Skip to main content

Advertisement

Log in

Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is a common malignancy and one of the leading causes of cancer-related death. The biological process of HCC is complex, with multiple factors leading to the broken of the balance of inactivation and activation of tumor suppressor genes and oncogenes, the abnormal activation of molecular signaling pathways, the differentiation of HCC cells, and the regulation of angiogenesis. Due to the insidious onset of HCC, at the time of first diagnosis, less than 30% of HCC patients are candidates for radical treatment. Systematic antitumor therapy is the hope for the treatment of patients with middle-advanced HCC. Despite the emergence of new systemic therapies, survival rates for advanced HCC patients remain low. The complex pathogenesis of HCC has inspired researchers to explore a variety of biomolecular targeted therapeutics targeting specific targets. Correct understanding of the molecular mechanism of HCC occurrence is key to seeking effective targeted therapy. Research on biomarkers for HCC treatment is also advancing. Here, we explore the molecular mechanism that are associated with HCC development, summarize targeted therapies for HCC, and discuss potential biomarkers that may drive therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Jemal, A., Ward, E. M., Johnson, C. J., Cronin, K. A., Ma, J., Ryerson, B., et al. (2017). Annual report to the nation on the status of cancer, 1975–2014, Featuring Survival. JNCI: Journal of the National Cancer Institute, 109(9), https://doi.org/10.1093/jnci/djx030.

  3. Villanueva, A. (2019). Hepatocellular Carcinoma. New England Journal of Medicine, 380(15), 1450–1462. https://doi.org/10.1056/NEJMra1713263

    Article  CAS  PubMed  Google Scholar 

  4. In der Stroth, L., Tharehalli, U., Gunes, C., & Lechel, A. (2020). Telomeres and telomerase in the development of liver cancer. Cancers (Basel), 12(8), https://doi.org/10.3390/cancers12082048.

  5. Delire, B., & Starkel, P. (2015). The Ras/MAPK pathway and hepatocarcinoma: Pathogenesis and therapeutic implications. European Journal of Clinical Investigation, 45(6), 609–623. https://doi.org/10.1111/eci.12441

    Article  CAS  PubMed  Google Scholar 

  6. Chen, C., & Wang, G. (2015). Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World Journal of Hepatology, 7(15), 1964–1970. https://doi.org/10.4254/wjh.v7.i15.1964

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kudo, M. (2011). Signaling pathway and molecular-targeted therapy for hepatocellular carcinoma. Digestive Diseases, 29(3), 289–302. https://doi.org/10.1159/000327562

    Article  PubMed  Google Scholar 

  8. Meyerson, M., Counter, C. M., Eaton, E. N., Ellisen, L. W., Steiner, P., Caddle, S. D., et al. (1997). hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell, 90(4), 785–795. https://doi.org/10.1016/s0092-8674(00)80538-3

    Article  CAS  PubMed  Google Scholar 

  9. Ramakrishna, G., Rastogi, A., Trehanpati, N., Sen, B., Khosla, R., & Sarin, S. K. (2013). From cirrhosis to hepatocellular carcinoma: New molecular insights on inflammation and cellular senescence. Liver Cancer, 2(3–4), 367–383. https://doi.org/10.1159/000343852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, Y., Zhang, J., Zhang, H., & Zhai, Y. (2016). Hepatitis B virus X protein mediates yes-associated protein 1 upregulation in hepatocellular carcinoma. Oncology Letters, 12(3), 1971–1974. https://doi.org/10.3892/ol.2016.4885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Y., Han, C., Lu, L., Magliato, S., & Wu, T. (2013). Hedgehog signaling pathway regulates autophagy in human hepatocellular carcinoma cells. Hepatology, 58(3), 995–1010. https://doi.org/10.1002/hep.26394

    Article  CAS  PubMed  Google Scholar 

  12. Chow, A. K., Yau, S. W., & Ng, L. (2020). Novel molecular targets in hepatocellular carcinoma. World Journal of Clinical Oncology, 11(8), 589–605. https://doi.org/10.5306/wjco.v11.i8.589

    Article  PubMed  PubMed Central  Google Scholar 

  13. Singal, A. G., Lampertico, P., & Nahon, P. (2020). Epidemiology and surveillance for hepatocellular carcinoma: New trends. Journal of Hepatology, 72(2), 250–261. https://doi.org/10.1016/j.jhep.2019.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McGlynn, K. A., Petrick, J. L., & El-Serag, H. B. (2021). Epidemiology of hepatocellular carcinoma. Hepatology, 73(Suppl 1), 4–13. https://doi.org/10.1002/hep.31288

    Article  CAS  PubMed  Google Scholar 

  15. Global Burden of Disease Liver Cancer, C, Akinyemiju, T., Abera, S., Ahmed, M., Alam, N., Alemayohu, M. A., et al. (2017). The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the Global Burden of Disease Study 2015. JAMA Oncology, 3(12), 1683–1691. https://doi.org/10.1001/jamaoncol.2017.3055

    Article  Google Scholar 

  16. Sangiovanni, A., Prati, G. M., Fasani, P., Ronchi, G., Romeo, R., Manini, M., et al. (2006). The natural history of compensated cirrhosis due to hepatitis C virus: A 17-year cohort study of 214 patients. Hepatology, 43(6), 1303–1310. https://doi.org/10.1002/hep.21176

    Article  PubMed  Google Scholar 

  17. Ioannou, G. N., Splan, M. F., Weiss, N. S., McDonald, G. B., Beretta, L., & Lee, S. P. (2007). Incidence and predictors of hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol, 5(8), 938–945, 945 e931–934, https://doi.org/10.1016/j.cgh.2007.02.039.

  18. Maucort-Boulch, D., de Martel, C., Franceschi, S., & Plummer, M. (2018). Fraction and incidence of liver cancer attributable to hepatitis B and C viruses worldwide. International Journal of Cancer, 142(12), 2471–2477. https://doi.org/10.1002/ijc.31280

    Article  CAS  PubMed  Google Scholar 

  19. Alfaiate, D., Clement, S., Gomes, D., Goossens, N., & Negro, F. (2020). Chronic hepatitis D and hepatocellular carcinoma: A systematic review and meta-analysis of observational studies. Journal of Hepatology, 73(3), 533–539. https://doi.org/10.1016/j.jhep.2020.02.030

    Article  PubMed  Google Scholar 

  20. Beguelin, C., Moradpour, D., Sahli, R., Suter-Riniker, F., Luthi, A., Cavassini, M., et al. (2017). Hepatitis delta-associated mortality in HIV/HBV-coinfected patients. Journal of Hepatology, 66(2), 297–303. https://doi.org/10.1016/j.jhep.2016.10.007

    Article  PubMed  Google Scholar 

  21. Chen, C. J., Wang, L. Y., Lu, S. N., Wu, M. H., You, S. L., Zhang, Y. J., et al. (1996). Elevated aflatoxin exposure and increased risk of hepatocellular carcinoma. Hepatology, 24(1), 38–42. https://doi.org/10.1002/hep.510240108

    Article  CAS  PubMed  Google Scholar 

  22. Chu, Y. J., Yang, H. I., Wu, H. C., Liu, J., Wang, L. Y., Lu, S. N., et al. (2017). Aflatoxin B1 exposure increases the risk of cirrhosis and hepatocellular carcinoma in chronic hepatitis B virus carriers. International Journal of Cancer, 141(4), 711–720. https://doi.org/10.1002/ijc.30782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, J., Zhu, J., Wang, G., Groopman, J. D., & Kensler, T. W. (2019). Qidong: a crucible for studies on liver cancer etiology and prevention. Cancer Biology and Medicine, 16(1), 24–37. https://doi.org/10.20892/j.issn.2095-3941.2018.0394

