Skip to main content

Advertisement

Log in

Cancer–Stromal Interactions in Scirrhous Gastric Carcinoma

  • Review Paper
  • Published:
Cancer Microenvironment

Abstract

Fibroblasts play an important role in the progression, growth and spread of gastric cancers. Cancer–stroma interactions have been especially evident in the scirrhous type of gastric carcinoma. Fibroblasts are associated with the cancer progression at the primary and metastatic site. The proliferative and invasive ability of scirrhous gastric cancer cells are closely associated with the growth factors produced by organ-specific fibroblasts. Fibroblasts are therefore a key determinant in the malignant progression of gastric cancer and represent an important target for cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  CAS  PubMed  Google Scholar 

  2. Japanese Gastric Cancer A (1998) Japanese classification of gastric carcinoma—2nd English Edition. Gastric Cancer 1(1):10–24

    Article  Google Scholar 

  3. Ikeguchi M, Miyake T, Matsunaga T et al (2009) Recent results of therapy for scirrhous gastric cancer. Surg Today 39(4):290–294

    Article  CAS  PubMed  Google Scholar 

  4. Otsuji E, Kuriu Y, Okamoto K et al (2004) Outcome of surgical treatment for patients with scirrhous carcinoma of the stomach. Am J Surg 188(3):327–332

    Article  PubMed  Google Scholar 

  5. Tahara E (2004) Genetic pathways of two types of gastric cancer. IARC Sci Publ 157:327–349

    PubMed  Google Scholar 

  6. Yashiro M, Chung YS, Kubo T et al (1996) Differential responses of scirrhous and well-differentiated gastric cancer cells to orthotopic fibroblasts. Br J Cancer 74(7):1096–1103

    Article  CAS  PubMed  Google Scholar 

  7. Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4(11):839–849

    Article  CAS  PubMed  Google Scholar 

  8. Yashiro M, Chung YS, Sowa M (1994) Role of orthotopic fibroblasts in the development of scirrhous gastric carcinoma. Jpn J Cancer Res 85(9):883–886

    CAS  PubMed  Google Scholar 

  9. Nakazawa K, Yashiro M, Hirakawa K (2003) Keratinocyte growth factor produced by gastric fibroblasts specifically stimulates proliferation of cancer cells from scirrhous gastric carcinoma. Cancer Res 63(24):8848–8852

    CAS  PubMed  Google Scholar 

  10. Shaoul R, Eliahu L, Sher I et al (2006) Elevated expression of FGF7 protein is common in human gastric diseases. Biochem Biophys Res Commun 350(4):825–833

    Article  CAS  PubMed  Google Scholar 

  11. Katoh M, Katoh M (2006) FGF signaling network in the gastrointestinal tract (review). Int J Oncol 29(1):163–168

    CAS  PubMed  Google Scholar 

  12. Katoh M (2008) Cancer genomics and genetics of FGFR2 (Review). Int J Oncol 33(2):233–237

    CAS  PubMed  Google Scholar 

  13. Takemura S, Yashiro M, Sunami T et al (2004) Novel models for human scirrhous gastric carcinoma in vivo. Cancer science 95(11):893–900

    Article  CAS  PubMed  Google Scholar 

  14. Yashiro M, Chung YS, Nishimura S et al (1996) Fibrosis in the peritoneum induced by scirrhous gastric cancer cells may act as “soil” for peritoneal dissemination. Cancer 77(8 Suppl):1668–1675

    CAS  PubMed  Google Scholar 

  15. Ronnov-Jessen L, Petersen OW, Bissell MJ (1996) Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76(1):69–125

    CAS  PubMed  Google Scholar 

  16. Tahara E (2008) Abnormal growth factor/cytokine network in gastric cancer. Cancer Microenviron 1(1):85–91

    Article  PubMed  CAS  Google Scholar 

  17. Elenbaas B, Weinberg RA (2001) Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 264(1):169–184

    Article  CAS  PubMed  Google Scholar 

  18. Mahara K, Kato J, Terui T et al (1994) Transforming growth factor beta 1 secreted from scirrhous gastric cancer cells is associated with excess collagen deposition in the tissue. Br J Cancer 69(4):777–783

    Article  CAS  PubMed  Google Scholar 

  19. Yoshida K, Yokozaki H, Niimoto M et al (1989) Expression of TGF-beta and procollagen type I and type III in human gastric carcinomas. Int J Cancer 44(3):394–398

    Article  CAS  PubMed  Google Scholar 

  20. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    Article  CAS  PubMed  Google Scholar 

  21. Cat B, Stuhlmann D, Steinbrenner H et al (2006) Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. J Cell Sci 119(Pt 13):2727–2738

