  PubMed  CAS  Google Scholar 

  74. Collin M, McGovern N, Haniffa M. Human dendritic cell subsets. Immunology. 2013;140:22–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Tanaka H, Shinto O, Yashiro M, et al. Transforming growth factor beta signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity. Oncol Rep. 2010;24:1637–43.

    PubMed  CAS  Google Scholar 

  76. Yoshii M, Tanaka H, Ohira M, et al. Expression of Forkhead box P3 in tumour cells causes immunoregulatory function of signet ring cell carcinoma of the stomach. Br J Cancer. 2012;106:1668–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014;5:75.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tauchi Y, Tanaka H, Kumamoto K, et al. Tumor-associated macrophages induce capillary morphogenesis of lymphatic endothelial cells derived from human gastric cancer. Cancer Sci. 2016;107:1101–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Shimada S, Mimata A, Sekine M, et al. Synergistic tumour suppressor activity of E-cadherin and p53 in a conditional mouse model for metastatic diffuse-type gastric cancer. Gut. 2012;61:344–53.

    Article  PubMed  CAS  Google Scholar 

  80. Park JW, Jang SH, Park DM, et al. Cooperativity of E-cadherin and Smad4 loss to promote diffuse-type gastric adenocarcinoma and metastasis. Mol Cancer Res. 2014;12:1088–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Mimata A, Fukamachi H, Eishi Y, Yuasa Y. Loss of E-cadherin in mouse gastric epithelial cells induces signet ring-like cells, a possible precursor lesion of diffuse gastric cancer. Cancer Sci. 2011;102:942–50.

    Article  PubMed  CAS  Google Scholar 

  82. Fidler IJ. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev. 1986;5:29–49.

    Article  PubMed  CAS  Google Scholar 

  83. Nishimura S, Chung YS, Yashiro M, Inoue T, Sowa M. CD44H plays an important role in peritoneal dissemination of scirrhous gastric cancer cells. Jpn J Cancer Res. 1996;87:1235–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Charalampakis N, Economopoulou P, Kotsantis I, et al. Medical management of gastric cancer: a 2017 update. Cancer Med. 2018;7:123–33.

    Article  PubMed  Google Scholar 

  85. Yashiro M, Chung YS, Sowa M. Tranilast [N-(3,4-dimethoxycinnamoyl) anthranilic acid] down-regulates the growth of scirrhous gastric cancer. Anticancer Res. 1997;17:895–900.

    PubMed  CAS  Google Scholar 

  86. Kawajiri H, Yashiro M, Shinto O, et al. A novel transforming growth factor beta receptor kinase inhibitor, A-77, prevents the peritoneal dissemination of scirrhous gastric carcinoma. Clin Cancer Res. 2008;14:2850–60.

    Article  PubMed  CAS  Google Scholar 

  87. Dai X, Liu D, Liu M, et al. Anti-metastatic efficacy of traditional chinese medicine (TCM) ginsenoside conjugated to a VEFGR-3 antibody on human gastric cancer in an orthotopic mouse model. Anticancer Res. 2017;37:979–86.

    Article  PubMed  Google Scholar 

  88. Ohashi N, Kodera Y, Nakanishi H, et al. Efficacy of intraperitoneal chemotherapy with paclitaxel targeting peritoneal micrometastasis as revealed by GFP-tagged human gastric cancer cell lines in nude mice. Int J Oncol. 2005;27:637–44.

    PubMed  CAS  Google Scholar 

  89. Yokoyama H, Nakanishi H, Kodera Y, et al. Biological significance of isolated tumor cells and micrometastasis in lymph nodes evaluated using a green fluorescent protein-tagged human gastric cancer cell line. Clin Cancer Res. 2006;12:361–8.

    Article  PubMed  CAS  Google Scholar 

  90. Kato Y, Nagashima Y, Koshikawa N, Miyagi Y, Yasumitsu H, Miyazaki K. Production of trypsins by human gastric cancer cells correlates with their malignant phenotype. Eur J Cancer. 1998;34:1117–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study is partially supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research B; Grant Numbers JP23390329 and JP18H02883) and Strategic Research Fund of Osaka City University.

Author information

Authors and Affiliations

Authors

Contributions

YM, MT, and OM designed this review; YM wrote and edited the manuscript.

Corresponding author

Correspondence to Masakazu Yashiro.

Ethics declarations

Conflict of interest

There are not any financial or other interests with regard to the submitted manuscript that might be construed as a conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashiro, M., Matsuoka, T. & Ohira, M. The significance of scirrhous gastric cancer cell lines: the molecular characterization using cell lines and mouse models. Human Cell 31, 271–281 (2018). https://doi.org/10.1007/s13577-018-0211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-018-0211-4

Keywords

Navigation