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu, S. Z. (1995). Primary prevention of hepatocellular carcinoma. Journal of Gastroenterology and Hepatology, 10(6), 674–682. https://doi.org/10.1111/j.1440-1746.1995.tb01370.x

    Article  CAS  PubMed  Google Scholar 

  25. Mancebo, A., Gonzalez-Dieguez, M. L., Cadahia, V., Varela, M., Perez, R., Navascues, C. A., et al. (2013). Annual incidence of hepatocellular carcinoma among patients with alcoholic cirrhosis and identification of risk groups. Clinical Gastroenterology and Hepatology, 11(1), 95–101. https://doi.org/10.1016/j.cgh.2012.09.007

    Article  PubMed  Google Scholar 

  26. Trichopoulos, D., Bamia, C., Lagiou, P., Fedirko, V., Trepo, E., Jenab, M., et al. (2011). Hepatocellular carcinoma risk factors and disease burden in a European cohort: A nested case-control study. Journal of the National Cancer Institute, 103(22), 1686–1695. https://doi.org/10.1093/jnci/djr395

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen, H. P., Shieh, J. J., Chang, C. C., Chen, T. T., Lin, J. T., Wu, M. S., et al. (2013). Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: Population-based and in vitro studies. Gut, 62(4), 606–615. https://doi.org/10.1136/gutjnl-2011-301708

    Article  CAS  PubMed  Google Scholar 

  28. Arase, Y., Kobayashi, M., Suzuki, F., Suzuki, Y., Kawamura, Y., Akuta, N., et al. (2013). Effect of type 2 diabetes on risk for malignancies includes hepatocellular carcinoma in chronic hepatitis C. Hepatology, 57(3), 964–973. https://doi.org/10.1002/hep.26087

    Article  CAS  PubMed  Google Scholar 

  29. Koh, J. C., Loo, W. M., Goh, K. L., Sugano, K., Chan, W. K., Chiu, W. Y., et al. (2016). Asian consensus on the relationship between obesity and gastrointestinal and liver diseases. Journal of Gastroenterology and Hepatology, 31(8), 1405–1413. https://doi.org/10.1111/jgh.13385

    Article  PubMed  Google Scholar 

  30. Seyda Seydel, G., Kucukoglu, O., Altinbasv, A., Demir, O. O., Yilmaz, S., Akkiz, H., et al. (2016). Economic growth leads to increase of obesity and associated hepatocellular carcinoma in developing countries. Annals of Hepatology, 15(5), 662–672. https://doi.org/10.5604/16652681.1212316

    Article  CAS  PubMed  Google Scholar 

  31. Atkins, J. L., Pilling, L. C., Masoli, J. A. H., Kuo, C. L., Shearman, J. D., Adams, P. C., et al. (2020). Association of Hemochromatosis HFE p. C282Y Homozygosity With Hepatic Malignancy. JAMA, 324(20), 2048–2057. https://doi.org/10.1001/jama.2020.21566

    Article  CAS  PubMed  Google Scholar 

  32. Elmberg, M., Hultcrantz, R., Ekbom, A., Brandt, L., Olsson, S., Olsson, R., et al. (2003). Cancer risk in patients with hereditary hemochromatosis and in their first-degree relatives. Gastroenterology, 125(6), 1733–1741. https://doi.org/10.1053/j.gastro.2003.09.035

    Article  PubMed  Google Scholar 

  33. Stewart, M. F. (2012). Review of hepatocellular cancer, hypertension and renal impairment as late complications of acute porphyria and recommendations for patient follow-up. Journal of Clinical Pathology, 65(11), 976–980. https://doi.org/10.1136/jclinpath-2012-200791

    Article  PubMed  Google Scholar 

  34. Linet, M. S., Gridley, G., Nyren, O., Mellemkjaer, L., Olsen, J. H., Keehn, S., et al. (1999). Primary liver cancer, other malignancies, and mortality risks following porphyria: A cohort study in Denmark and Sweden. American Journal of Epidemiology, 149(11), 1010–1015. https://doi.org/10.1093/oxfordjournals.aje.a009745

    Article  CAS  PubMed  Google Scholar 

  35. Baravelli, C. M., Sandberg, S., Aarsand, A. K., & Tollanes, M. C. (2019). Porphyria cutanea tarda increases risk of hepatocellular carcinoma and premature death: A nationwide cohort study. Orphanet Journal of Rare Diseases, 14(1), 77. https://doi.org/10.1186/s13023-019-1051-3

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cha, C., & Dematteo, R. P. (2005). Molecular mechanisms in hepatocellular carcinoma development. Best Practice and Research Clinical Gastroenterology, 19(1), 25–37. https://doi.org/10.1016/j.bpg.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  37. Neuveut, C., Wei, Y., & Buendia, M. A. (2010). Mechanisms of HBV-related hepatocarcinogenesis. Journal of Hepatology, 52(4), 594–604. https://doi.org/10.1016/j.jhep.2009.10.033

    Article  CAS  PubMed  Google Scholar 

  38. Diaz, G., Engle, R. E., Tice, A., Melis, M., Montenegro, S., Rodriguez-Canales, J., et al. (2018). Molecular signature and mechanisms of hepatitis D virus-associated hepatocellular carcinoma. Molecular Cancer Research, 16(9), 1406–1419. https://doi.org/10.1158/1541-7786.MCR-18-0012

    Article  CAS  PubMed  Google Scholar 

  39. Nault, J. C., & Villanueva, A. (2015). Intratumor molecular and phenotypic diversity in hepatocellular carcinoma. Clinical Cancer Research, 21(8), 1786–1788. https://doi.org/10.1158/1078-0432.CCR-14-2602

    Article  CAS  PubMed  Google Scholar 

  40. Kawai-Kitahata, F., Asahina, Y., Tanaka, S., Kakinuma, S., Murakawa, M., Nitta, S., et al. (2016). Comprehensive analyses of mutations and hepatitis B virus integration in hepatocellular carcinoma with clinicopathological features. Journal of Gastroenterology, 51(5), 473–486. https://doi.org/10.1007/s00535-015-1126-4

    Article  CAS  PubMed  Google Scholar 

  41. Bruix, J., Han, K. H., Gores, G., Llovet, J. M., & Mazzaferro, V. (2015). Liver cancer: Approaching a personalized care. Journal of Hepatology, 62(1 Suppl), S144-156. https://doi.org/10.1016/j.jhep.2015.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  42. Guichard, C., Amaddeo, G., Imbeaud, S., Ladeiro, Y., Pelletier, L., Maad, I. B., et al. (2012). Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nature Genetics, 44(6), 694–698. https://doi.org/10.1038/ng.2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahn, S. M., Jang, S. J., Shim, J. H., Kim, D., Hong, S. M., Sung, C. O., et al. (2014). Genomic portrait of resectable hepatocellular carcinomas: Implications of RB1 and FGF19 aberrations for patient stratification. Hepatology, 60(6), 1972–1982. https://doi.org/10.1002/hep.27198

    Article  CAS  PubMed  Google Scholar 

  44. Schulze, K., Imbeaud, S., Letouze, E., Alexandrov, L. B., Calderaro, J., Rebouissou, S., et al. (2015). Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nature Genetics, 47(5), 505–511. https://doi.org/10.1038/ng.3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bressac, B., Kew, M., Wands, J., & Ozturk, M. (1991). Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature, 350(6317), 429–431. https://doi.org/10.1038/350429a0