    Article  CAS  PubMed  Google Scholar 

  22. De Wever O, Demetter P, Mareel M et al (2008) Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123(10):2229–2238

    Article  PubMed  CAS  Google Scholar 

  23. De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200(4):429–447

    Article  PubMed  CAS  Google Scholar 

  24. Inoue T, Chung YS, Yashiro M et al (1997) Transforming growth factor-beta and hepatocyte growth factor produced by gastric fibroblasts stimulate the invasiveness of scirrhous gastric cancer cells. Jpn J Cancer Res 88(2):152–159

    CAS  PubMed  Google Scholar 

  25. George SJ, Johnson JL, Smith MA et al (2005) Transforming growth factor-beta is activated by plasmin and inhibits smooth muscle cell death in human saphenous vein. J Vasc Res 42(3):247–254

    Article  CAS  PubMed  Google Scholar 

  26. Duffy MJ, Maguire TM, McDermott EW et al (1999) Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol 71(2):130–135

    Article  CAS  PubMed  Google Scholar 

  27. Herszenyi L, Plebani M, Carraro P et al (2000) Proteases in gastrointestinal neoplastic diseases. Clin Chim Acta 291(2):171–187

    Article  CAS  PubMed  Google Scholar 

  28. Zeisberg EM, Potenta S, Xie L et al (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67(21):10123–10128

    Article  CAS  PubMed  Google Scholar 

  29. Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  CAS  PubMed  Google Scholar 

  30. Kalluri R, Neilson EG (2003) Epithelial–mesenchymal transition and its implications for fibrosis. J Clin Invest 112(12):1776–1784

    CAS  PubMed  Google Scholar 

  31. Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3(11):807–821

    Article  CAS  PubMed  Google Scholar 

  32. Stetler-Stevenson WG, Aznavoorian S, Liotta LA (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9:541–573

    Article  CAS  PubMed  Google Scholar 

  33. Boire A, Covic L, Agarwal A et al (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120(3):303–313

    Article  CAS  PubMed  Google Scholar 

  34. Yashiro M, Chung YS, Sowa M (1997) Tranilast (N-(3,4-dimethoxycinnamoyl) anthranilic acid) down-regulates the growth of scirrhous gastric cancer. Anticancer Res 17(2A):895–900

    CAS  PubMed  Google Scholar 

  35. Humar B, Guilford P (2009) Hereditary diffuse gastric cancer: a manifestation of lost cell polarity. Cancer science 100(7):1151–1157

    Article  CAS  PubMed  Google Scholar 

  36. Yashiro M, Nishioka N, Hirakawa K (2006) Decreased expression of the adhesion molecule desmoglein-2 is associated with diffuse-type gastric carcinoma. Eur J Cancer 42(14):2397–2403

    Article  CAS  PubMed  Google Scholar 

  37. Nishioka N, Yashiro M, Inoue T et al (2001) A candidate tumor suppressor locus for scirrhous gastric cancer at chromosome 18q 12.2. Int J Oncol 18(2):317–322

    CAS  PubMed  Google Scholar 

  38. Nishimura S, Chung YS, Yashiro M et al (1996) CD44H plays an important role in peritoneal dissemination of scirrhous gastric cancer cells. Jpn J Cancer Res 87(12):1235–1244

    CAS  PubMed  Google Scholar 

  39. Koyama T, Yashiro M, Inoue T et al (2000) TGF-beta1 secreted by gastric fibroblasts up-regulates CD44H expression and stimulates the peritoneal metastatic ability of scirrhous gastric cancer cells. Int J Oncol 16(2):355–362

    CAS  PubMed  Google Scholar 

  40. Nishimura S, Chung YS, Yashiro M et al (1996) Role of alpha 2 beta 1- and alpha 3 beta 1-integrin in the peritoneal implantation of scirrhous gastric carcinoma. Br J Cancer 74(9):1406–1412

    Article  CAS  PubMed  Google Scholar 

  41. Kizaka-Kondoh S, Itasaka S, Zeng L et al (2009) Selective killing of hypoxia-inducible factor-1-active cells improves survival in a mouse model of invasive and metastatic pancreatic cancer. Clin Cancer Res 15(10):3433–3441

    Article  CAS  PubMed  Google Scholar 

  42. Graf J, Iwamoto Y, Sasaki M et al (1987) Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell 48(6):989–996

    Article  CAS  PubMed  Google Scholar 

  43. Akiyama SK, Yamada SS, Chen WT et al (1989) Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J Cell Biol 109(2):863–875

