Skip to main content

Advertisement

Log in

Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework

  • Research
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

Background

Clear cell renal cell carcinoma (ccRCC) is a prevalent urological malignancy associated with a high mortality rate. The lack of a reliable prognostic biomarker undermines the efficacy of its predictive, preventive, and personalized medicine (PPPM/3PM) approach. Immunogenic cell death (ICD) is a specific type of programmed cell death that is tightly associated with anti-cancer immunity. However, the role of ICD in ccRCC remains unclear.

Methods

Based on AddModuleScore, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network (WGCNA) analyses, ICD-related genes were screened at both the single-cell and bulk transcriptome levels. We developed a novel machine learning framework that incorporated 10 machine learning algorithms and their 101 combinations to construct a consensus immunogenic cell death-related signature (ICDRS). ICDRS was evaluated in the training, internal validation, and external validation sets. An ICDRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Multi-omics analysis was performed, including genome, single-cell transcriptome, and bulk transcriptome, to gain a more comprehensive understanding of the prognosis signature. We evaluated the response of risk subgroups to immunotherapy and screened drugs that target specific risk subgroups for personalized medicine. Finally, the expression of ICD-related genes was validated by qRT-PCR.

Results

We identified 131 ICD-related genes at both the single-cell and bulk transcriptome levels, of which 39 were associated with overall survival (OS). A consensus ICDRS was constructed based on a 101-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. ICDRS can also be used to predict the occurrence, development, and metastasis of ccRCC. Multivariate analysis verified it as an independent prognostic factor for OS, progression-free survival (PFS), and disease-specific survival (DSS) of ccRCC. The ICDRS-integrated nomogram provided a quantitative tool in clinical practice. Moreover, we observed distinct biological functions, mutation landscapes, and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. Notably, the immunophenoscore (IPS) score showed a significant difference between risk subgroups, suggesting a better response to immunotherapy in the high-risk group. Potential drugs targeting specific risk subgroups were also identified.

Conclusion

Our study constructed an immunogenic cell death-related signature that can serve as a promising tool for prognosis prediction, targeted prevention, and personalized medicine in ccRCC. Incorporating ICD into the PPPM framework will provide a unique opportunity for clinical intelligence and new management approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data achieved and analyzed in the current study are available in the TCGA repository (https://portal.gdc.cancer.gov/), ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/), and GEO database (https://www.ncbi.nlm.nih.gov/geo/).

Code availability

The analysis methods and used packages are illustrated in the “Materials and methods” section. All other R codeS and analyses are available from the corresponding author upon request.

References

  1. Hora M, Albiges L, Bedke J, Campi R, Capitanio U, Giles RH, Ljungberg B, Marconi L, Klatte T, Volpe A, et al. European Association of Urology Guidelines Panel on Renal Cell Carcinoma Update on the New World Health Organization Classification of Kidney Tumours 2022: The Urologist’s Point of View. Eur Urol. 2023;83:97–100. https://doi.org/10.1016/j.eururo.2022.11.001.

    Article  PubMed  Google Scholar 

  2. Moch H, Amin MB, Berney DM, Comperat EM, Gill AJ, Hartmann A, Menon S, Raspollini MR, Rubin MA, Srigley JR, et al. The 2022 World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs-Part A: RENAL, PENILE AND TESTICULAR TUMours. Eur Urol. 2022;82:458–68. https://doi.org/10.1016/j.eururo.2022.06.016.

    Article  PubMed  Google Scholar 

  3. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009. https://doi.org/10.1038/nrdp.2017.9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jonasch E, Gao J, Rathmell WK. Renal cell carcinoma. BMJ. 2014;349:g4797. https://doi.org/10.1136/bmj.g4797.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Escudier B, Porta C, Schmidinger M, Algaba F, Patard JJ, Khoo V, Eisen T, Horwich A, Group, E.G.W. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):iii49-56. https://doi.org/10.1093/annonc/mdu259.

    Article  PubMed  Google Scholar 

  6. Raimondi A, Randon G, Sepe P, Claps M, Verzoni E, de Braud F, Procopio G. The evaluation of response to immunotherapy in metastatic renal cell carcinoma: open challenges in the clinical practice. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20174263

  7. Borcherding N, Vishwakarma A, Voigt AP, Bellizzi A, Kaplan J, Nepple K, Salem AK, Jenkins RW, Zakharia Y, Zhang W. Mapping the immune environment in clear cell renal carcinoma by single-cell genomics. Commun Biol. 2021;4:122. https://doi.org/10.1038/s42003-020-01625-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541. https://doi.org/10.1038/s41418-017-0012-4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12:860–75. https://doi.org/10.1038/nrc3380.