    Article  CAS  PubMed  Google Scholar 

  46. Fujimoto, A., Furuta, M., Shiraishi, Y., Gotoh, K., Kawakami, Y., Arihiro, K., et al. (2015). Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nature Communications, 6, 6120. https://doi.org/10.1038/ncomms7120

    Article  CAS  PubMed  Google Scholar 

  47. Hsu, I. C., Metcalf, R. A., Sun, T., Welsh, J. A., Wang, N. J., & Harris, C. C. (1991). Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature, 350(6317), 427–428. https://doi.org/10.1038/350427a0

    Article  CAS  PubMed  Google Scholar 

  48. Senni, N., Savall, M., Cabrerizo Granados, D., Alves-Guerra, M. C., Sartor, C., Lagoutte, I., et al. (2019). beta-catenin-activated hepatocellular carcinomas are addicted to fatty acids. Gut, 68(2), 322–334. https://doi.org/10.1136/gutjnl-2017-315448

    Article  CAS  PubMed  Google Scholar 

  49. Cleary, S. P., Jeck, W. R., Zhao, X., Chen, K., Selitsky, S. R., Savich, G. L., et al. (2013). Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology, 58(5), 1693–1702. https://doi.org/10.1002/hep.26540

    Article  CAS  PubMed  Google Scholar 

  50. Hlady, R. A., Sathyanarayan, A., Thompson, J. J., Zhou, D., Wu, Q., Pham, K., et al. (2019). Integrating the epigenome to identify drivers of hepatocellular carcinoma. Hepatology, 69(2), 639–652. https://doi.org/10.1002/hep.30211

    Article  CAS  PubMed  Google Scholar 

  51. Bayo, J., Fiore, E. J., Dominguez, L. M., Real, A., Malvicini, M., Rizzo, M., et al. (2019). A comprehensive study of epigenetic alterations in hepatocellular carcinoma identifies potential therapeutic targets. Journal of Hepatology, 71(1), 78–90. https://doi.org/10.1016/j.jhep.2019.03.007

    Article  CAS  PubMed  Google Scholar 

  52. Rebouissou, S., & Nault, J. C. (2020). Advances in molecular classification and precision oncology in hepatocellular carcinoma. Journal of Hepatology, 72(2), 215–229. https://doi.org/10.1016/j.jhep.2019.08.017

    Article  CAS  PubMed  Google Scholar 

  53. Takai, A., Dang, H. T., & Wang, X. W. (2014). Identification of drivers from cancer genome diversity in hepatocellular carcinoma. International Journal of Molecular Sciences, 15(6), 11142–11160. https://doi.org/10.3390/ijms150611142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Satoh, S., Daigo, Y., Furukawa, Y., Kato, T., Miwa, N., Nishiwaki, T., et al. (2000). AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nature Genetics, 24(3), 245–250. https://doi.org/10.1038/73448

    Article  CAS  PubMed  Google Scholar 

  55. Fujimoto, A., Totoki, Y., Abe, T., Boroevich, K. A., Hosoda, F., Nguyen, H. H., et al. (2012). Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nature Genetics, 44(7), 760–764. https://doi.org/10.1038/ng.2291

    Article  CAS  PubMed  Google Scholar 

  56. Li, M., Zhao, H., Zhang, X., Wood, L. D., Anders, R. A., Choti, M. A., et al. (2011). Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nature Genetics, 43(9), 828–829. https://doi.org/10.1038/ng.903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Farazi, P. A., Glickman, J., Jiang, S., Yu, A., Rudolph, K. L., & DePinho, R. A. (2003). Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Research, 63(16), 5021–5027.

    CAS  PubMed  Google Scholar 

  58. Totoki, Y., Tatsuno, K., Covington, K. R., Ueda, H., Creighton, C. J., Kato, M., et al. (2014). Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nature Genetics, 46(12), 1267–1273. https://doi.org/10.1038/ng.3126

    Article  CAS  PubMed  Google Scholar 

  59. Bayard, Q., Meunier, L., Peneau, C., Renault, V., Shinde, J., Nault, J. C., et al. (2018). Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress. Nature Communications, 9(1), 5235. https://doi.org/10.1038/s41467-018-07552-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nault, J. C., Mallet, M., Pilati, C., Calderaro, J., Bioulac-Sage, P., Laurent, C., et al. (2013). High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nature Communications, 4, 2218. https://doi.org/10.1038/ncomms3218

    Article  CAS  PubMed  Google Scholar 

  61. He, S., & Tang, S. (2020). WNT/beta-catenin signaling in the development of liver cancers. Biomedicine and Pharmacotherapy, 132, 110851. https://doi.org/10.1016/j.biopha.2020.110851

    Article  CAS  PubMed  Google Scholar 

  62. Mathur, R. (2018). ARID1A loss in cancer: Towards a mechanistic understanding. Pharmacology and Therapeutics, 190, 15–23. https://doi.org/10.1016/j.pharmthera.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  63. Shain, A. H., & Pollack, J. R. (2013). The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One, 8(1), e55119. https://doi.org/10.1371/journal.pone.0055119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oba, A., Shimada, S., Akiyama, Y., Nishikawaji, T., Mogushi, K., Ito, H., et al. (2017). ARID2 modulates DNA damage response in human hepatocellular carcinoma cells. Journal of Hepatology, 66(5), 942–951. https://doi.org/10.1016/j.jhep.2016.12.026

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, X., Azhar, G., Zhong, Y., & Wei, J. Y. (2006). Zipzap/p200 is a novel zinc finger protein contributing to cardiac gene regulation. Biochemical and Biophysical Research Communications, 346(3), 794–801. https://doi.org/10.1016/j.bbrc.2006.05.211

    Article  CAS  PubMed  Google Scholar 

  66. Duan, Y., Tian, L., Gao, Q., Liang, L., Zhang, W., Yang, Y., et al. (2016). Chromatin remodeling gene ARID2 targets cyclin D1 and cyclin E1 to suppress hepatoma cell progression. Oncotarget, 7(29), 45863–45875. https://doi.org/10.18632/oncotarget.10244

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang, L., Wang, W., Li, X., He, S., Yao, J., Wang, X., et al. (2016). MicroRNA-155 promotes tumor growth of human hepatocellular carcinoma by targeting ARID2. International Journal of Oncology, 48(6), 2425–2434. https://doi.org/10.3892/ijo.2016.3465

    Article  CAS  PubMed  Google Scholar 

  68. Li, Z., Jiao, X., Di Sante, G., Ertel, A., Casimiro, M. C., Wang, M., et al. (2019). Cyclin D1 integrates G9a-mediated histone methylation. Oncogene, 38(22), 4232–4249. https://doi.org/10.1038/s41388-019-0723-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sung, W. K., Zheng, H., Li, S., Chen, R., Liu, X., Li, Y., et al. (2012). Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nature Genetics, 44(7), 765–769. https://doi.org/10.1038/ng.2295

    Article  CAS  PubMed  Google Scholar 

  70. Paterlini-Brechot, P., Saigo, K., Murakami, Y., Chami, M., Gozuacik, D., Mugnier, C., et al. (2003). Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene, 22(25), 3911–3916. https://doi.org/10.1038/sj.onc.1206492