    Article  CAS  PubMed  Google Scholar 

  44. Iwamoto Y, Robey FA, Graf J et al (1987) YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238(4830):1132–1134

    Article  CAS  PubMed  Google Scholar 

  45. Matsuoka T, Hirakawa K, Chung YS et al (1998) Adhesion polypeptides are useful for the prevention of peritoneal dissemination of gastric cancer. Clin Exp Metastasis 16(4):381–388

    Article  CAS  PubMed  Google Scholar 

  46. Yashiro M, Chung YS, Nishimura S et al (1996) Peritoneal metastatic model for human scirrhous gastric carcinoma in nude mice. Clin Exp Metastasis 14(1):43–54

    Article  CAS  PubMed  Google Scholar 

  47. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101

    CAS  PubMed  Google Scholar 

  48. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  CAS  PubMed  Google Scholar 

  49. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9(4):285–293

    Article  CAS  PubMed  Google Scholar 

  50. Nishimura S, Hirakawa-Chung KY, Yashiro M et al (1998) TGF-beta1 produced by gastric cancer cells affects mesothelial cell morphology in peritoneal dissemination. Int J Oncol 12(4):847–851

    CAS  PubMed  Google Scholar 

  51. Yashiro M, Chung YS, Inoue T et al (1996) Hepatocyte growth factor (HGF) produced by peritoneal fibroblasts may affect mesothelial cell morphology and promote peritoneal dissemination. Int J Cancer 67(2):289–293

    Article  CAS  PubMed  Google Scholar 

  52. Schor SL, Schor AM, Grey AM et al (1988) Foetal and cancer patient fibroblasts produce an autocrine migration-stimulating factor not made by normal adult cells. J Cell Sci 90(Pt 3):391–399

    CAS  PubMed  Google Scholar 

  53. Durning P, Schor SL, Sellwood RA (1984) Fibroblasts from patients with breast cancer show abnormal migratory behaviour in vitro. Lancet 2(8408):890–892

    Article  CAS  PubMed  Google Scholar 

  54. Olumi AF, Grossfeld GD, Hayward SW et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59(19):5002–5011

    CAS  PubMed  Google Scholar 

  55. Lewis MP, Lygoe KA, Nystrom ML et al (2004) Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 90(4):822–832

    Article  CAS  PubMed  Google Scholar 

  56. Liu Y, Yoshimura K, Yamaguchi N et al (2003) Causation of Borrmann type 4 gastric cancer: heritable factors or environmental factors? Gastric Cancer 6(1):17–23

    Article  PubMed  Google Scholar 

  57. Samel S, Singal A, Becker H et al (2000) Problems with intraoperative hyperthermic peritoneal chemotherapy for advanced gastric cancer. Eur J Surg Oncol 26(3):222–226

    Article  CAS  PubMed  Google Scholar 

  58. Prud’homme GJ (2007) Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest 87(11):1077–1091

    Article  PubMed  CAS  Google Scholar 

  59. Murahashi K, Yashiro M, Inoue T et al (1998) Tranilast and cisplatin as an experimental combination therapy for scirrhous gastric cancer. Int J Oncol 13(6):1235–1240

    CAS  PubMed  Google Scholar 

  60. Yashiro M, Murahashi K, Matsuoka T et al (2003) Tranilast (N-3,4-dimethoxycinamoyl anthranilic acid): a novel inhibitor of invasion-stimulating interaction between gastric cancer cells and orthotopic fibroblasts. Anticancer Res 23(5A):3899–3904

    CAS  PubMed  Google Scholar 

  61. Iwata C, Kano MR, Komuro A et al (2007) Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis. Cancer Res 67(21):10181–10189

    Article  CAS  PubMed  Google Scholar 

  62. Tendo M, Yashiro M, Nakazawa K et al (2005) Inhibitory effect of a selective cyclooxygenase inhibitor on the invasion-stimulating activity of orthotopic fibroblasts for scirrhous gastric cancer cells. Cancer science 96(7):451–455

    Article  CAS  PubMed  Google Scholar 

  63. Sonoshita M, Takaku K, Oshima M et al (2002) Cyclooxygenase-2 expression in fibroblasts and endothelial cells of intestinal polyps. Cancer Res 62(23):6846–6849

    CAS  PubMed  Google Scholar 

  64. Oshima M, Dinchuk JE, Kargman SL et al (1996) Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87(5):803–809

    Article  CAS  PubMed  Google Scholar 

  65. Williams CS, Tsujii M, Reese J et al (2000) Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest 105(11):1589–1594