    Article  CAS  PubMed  Google Scholar 

  10. Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E. et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer 2020;8. https://doi.org/10.1136/jitc-2019-000337

  11. Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G, Galluzzi L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020;11:1013. https://doi.org/10.1038/s41419-020-03221-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol. 2022;23:487–500. https://doi.org/10.1038/s41590-022-01132-2.

    Article  CAS  PubMed  Google Scholar 

  13. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61. https://doi.org/10.1038/nm1523.

    Article  CAS  PubMed  Google Scholar 

  14. Yu WD, Sun G, Li J, Xu J, Wang X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 2019;452:66–70. https://doi.org/10.1016/j.canlet.2019.02.048.

    Article  CAS  PubMed  Google Scholar 

  15. Salas-Benito D, Pérez-Gracia JL, Ponz-Sarvisé M, Rodriguez-Ruiz ME, Martínez-Forero I, Castañón E, López-Picazo JM, Sanmamed MF, Melero I. Paradigms on immunotherapy combinations with chemotherapy. Cancer Discov. 2021;11:1353–67. https://doi.org/10.1158/2159-8290.Cd-20-1312.

    Article  CAS  PubMed  Google Scholar 

  16. Catanzaro E, Feron O, Skirtach AG, Krysko DV. Immunogenic cell death and role of nanomaterials serving as therapeutic vaccine for personalized cancer immunotherapy. Front Immunol. 2022;13:925290. https://doi.org/10.3389/fimmu.2022.925290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu M, Zhan H, Liu B, Li D, Li W, Chen X, Zhou X. N6-methyladenosine-related non-coding RNAs are potential prognostic and immunotherapeutic responsiveness biomarkers for bladder cancer. EPMA J. 2021;12:589–604. https://doi.org/10.1007/s13167-021-00259-w.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cheng T, Zhan X. Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA J. 2017;8:51–60. https://doi.org/10.1007/s13167-017-0083-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, Krapfenbauer K, Mozaffari MS, Costigliola V. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7:23. https://doi.org/10.1186/s13167-016-0072-4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, KadelIIl EE, Koeppen H, Astarita JL, Cubas R, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8. https://doi.org/10.1038/nature25501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garg AD, De Ruysscher D, Agostinis P. Immunological metagene signatures derived from immunogenic cancer cell death associate with improved survival of patients with lung, breast or ovarian malignancies: A large-scale meta-analysis. Oncoimmunology. 2016;5:e1069938. https://doi.org/10.1080/2162402X.2015.1069938.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Wu S, Liu F, Ke D, Wang X, Pan D, Xu W, Zhou L, He W. An immunogenic cell death-related classification predicts prognosis and response to immunotherapy in head and neck squamous cell carcinoma. Frontiers in immunology. 2021;12:781466. https://doi.org/10.3389/fimmu.2021.781466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive integration of single-cell data. Cell. 2019;177:1888-1902.e1821. https://doi.org/10.1016/j.cell.2019.05.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using Cell Chat. Nat Commun. 2021;12:1088. https://doi.org/10.1038/s41467-021-21246-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. https://doi.org/10.1186/1471-2105-14-7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. https://doi.org/10.1093/nar/gkv007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma D, Jiang YZ, Liu XY, Liu YR, Shao ZM. Clinical and molecular relevance of mutant-allele tumor heterogeneity in breast cancer. Breast Cancer Res Treat. 2017;162:39–48. https://doi.org/10.1007/s10549-017-4113-z.

    Article  CAS  PubMed  Google Scholar 

  29. Mroz EA, Rocco JW. MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. Oral Oncol. 2013;49:211–5. https://doi.org/10.1016/j.oraloncology.2012.09.007.

    Article  CAS  PubMed  Google Scholar 

  30. Rajput A, Bocklage T, Greenbaum A, Lee JH, Ness SA. Mutant-allele tumor heterogeneity scores correlate with risk of metastases in colon cancer. Clin Colorectal Cancer. 2017;16:e165–70. https://doi.org/10.1016/j.clcc.2016.11.004.

    Article  PubMed  Google Scholar 

  31. Mroz EA, Tward AD, Hammon RJ, Ren Y, Rocco JW. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS Med. 2015;12:e1001786. https://doi.org/10.1371/journal.pmed.1001786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PloS one. 2014;9:e107468. https://doi.org/10.1371/journal.pone.0107468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang C, Zhang H, Chen M, Wang S, Qian R, Zhang L, Huang X, Wang J, Liu Z, Qin W et al. A survey of optimal strategy for signature-based drug repositioning and an application to liver cancer. Elife 2022;11, https://doi.org/10.7554/eLife.71880.