    Article  CAS  PubMed  Google Scholar 

  71. Dong, H., Zhang, L., Qian, Z., Zhu, X., Zhu, G., Chen, Y., et al. (2015). Identification of HBV-MLL4 integration and its molecular basis in Chinese hepatocellular carcinoma. PLoS One, 10(4), e0123175. https://doi.org/10.1371/journal.pone.0123175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Levine, A. J., & Oren, M. (2009). The first 30 years of p53: Growing ever more complex. Nature Reviews Cancer, 9(10), 749–758. https://doi.org/10.1038/nrc2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kastenhuber, E. R., & Lowe, S. W. (2017). Putting p53 in Context. Cell, 170(6), 1062–1078. https://doi.org/10.1016/j.cell.2017.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qin, A., Wu, J., Zhai, M., Lu, Y., Huang, B., Lu, X., et al. (2020). Axin1 inhibits proliferation, invasion, migration and EMT of hepatocellular carcinoma by targeting miR-650. American Journal of Translational Research, 12(3), 1114–1122.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sherr, C. J. (2004). Principles of tumor suppression. Cell, 116(2), 235–246. https://doi.org/10.1016/s0092-8674(03)01075-4

    Article  CAS  PubMed  Google Scholar 

  76. Zhu, L. (2005). Tumour suppressor retinoblastoma protein Rb: A transcriptional regulator. European Journal of Cancer, 41(16), 2415–2427. https://doi.org/10.1016/j.ejca.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  77. Chen, C. Y., Chen, J., He, L., & Stiles, B. L. (2018). PTEN: Tumor Suppressor and metabolic regulator. Front Endocrinol (Lausanne), 9, 338. https://doi.org/10.3389/fendo.2018.00338

    Article  PubMed  Google Scholar 

  78. Cancer Genome Atlas Research Network. Electronic address, w. b. e, Cancer Genome Atlas Research, N. (2017). Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell, 169(7), 1327-1341 e1323. https://doi.org/10.1016/j.cell.2017.05.046

    Article  CAS  Google Scholar 

  79. Liggett, W. H., Jr., & Sidransky, D. (1998). Role of the p16 tumor suppressor gene in cancer. Journal of Clinical Oncology, 16(3), 1197–1206. https://doi.org/10.1200/JCO.1998.16.3.1197

    Article  CAS  PubMed  Google Scholar 

  80. Padhi, S. S., Roy, S., Kar, M., Saha, A., Roy, S., Adhya, A., et al. (2017). Role of CDKN2A/p16 expression in the prognostication of oral squamous cell carcinoma. Oral Oncology, 73, 27–35. https://doi.org/10.1016/j.oraloncology.2017.07.030

    Article  CAS  PubMed  Google Scholar 

  81. Huang, J., & Manning, B. D. (2008). The TSC1-TSC2 complex: A molecular switchboard controlling cell growth. The Biochemical Journal, 412(2), 179–190. https://doi.org/10.1042/BJ20080281

    Article  CAS  PubMed  Google Scholar 

  82. Farazi, P. A., & DePinho, R. A. (2006). Hepatocellular carcinoma pathogenesis: From genes to environment. Nature Reviews Cancer, 6(9), 674–687. https://doi.org/10.1038/nrc1934

    Article  CAS  PubMed  Google Scholar 

  83. Dhanasekaran, R., Nault, J. C., Roberts, L. R., & Zucman-Rossi, J. (2019). Genomic medicine and implications for hepatocellular carcinoma prevention and therapy. Gastroenterology, 156(2), 492–509. https://doi.org/10.1053/j.gastro.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  84. Benegiamo, G., Vinciguerra, M., Guarnieri, V., Niro, G. A., Andriulli, A., & Pazienza, V. (2013). Hepatitis delta virus induces specific DNA methylation processes in Huh-7 liver cancer cells. FEBS Letters, 587(9), 1424–1428. https://doi.org/10.1016/j.febslet.2013.03.021

    Article  CAS  PubMed  Google Scholar 

  85. Villanueva, A., Portela, A., Sayols, S., Battiston, C., Hoshida, Y., Mendez-Gonzalez, J., et al. (2015). DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology, 61(6), 1945–1956. https://doi.org/10.1002/hep.27732

    Article  CAS  PubMed  Google Scholar 

  86. Martinez-Quetglas, I., Pinyol, R., Dauch, D., Torrecilla, S., Tovar, V., Moeini, A., et al. (2016). IGF2 is up-regulated by epigenetic mechanisms in hepatocellular carcinomas and is an actionable oncogene product in experimental models. Gastroenterology, 151(6), 1192–1205. https://doi.org/10.1053/j.gastro.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  87. Fernandez-Barrena, M. G., Arechederra, M., Colyn, L., Berasain, C., & Avila, M. A. (2020). Epigenetics in hepatocellular carcinoma development and therapy: The tip of the iceberg. JHEP Rep, 2(6), 100167. https://doi.org/10.1016/j.jhepr.2020.100167

    Article  PubMed  PubMed Central  Google Scholar 

  88. Xu, X., Tao, Y., Shan, L., Chen, R., Jiang, H., Qian, Z., et al. (2018). The role of microRNAs in hepatocellular carcinoma. Journal of Cancer, 9(19), 3557–3569. https://doi.org/10.7150/jca.26350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Galuppo, R., Maynard, E., Shah, M., Daily, M. F., Chen, C., Spear, B. T., et al. (2014). Synergistic inhibition of HCC and liver cancer stem cell proliferation by targeting RAS/RAF/MAPK and WNT/beta-catenin pathways. Anticancer Research, 34(4), 1709–1713.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Grabinski, N., Ewald, F., Hofmann, B. T., Staufer, K., Schumacher, U., Nashan, B., et al. (2012). Combined targeting of AKT and mTOR synergistically inhibits proliferation of hepatocellular carcinoma cells. Molecular Cancer, 11, 85. https://doi.org/10.1186/1476-4598-11-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou, Q., Lui, V. W., & Yeo, W. (2011). Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncology, 7(10), 1149–1167. https://doi.org/10.2217/fon.11.95

    Article  CAS  PubMed  Google Scholar 

  92. Aravalli, R. N., Steer, C. J., & Cressman, E. N. (2008). Molecular mechanisms of hepatocellular carcinoma. Hepatology, 48(6), 2047–2063. https://doi.org/10.1002/hep.22580

    Article  CAS  PubMed  Google Scholar 

  93. Thompson, M. D., & Monga, S. P. (2007). WNT/beta-catenin signaling in liver health and disease. Hepatology, 45(5), 1298–1305. https://doi.org/10.1002/hep.21651

    Article  CAS  PubMed  Google Scholar 

  94. Langeswaran, K., Gowthamkumar, S., Vijayaprakash, S., Revathy, R., & Balasubramanian, M. P. (2013). Influence of limonin on Wnt signalling molecule in HepG2 cell lines. Journal of Natural Science, Biology and Medicine, 4(1), 126–133. https://doi.org/10.4103/0976-9668.107276

    Article  CAS  PubMed  Google Scholar 

  95. Bruix, J., Sherman, M., American Association for the Study of Liver, D. (2011). Management of hepatocellular carcinoma: an update. Hepatology, 53(3), 1020–1022. https://doi.org/10.1002/hep.24199

    Article  PubMed  Google Scholar 

  96. Cha, M. Y., Kim, C. M., Park, Y. M., & Ryu, W. S. (2004). Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology, 39(6), 1683–1693. https://doi.org/10.1002/hep.20245

    Article  CAS  PubMed  Google Scholar 

  97. Farci, P., Niro, G. A., Zamboni, F., & Diaz, G. (2021). Hepatitis D virus and hepatocellular carcinoma. Viruses, 13(5), https://doi.org/10.3390/v13050830.