    Article  CAS  PubMed  Google Scholar 

  66. Sawaoka H, Kawano S, Tsuji S et al (1998) Cyclooxygenase-2 inhibitors suppress the growth of gastric cancer xenografts via induction of apoptosis in nude mice. Am J Physiol 274(6 Pt 1):G1061–G1067

    CAS  PubMed  Google Scholar 

  67. Chen WS, Wei SJ, Liu JM et al (2001) Tumor invasiveness and liver metastasis of colon cancer cells correlated with cyclooxygenase-2 (COX-2) expression and inhibited by a COX-2-selective inhibitor, etodolac. Int J Cancer 91(6):894–899

    Article  CAS  PubMed  Google Scholar 

  68. Tsujii M, Kawano S, Tsuji S et al (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93(5):705–716

    Article  CAS  PubMed  Google Scholar 

  69. Kamei D, Murakami M, Nakatani Y et al (2003) Potential role of microsomal prostaglandin E synthase-1 in tumorigenesis. J Biol Chem 278(21):19396–19405

    Article  CAS  PubMed  Google Scholar 

  70. Tendo M, Yashiro M, Nakazawa K et al (2006) A synergic inhibitory-effect of combination with selective cyclooxygenase-2 inhibitor and S-1 on the peritoneal metastasis for scirrhous gastric cancer cells. Cancer Lett 244(2):247–251

    Article  CAS  PubMed  Google Scholar 

  71. Yashiro M, Nakazawa K, Tendo M et al (2007) Selective cyclooxygenase-2 inhibitor downregulates the paracrine epithelial–mesenchymal interactions of growth in scirrhous gastric carcinoma. Int J Cancer 120(3):686–693

    Article  CAS  PubMed  Google Scholar 

  72. Hattori Y, Itoh H, Uchino S et al (1996) Immunohistochemical detection of K-sam protein in stomach cancer. Clin Cancer Res 2(8):1373–1381

    CAS  PubMed  Google Scholar 

  73. Toyokawa T, Yashiro M, Hirakawa K (2009) Co-expression of keratinocyte growth factor and K-sam is an independent prognostic factor in gastric carcinoma. Oncol Rep 21(4):875–880

    PubMed  Google Scholar 

  74. Hattori Y, Odagiri H, Nakatani H et al (1990) K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes. Proc Natl Acad Sci U S A 87(15):5983–5987

    Article  CAS  PubMed  Google Scholar 

  75. Katoh M, Hattori Y, Sasaki H et al (1992) K-sam gene encodes secreted as well as transmembrane receptor tyrosine kinase. Proc Natl Acad Sci U S A 89(7):2960–2964

    Article  CAS  PubMed  Google Scholar 

  76. Shimizu T, Fujiwara Y, Osawa T et al (2004) Orally active anti-proliferation agents: novel diphenylamine derivatives as FGF-R2 autophosphorylation inhibitors. Bioorg Med Chem Lett 14(4):875–879

    Article  CAS  PubMed  Google Scholar 

  77. Nakamura K, Yashiro M, Matsuoka T et al (2006) A novel molecular targeting compound as K-samII/FGF-R2 phosphorylation inhibitor, Ki23057, for Scirrhous gastric cancer. Gastroenterology 131(5):1530–1541

    Article  CAS  PubMed  Google Scholar 

  78. Yashiro M, Shinto O, Nakamura K et al (2009) Synergistic anti-tumor effects of FGFR2 inhibitor with 5-fluorouracil on scirrhous gastric carcinoma. Int J Cancer 126(4):1004–1016

    Google Scholar 

  79. Yashiro M, Shinto O, Nakamura K et al (2009) Effects of VEGFR-3 phosphorylation inhibitor on lymph node metastasis in an orthotopic diffuse-type gastric carcinoma model. Br J Cancer 101(7):1100–1106

    Article  CAS  PubMed  Google Scholar 

  80. Kawajiri H, Yashiro M, Shinto O et al (2008) A novel transforming growth factor beta receptor kinase inhibitor, A-77, prevents the peritoneal dissemination of scirrhous gastric carcinoma. Clin Cancer Res 14(9):2850–2860

    Article  CAS  PubMed  Google Scholar 

  81. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6(7):506–520

    Article  CAS  PubMed  Google Scholar 

  82. Akhurst RJ (2002) TGF-beta antagonists: why suppress a tumor suppressor? J Clin Invest 109(12):1533–1536

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Yashiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yashiro, M., Hirakawa, K. Cancer–Stromal Interactions in Scirrhous Gastric Carcinoma. Cancer Microenvironment 3, 127–135 (2010). https://doi.org/10.1007/s12307-010-0036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-010-0036-5

Keywords

Navigation