  98. Zeng, Q., & Hong, W. (2008). The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell, 13(3), 188–192. https://doi.org/10.1016/j.ccr.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  99. Saucedo, L. J., & Edgar, B. A. (2007). Filling out the Hippo pathway. Nature Reviews Molecular Cell Biology, 8(8), 613–621. https://doi.org/10.1038/nrm2221

    Article  CAS  PubMed  Google Scholar 

  100. Grzeschik, N. A., Parsons, L. M., Allott, M. L., Harvey, K. F., & Richardson, H. E. (2010). Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Current Biology, 20(7), 573–581. https://doi.org/10.1016/j.cub.2010.01.055

    Article  CAS  PubMed  Google Scholar 

  101. Baker, N. E., & Li, W. (2008). Cell competition and its possible relation to cancer. Cancer Research, 68(14), 5505–5507. https://doi.org/10.1158/0008-5472.CAN-07-6348

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, T., Zhang, J., You, X., Liu, Q., Du, Y., Gao, Y., et al. (2012). Hepatitis B virus X protein modulates oncogene Yes-associated protein by CREB to promote growth of hepatoma cells. Hepatology, 56(6), 2051–2059. https://doi.org/10.1002/hep.25899

    Article  CAS  PubMed  Google Scholar 

  103. Arzumanyan, A., Sambandam, V., Clayton, M. M., Choi, S. S., Xie, G., Diehl, A. M., et al. (2012). Hedgehog signaling blockade delays hepatocarcinogenesis induced by hepatitis B virus X protein. Cancer Research, 72(22), 5912–5920. https://doi.org/10.1158/0008-5472.CAN-12-2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sicklick, J. K., Li, Y. X., Jayaraman, A., Kannangai, R., Qi, Y., Vivekanandan, P., et al. (2006). Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis, 27(4), 748–757. https://doi.org/10.1093/carcin/bgi292

    Article  CAS  PubMed  Google Scholar 

  105. Kim, Y., Yoon, J. W., Xiao, X., Dean, N. M., Monia, B. P., & Marcusson, E. G. (2007). Selective down-regulation of glioma-associated oncogene 2 inhibits the proliferation of hepatocellular carcinoma cells. Cancer Research, 67(8), 3583–3593. https://doi.org/10.1158/0008-5472.CAN-06-3040

    Article  CAS  PubMed  Google Scholar 

  106. Huntzicker, E. G., Hotzel, K., Choy, L., Che, L., Ross, J., Pau, G., et al. (2015). Differential effects of targeting Notch receptors in a mouse model of liver cancer. Hepatology, 61(3), 942–952. https://doi.org/10.1002/hep.27566

    Article  CAS  PubMed  Google Scholar 

  107. Morell, C. M., Fiorotto, R., Fabris, L., & Strazzabosco, M. (2013). Notch signalling beyond liver development: Emerging concepts in liver repair and oncogenesis. Clinics and Research in Hepatology and Gastroenterology, 37(5), 447–454. https://doi.org/10.1016/j.clinre.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  108. Huang, Q., Li, J., Zheng, J., & Wei, A. (2019). The carcinogenic role of the Notch signaling pathway in the development of hepatocellular carcinoma. Journal of Cancer, 10(6), 1570–1579. https://doi.org/10.7150/jca.26847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Giovannini, C., Bolondi, L., & Gramantieri, L. (2016). Targeting Notch3 in Hepatocellular Carcinoma: Molecular Mechanisms and Therapeutic Perspectives. International Journal of Molecular Sciences, 18(1), https://doi.org/10.3390/ijms18010056.

  110. Nagahama, H., Okada, S., Okusaka, T., Ishii, H., Ikeda, M., Nakasuka, H., et al. (1997). Predictive factors for tumor response to systemic chemotherapy in patients with hepatocellular carcinoma. Japanese Journal of Clinical Oncology, 27(5), 321–324. https://doi.org/10.1093/jjco/27.5.321

    Article  CAS  PubMed  Google Scholar 

  111. Cheng, A. L., Qin, S., Ikeda, M., Galle, P. R., Ducreux, M., Kim, T. Y., et al. (2022). Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs sorafenib for unresectable hepatocellular carcinoma. Journal of Hepatology, 76(4), 862–873. https://doi.org/10.1016/j.jhep.2021.11.030

    Article  CAS  PubMed  Google Scholar 

  112. Sonbol, M. B., Riaz, I. B., Naqvi, S. A. A., Almquist, D. R., Mina, S., Almasri, J., et al. (2020). Systemic therapy and sequencing options in advanced hepatocellular carcinoma: A systematic review and network meta-analysis. JAMA Oncology, 6(12), e204930. https://doi.org/10.1001/jamaoncol.2020.4930

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ren, Z., Xu, J., Bai, Y., Xu, A., Cang, S., Du, C., et al. (2021). Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): A randomised, open-label, phase 2–3 study. The lancet Oncology, 22(7), 977–990. https://doi.org/10.1016/S1470-2045(21)00252-7

    Article  CAS  PubMed  Google Scholar 

  114. Zhu, A. X., Park, J. O., Ryoo, B. Y., Yen, C. J., Poon, R., Pastorelli, D., et al. (2015). Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): A randomised, double-blind, multicentre, phase 3 trial. The lancet Oncology, 16(7), 859–870. https://doi.org/10.1016/S1470-2045(15)00050-9

    Article  CAS  PubMed  Google Scholar 

  115. Zhu, A. X., Kang, Y. K., Yen, C. J., Finn, R. S., Galle, P. R., Llovet, J. M., et al. (2019). Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased alpha-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. The lancet Oncology, 20(2), 282–296. https://doi.org/10.1016/S1470-2045(18)30937-9

    Article  CAS  PubMed  Google Scholar 

  116. Qin, S., Li, Q., Gu, S., Chen, X., Lin, L., Wang, Z., et al. (2021). Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma (AHELP): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Gastroenterol Hepatol, 6(7), 559–568. https://doi.org/10.1016/S2468-1253(21)00109-6

    Article  PubMed  Google Scholar 

  117. Xu, J., Shen, J., Gu, S., Zhang, Y., Wu, L., Wu, J., et al. (2021). Camrelizumab in combination with apatinib in patients with advanced hepatocellular carcinoma (RESCUE): A nonrandomized, open-label, phase II trial. Clinical Cancer Research, 27(4), 1003–1011. https://doi.org/10.1158/1078-0432.CCR-20-2571

    Article  CAS  PubMed  Google Scholar 

  118. Wilhelm, S., Carter, C., Lynch, M., Lowinger, T., Dumas, J., Smith, R. A., et al. (2006). Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery, 5(10), 835–844. https://doi.org/10.1038/nrd2130

    Article  CAS  PubMed  Google Scholar 

  119. Liu, L., Cao, Y., Chen, C., Zhang, X., McNabola, A., Wilkie, D., et al. (2006). Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Research, 66(24), 11851–11858. https://doi.org/10.1158/0008-5472.CAN-06-1377

    Article  CAS  PubMed  Google Scholar 

  120. Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J. F., et al. (2008). Sorafenib in advanced hepatocellular carcinoma. New England Journal of Medicine, 359(4), 378–390. https://doi.org/10.1056/NEJMoa0708857

    Article  CAS  PubMed  Google Scholar 

  121. Cheng, A. L., Kang, Y. K., Chen, Z., Tsao, C. J., Qin, S., Kim, J. S., et al. (2009). Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. The lancet Oncology, 10(1), 25–34. https://doi.org/10.1016/S1470-2045(08)70285-7

    Article  CAS  PubMed  Google Scholar 

  122. Galle, P. R., Finn, R. S., Qin, S., Ikeda, M., Zhu, A. X., Kim, T. Y., et al. (2021). Patient-reported outcomes with atezolizumab plus bevacizumab versus sorafenib in patients with unresectable hepatocellular carcinoma (IMbrave150): An open-label, randomised, phase 3 trial. The lancet Oncology, 22(7), 991–1001. https://doi.org/10.1016/S1470-2045(21)00151-0

    Article  CAS  PubMed  Google Scholar 

  123. Bruix, J., Raoul, J. L., Sherman, M., Mazzaferro, V., Bolondi, L., Craxi, A., et al. (2012). Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: Subanalyses of a phase III trial. Journal of Hepatology, 57(4), 821–829. https://doi.org/10.1016/j.jhep.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  124. Jackson, R., Psarelli, E. E., Berhane, S., Khan, H., & Johnson, P. (2017). Impact of viral status on survival in patients receiving sorafenib for advanced hepatocellular cancer: A meta-analysis of randomized phase III trials. Journal of Clinical Oncology, 35(6), 622–628. https://doi.org/10.1200/JCO.2016.69.5197

    Article  PubMed  Google Scholar 

  125. Bruix, J., Cheng, A. L., Meinhardt, G., Nakajima, K., De Sanctis, Y., & Llovet, J. (2017). Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: Analysis of two phase III studies. Journal of Hepatology, 67(5), 999–1008. https://doi.org/10.1016/j.jhep.2017.06.026

    Article  CAS  PubMed  Google Scholar 

  126. Matsuki, M., Hoshi, T., Yamamoto, Y., Ikemori-Kawada, M., Minoshima, Y., Funahashi, Y., et al. (2018). Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Medicine, 7(6), 2641–2653. https://doi.org/10.1002/cam4.1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kudo, M., Finn, R. S., Qin, S., Han, K. H., Ikeda, K., Piscaglia, F., et al. (2018). Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet, 391(10126), 1163–1173. https://doi.org/10.1016/S0140-6736(18)30207-1

    Article  CAS  PubMed  Google Scholar 

  128. Qin, S., Bi, F., Gu, S., Bai, Y., Chen, Z., Wang, Z., et al. (2021). Donafenib versus sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: A randomized, open-label, parallel-controlled phase II-III trial. Journal of Clinical Oncology, 39(27), 3002–3011. https://doi.org/10.1200/JCO.21.00163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Keam, S. J., & Duggan, S. (2021). Donafenib: First approval. Drugs, 81(16), 1915–1920. https://doi.org/10.1007/s40265-021-01603-0

    Article  CAS  PubMed  Google Scholar 

  130. Ettrich, T. J., & Seufferlein, T. (2018). Regorafenib. Recent Results in Cancer Research, 211, 45–56. https://doi.org/10.1007/978-3-319-91442-8_3

    Article  CAS  PubMed  Google Scholar 

  131. Bruix, J., Qin, S., Merle, P., Granito, A., Huang, Y. H., Bodoky, G., et al. (2017). Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 389(10064), 56–66. https://doi.org/10.1016/S0140-6736(16)32453-9

    Article  CAS  PubMed  Google Scholar 

  132. Cochin, V., Gross-Goupil, M., Ravaud, A., Godbert, Y., & Le Moulec, S. (2017). Cabozantinib: Mechanism of action, efficacy and indications. Bulletin du Cancer, 104(5), 393–401. https://doi.org/10.1016/j.bulcan.2017.03.013

    Article  PubMed  Google Scholar 

  133. Abou-Alfa, G. K., Meyer, T., Cheng, A. L., El-Khoueiry, A. B., Rimassa, L., Ryoo, B. Y., et al. (2018). Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. New England Journal of Medicine, 379(1), 54–63. https://doi.org/10.1056/NEJMoa1717002

    Article  CAS  PubMed  Google Scholar 

  134. Herbert, B. S., Gellert, G. C., Hochreiter, A., Pongracz, K., Wright, W. E., Zielinska, D., et al. (2005). Lipid modification of GRN163, an N3’–>P5’ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene, 24(33), 5262–5268. https://doi.org/10.1038/sj.onc.1208760

    Article  CAS  PubMed  Google Scholar 

  135. Holohan, B., Hagiopian, M. M., Lai, T. P., Huang, E., Friedman, D. R., Wright, W. E., et al. (2015). Perifosine as a potential novel anti-telomerase therapy. Oncotarget, 6(26), 21816–21826. https://doi.org/10.18632/oncotarget.5200

    Article  PubMed  PubMed Central  Google Scholar 

  136. Phatak, P., Dai, F., Butler, M., Nandakumar, M. P., Gutierrez, P. L., Edelman, M. J., et al. (2008). KML001 cytotoxic activity is associated with its binding to telomeric sequences and telomere erosion in prostate cancer cells. Clinical Cancer Research, 14(14), 4593–4602. https://doi.org/10.1158/1078-0432.CCR-07-4572

    Article  CAS  PubMed  Google Scholar 

  137. Bryan, C., Rice, C., Hoffman, H., Harkisheimer, M., Sweeney, M., & Skordalakes, E. (2015). Structural basis of telomerase inhibition by the highly specific BIBR1532. Structure, 23(10), 1934–1942. https://doi.org/10.1016/j.str.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brunsvig, P. F., Aamdal, S., Gjertsen, M. K., Kvalheim, G., Markowski-Grimsrud, C. J., Sve, I., et al. (2006). Telomerase peptide vaccination: A phase I/II study in patients with non-small cell lung cancer. Cancer Immunology Immunotherapy, 55(12), 1553–1564. https://doi.org/10.1007/s00262-006-0145-7

    Article  CAS  PubMed  Google Scholar 

  139. Vonderheide, R. H., Hahn, W. C., Schultze, J. L., & Nadler, L. M. (1999). The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity, 10(6), 673–679. https://doi.org/10.1016/s1074-7613(00)80066-7

    Article  CAS  PubMed  Google Scholar 

  140. O’Rourke, R. A. (1987). The specialized physician assistant: An alternative to the clinical cardiology trainee. American Journal of Cardiology, 60(10), 901–902. https://doi.org/10.1016/0002-9149(87)91044-7

    Article  CAS  PubMed  Google Scholar 

  141. Menez-Jamet, J., Gallou, C., Rougeot, A., & Kosmatopoulos, K. (2016). Optimized tumor cryptic peptides: the basis for universal neo-antigen-like tumor vaccines. Annals of Translational Medicine, 4(14), 266. https://doi.org/10.21037/atm.2016.05.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bykov, V. J., Issaeva, N., Shilov, A., Hultcrantz, M., Pugacheva, E., Chumakov, P., et al. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nature Medicine, 8(3), 282–288. https://doi.org/10.1038/nm0302-282

    Article  CAS  PubMed  Google Scholar 

  143. Zhao, Y., Zhang, Y. N., Wang, K. T., & Chen, L. (2020). Lenvatinib for hepatocellular carcinoma: From preclinical mechanisms to anti-cancer therapy. Biochimica Biophysica Acta Reviews on Cancer, 1874(1), 188391. https://doi.org/10.1016/j.bbcan.2020.188391

    Article  CAS  Google Scholar 

  144. Gardini, A. C., Faloppi, L., Aprile, G., Brunetti, O., Caparello, C., Corbelli, J., et al. (2018). Multicenter prospective study of angiogenesis polymorphism validation in HCC patients treated with sorafenib An INNOVATE study protocol. Tumori, 104(6), 476–479. https://doi.org/10.5301/tj.5000704

    Article  CAS  PubMed  Google Scholar 

  145. Scartozzi, M., Faloppi, L., Svegliati Baroni, G., Loretelli, C., Piscaglia, F., Iavarone, M., et al. (2014). VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: The ALICE-1 study. International Journal of Cancer, 135(5), 1247–1256. https://doi.org/10.1002/ijc.28772

    Article  CAS  PubMed  Google Scholar 

  146. CasadeiGardini, A., Marisi, G., Faloppi, L., Scarpi, E., Foschi, F. G., Iavarone, M., et al. (2016). eNOS polymorphisms and clinical outcome in advanced HCC patients receiving sorafenib: Final results of the ePHAS study. Oncotarget, 7(19), 27988–27999. https://doi.org/10.18632/oncotarget.8569

    Article  Google Scholar 

  147. Shao, Y. Y., Hsu, C. H., & Cheng, A. L. (2015). Predictive biomarkers of sorafenib efficacy in advanced hepatocellular carcinoma: Are we getting there? World Journal of Gastroenterology, 21(36), 10336–10347. https://doi.org/10.3748/wjg.v21.i36.10336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Faloppi, L., Puzzoni, M., Casadei Gardini, A., Silvestris, N., Masi, G., Marisi, G., et al. (2020). Angiogenesis genotyping and clinical outcomes in patients with advanced hepatocellular carcinoma receiving sorafenib: The ALICE-2 study. Targeted Oncology, 15(1), 115–126. https://doi.org/10.1007/s11523-020-00698-x

    Article  PubMed  Google Scholar 

  149. Horwitz, E., Stein, I., Andreozzi, M., Nemeth, J., Shoham, A., Pappo, O., et al. (2014). Human and mouse VEGFA-amplified hepatocellular carcinomas are highly sensitive to sorafenib treatment. Cancer Discovery, 4(6), 730–743. https://doi.org/10.1158/2159-8290.CD-13-0782

    Article  CAS  PubMed  Google Scholar 

  150. Peng, S., Wang, Y., Peng, H., Chen, D., Shen, S., Peng, B., et al. (2014). Autocrine vascular endothelial growth factor signaling promotes cell proliferation and modulates sorafenib treatment efficacy in hepatocellular carcinoma. Hepatology, 60(4), 1264–1277. https://doi.org/10.1002/hep.27236

    Article  CAS  PubMed  Google Scholar 

  151. Godin, C., Bodeau, S., Saidak, Z., Louandre, C., Francois, C., Barbare, J. C., et al. (2019). Early decrease in serum amphiregulin or vascular endothelial growth factor levels predicts sorafenib efficacy in hepatocellular carcinoma. Oncology Reports, 41(3), 2041–2050. https://doi.org/10.3892/or.2018.6922

    Article  CAS  PubMed  Google Scholar 

  152. Miyahara, K., Nouso, K., Tomoda, T., Kobayashi, S., Hagihara, H., Kuwaki, K., et al. (2011). Predicting the treatment effect of sorafenib using serum angiogenesis markers in patients with hepatocellular carcinoma. Journal of Gastroenterology and Hepatology, 26(11), 1604–1611. https://doi.org/10.1111/j.1440-1746.2011.06887.x

    Article  CAS  PubMed  Google Scholar 

  153. Shao, Y. Y., Huang, C. C., Lin, S. D., Hsu, C. H., & Cheng, A. L. (2012). Serum insulin-like growth factor-1 levels predict outcomes of patients with advanced hepatocellular carcinoma receiving antiangiogenic therapy. Clinical Cancer Research, 18(14), 3992–3997. https://doi.org/10.1158/1078-0432.CCR-11-2853

    Article  CAS  PubMed  Google Scholar 

  154. Hayashi, T., Yamashita, T., Terashima, T., Suda, T., Okada, H., Asahina, Y., et al. (2017). Serum cytokine profiles predict survival benefits in patients with advanced hepatocellular carcinoma treated with sorafenib: A retrospective cohort study. BMC Cancer, 17(1), 870. https://doi.org/10.1186/s12885-017-3889-x

    Article  CAS  PubMed Central  Google Scholar 

  155. Rimassa, L., Assenat, E., Peck-Radosavljevic, M., Pracht, M., Zagonel, V., Mathurin, P., et al. (2018). Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): A final analysis of a phase 3, randomised, placebo-controlled study. The lancet Oncology, 19(5), 682–693. https://doi.org/10.1016/S1470-2045(18)30146-3

    Article  CAS  PubMed  Google Scholar 

  156. Firtina Karagonlar, Z., Koc, D., Iscan, E., Erdal, E., & Atabey, N. (2016). Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells. Cancer Science, 107(4), 407–416. https://doi.org/10.1111/cas.12891

    Article  CAS  PubMed Central  Google Scholar 

  157. Xiang, Q., Chen, W., Ren, M., Wang, J., Zhang, H., Deng, D. Y., et al. (2014). Cabozantinib suppresses tumor growth and metastasis in hepatocellular carcinoma by a dual blockade of VEGFR2 and MET. Clinical Cancer Research, 20(11), 2959–2970. https://doi.org/10.1158/1078-0432.CCR-13-2620

    Article  CAS  PubMed  Google Scholar 

  158. Chen, D., Zhao, P., Li, S. Q., Xiao, W. K., Yin, X. Y., Peng, B. G., et al. (2013). Prognostic impact of pERK in advanced hepatocellular carcinoma patients treated with sorafenib. European Journal of Surgical Oncology, 39(9), 974–980. https://doi.org/10.1016/j.ejso.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  159. Abou-Alfa, G. K., Schwartz, L., Ricci, S., Amadori, D., Santoro, A., Figer, A., et al. (2006). Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. Journal of Clinical Oncology, 24(26), 4293–4300. https://doi.org/10.1200/JCO.2005.01.3441

    Article  CAS  PubMed  Google Scholar 

  160. Arao, T., Ueshima, K., Matsumoto, K., Nagai, T., Kimura, H., Hagiwara, S., et al. (2013). FGF3/FGF4 amplification and multiple lung metastases in responders to sorafenib in hepatocellular carcinoma. Hepatology, 57(4), 1407–1415. https://doi.org/10.1002/hep.25956

    Article  CAS  PubMed  Google Scholar 

  161. Feng, J., Lu, P. Z., Zhu, G. Z., Hooi, S. C., Wu, Y., Huang, X. W., et al. (2021). ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacologica Sinica, 42(1), 160–170. https://doi.org/10.1038/s41401-020-0439-x

    Article  CAS  PubMed  Google Scholar 

  162. Gu, J., Xu, S., Chen, X., Luo, H., Tan, G., Qi, W., et al. (2022). ORM 1 as a biomarker of increased vascular invasion and decreased sorafenib sensitivity in hepatocellular carcinoma. Bosnian Journal of Basic Medical Sciences. https://doi.org/10.17305/bjbms.2022.7268

    Article  PubMed  PubMed Central  Google Scholar 

  163. Estfan, B., Byrne, M., & Kim, R. (2013). Sorafenib in advanced hepatocellular carcinoma: Hypertension as a potential surrogate marker for efficacy. American Journal of Clinical Oncology, 36(4), 319–324. https://doi.org/10.1097/COC.0b013e3182468039

    Article  CAS  PubMed  Google Scholar 

  164. Bettinger, D., Schultheiss, M., Knuppel, E., Thimme, R., Blum, H. E., & Spangenberg, H. C. (2012). Diarrhea predicts a positive response to sorafenib in patients with advanced hepatocellular carcinoma. Hepatology, 56(2), 789–790. https://doi.org/10.1002/hep.25637

    Article  PubMed  Google Scholar 

  165. Reig, M., Torres, F., Rodriguez-Lope, C., Forner, A. N. L. L., Rimola, J., et al. (2014). Early dermatologic adverse events predict better outcome in HCC patients treated with sorafenib. Journal of Hepatology, 61(2), 318–324. https://doi.org/10.1016/j.jhep.2014.03.030

    Article  CAS  PubMed  Google Scholar 

  166. Pinter, M., Sieghart, W., Hucke, F., Graziadei, I., Vogel, W., Maieron, A., et al. (2011). Prognostic factors in patients with advanced hepatocellular carcinoma treated with sorafenib. Alimentary Pharmacology and Therapeutics, 34(8), 949–959. https://doi.org/10.1111/j.1365-2036.2011.04823.x

    Article  CAS  PubMed  Google Scholar 

  167. Lee, J. H., Park, J. Y., Kim, D. Y., Ahn, S. H., Han, K. H., Seo, H. J., et al. (2011). Prognostic value of 18F-FDG PET for hepatocellular carcinoma patients treated with sorafenib. Liver International, 31(8), 1144–1149. https://doi.org/10.1111/j.1478-3231.2011.02541.x

    Article  CAS  PubMed  Google Scholar 

  168. Liang, K. H., Chen, S. F., Lin, Y. H., Chu, Y. D., Lin, Y. H., Lai, M. W., et al. (2021). Tenofovir hampers the efficacy of sorafenib in prolonging overall survival in hepatocellular carcinoma. Biomedicines, 9(11), https://doi.org/10.3390/biomedicines9111539.

  169. Fang, J. H., Xu, L., Shang, L. R., Pan, C. Z., Ding, J., Tang, Y. Q., et al. (2019). Vessels that encapsulate tumor clusters (VETC) pattern is a predictor of sorafenib benefit in patients with hepatocellular carcinoma. Hepatology, 70(3), 824–839. https://doi.org/10.1002/hep.30366

    Article  CAS  PubMed  Google Scholar 

  170. Finn, R. S., Kudo, M., Cheng, A. L., Wyrwicz, L., Ngan, R., Blanc, J. F., et al. (2017). Analysis of serum biomarkers (BM) in patients (pts) from a phase 3 study of lenvatinib (LEN) vs sorafenib (SOR) as first-line treatment for unresectable hepatocellular carcinoma (uHCC). Annals of Oncology, 28.

  171. Chuma, M., Uojima, H., Numata, K., Hidaka, H., Toyoda, H., Hiraoka, A., et al. (2020). Early changes in circulating FGF19 and Ang-2 levels as possible predictive biomarkers of clinical response to lenvatinib therapy in hepatocellular carcinoma. Cancers (Basel), 12(2), https://doi.org/10.3390/cancers12020293.

  172. Myojin, Y., Kodama, T., Maesaka, K., Motooka, D., Sato, Y., Tanaka, S., et al. (2021). ST6GAL1 is a novel serum biomarker for lenvatinib-susceptible FGF19-driven hepatocellular carcinoma. Clinical Cancer Research, 27(4), 1150–1161. https://doi.org/10.1158/1078-0432.CCR-20-3382

    Article  CAS  PubMed  Google Scholar 

  173. Yamauchi, M., Ono, A., Ishikawa, A., Kodama, K., Uchikawa, S., Hatooka, H., et al. (2020). Tumor fibroblast growth factor receptor 4 level predicts the efficacy of lenvatinib in patients with advanced hepatocellular carcinoma. Clinical and Translational Gastroenterology, 11(5), e00179. https://doi.org/10.14309/ctg.0000000000000179

    Article  PubMed  PubMed Central  Google Scholar 

  174. Saeki, I., Yamasaki, T., Yamashita, S., Hanazono, T., Urata, Y., Furutani, T., et al. (2020). Early predictors of objective response in patients with hepatocellular carcinoma undergoing lenvatinib treatment. Cancers (Basel), 12(4), https://doi.org/10.3390/cancers12040779.

  175. Kuorda, H., Abe, T., Fujiwara, Y., Okamoto, T., Yonezawa, M., Sato, H., et al. (2019). Change in arterial tumor perfusion is an early biomarker of lenvatinib efficacy in patients with unresectable hepatocellular carcinoma. World Journal of Gastroenterology, 25(19), 2365–2372. https://doi.org/10.3748/wjg.v25.i19.2365

    Article  PubMed  PubMed Central  Google Scholar 

  176. Teufel, M., Seidel, H., Kochert, K., Meinhardt, G., Finn, R. S., Llovet, J. M., et al. (2019). Biomarkers associated with response to regorafenib in patients with hepatocellular carcinoma. Gastroenterology, 156(6), 1731–1741. https://doi.org/10.1053/j.gastro.2019.01.261

    Article  CAS  PubMed  Google Scholar 

  177. Li, Q., Ni, Y., Zhang, L., Jiang, R., Xu, J., Yang, H., et al. (2021). HIF-1alpha-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduction and Targeted Therapy, 6(1), 76. https://doi.org/10.1038/s41392-020-00453-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Seo, J., Jeong, D. W., Park, J. W., Lee, K. W., Fukuda, J., & Chun, Y. S. (2020). Fatty-acid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells. Communications Biology, 3(1), 638. https://doi.org/10.1038/s42003-020-01367-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Shi, M., Dai, W. Q., Jia, R. R., Zhang, Q. H., Wei, J., Wang, Y. G., et al. (2021). APC(CDC20)-mediated degradation of PHD3 stabilizes HIF-1a and promotes tumorigenesis in hepatocellular carcinoma. Cancer Letters, 496, 144–155. https://doi.org/10.1016/j.canlet.2020.10.011

    Article  CAS  PubMed  Google Scholar 

  180. Hu, W., Zheng, S., Guo, H., Dai, B., Ni, J., Shi, Y., et al. (2021). PLAGL2-EGFR-HIF-1/2alpha signaling loop promotes HCC progression and erlotinib insensitivity. Hepatology, 73(2), 674–691. https://doi.org/10.1002/hep.31293

    Article  CAS  PubMed  Google Scholar 

  181. Zhu, A. X., Abbas, A. R., de Galarreta, M. R., Guan, Y., Lu, S., Koeppen, H., et al. (2022). Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nature Medicine, 28(8), 1599–1611. https://doi.org/10.1038/s41591-022-01868-2

    Article  CAS  PubMed  Google Scholar 

  182. Zhang, Z. M., Tan, J. X., Wang, F., Dao, F. Y., Zhang, Z. Y., & Lin, H. (2020). Early diagnosis of hepatocellular carcinoma using machine learning method. Front Bioeng Biotechnol, 8, 254. https://doi.org/10.3389/fbioe.2020.00254

    Article  PubMed  PubMed Central  Google Scholar 

  183. Sato, M., Morimoto, K., Kajihara, S., Tateishi, R., Shiina, S., Koike, K., et al. (2019). Machine-learning approach for the development of a novel predictive model for the diagnosis of hepatocellular carcinoma. Science and Reports, 9(1), 7704. https://doi.org/10.1038/s41598-019-44022-8

    Article  CAS  Google Scholar 

Download references

Funding

Science Planning project of Liaoning Province:2019JH2/10300031–05; National Natural Science Foundation of China, Grant/Award Number:12171074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baocheng Deng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Deng, B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev 42, 629–652 (2023). https://doi.org/10.1007/s10555-023-10084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10084-4

Keywords

Navigation