  34. Bian Z, Fan R, Xie L A novel cuproptosis-related prognostic gene signature and validation of differential expression in clear cell renal cell carcinoma. Genes (Basel) 2022;13 https://doi.org/10.3390/genes13050851.

  35. Gan Y, Zhang Z, Wang X, Li A, Fan Y, Zhang Q. Pyroptosis-related gene signature predicts the prognosis of ccRCC using TCGA and single-cell RNA seq database. J Healthc Eng. 2022;2022:8224618. https://doi.org/10.1155/2022/8224618.

    Article  PubMed  PubMed Central  Google Scholar 

  36. He M, Li M, Guan Y, Wan Z, Tian J, Xu F, Zhou H, Gao M, Bi H, Chong T. A new prognostic risk score: based on the analysis of autophagy-related genes and renal cell carcinoma. Front Gene. 2021;12:820154. https://doi.org/10.3389/fgene.2021.820154.

    Article  CAS  Google Scholar 

  37. Sun Z, Tao W, Guo X, Jing C, Zhang M, Wang Z, Kong F, Suo N, Jiang S, Wang H. Construction of a lactate-related prognostic signature for predicting prognosis, tumor microenvironment, and immune response in kidney renal clear cell carcinoma. Front Immunol. 2022;13:818984. https://doi.org/10.3389/fimmu.2022.818984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao GJ, Wu Z, Ge L, Yang F, Hong K, Zhang S, Ma L. Ferroptosis-related gene-based prognostic model and immune infiltration in clear cell renal cell carcinoma. Front Gene. 2021;12:650416. https://doi.org/10.3389/fgene.2021.650416.

    Article  CAS  Google Scholar 

  39. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58. https://doi.org/10.1126/science.1235122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94. https://doi.org/10.1038/nrclinonc.2017.166.

    Article  CAS  PubMed  Google Scholar 

  41. Louie BH, Kurzrock R. BAP1: Not just a BRCA1-associated protein. Cancer Treat Rev. 2020;90:102091. https://doi.org/10.1016/j.ctrv.2020.102091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen R, Zhao WQ, Fang C, Yang X, Ji M. Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers. J Cancer. 2020;11:3349–56. https://doi.org/10.7150/jca.38391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Duns G, Westers H, Sijmons R, van den Berg A, Kok K. SETD2: an epigenetic modifier with tumor suppressor functionality. Oncotarget. 2016;7:50719–34. https://doi.org/10.18632/oncotarget.9368.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tsang JYS, Lee MA, Chan TH, Li J, Ni YB, Shao Y, Chan SK, Cheungc SY, Lau KF, Tse GMK. Proteolytic cleavage of amyloid precursor protein by ADAM10 mediates proliferation and migration in breast cancer. EBioMedicine. 2018;38:89–99. https://doi.org/10.1016/j.ebiom.2018.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ko SY, Lin SC, Chang KW, Wong YK, Liu CJ, Chi CW, Liu TY. Increased expression of amyloid precursor protein in oral squamous cell carcinoma. Int J Cancer. 2004;111:727–32. https://doi.org/10.1002/ijc.20328.

    Article  CAS  PubMed  Google Scholar 

  46. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10. https://doi.org/10.1016/j.immuni.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  47. Xu-Monette ZY, Zhou J, Young KH. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood. 2018;131:68–83. https://doi.org/10.1182/blood-2017-07-740993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18:155. https://doi.org/10.1186/s12943-019-1091-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chauvin JM, Zarour HM TIGIT in cancer immunotherapy. J Immunother Cancer 2020; 8 https://doi.org/10.1136/jitc-2020-000957

  50. Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to systemic therapies in clear cell renal cell carcinoma: mechanisms and management strategies. Mol Cancer Ther. 2018;17:1355–64. https://doi.org/10.1158/1535-7163.MCT-17-1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Atkins MB, Tannir NM. Current and emerging therapies for first-line treatment of metastatic clear cell renal cell carcinoma. Cancer Treat Rev. 2018;70:127–37. https://doi.org/10.1016/j.ctrv.2018.07.009.

    Article  CAS  PubMed  Google Scholar 

  52. Wang S, Chen S, Ying Y, Ma X, Shen H, Li J, Wang X, Lin Y, Liu B, Zheng X, et al. Comprehensive analysis of ferroptosis regulators with regard to PD-L1 and immune infiltration in clear cell renal cell carcinoma. Front Cell Develop Biol. 2021;9:676142. https://doi.org/10.3389/fcell.2021.676142.

    Article  Google Scholar 

  53. Xu S, Liu D, Chang T, Wen X, Ma S, Sun G, Wang L, Chen S, Xu Y, Zhang H. Cuproptosis-associated lncRNA establishes new prognostic profile and predicts immunotherapy response in clear cell renal cell carcinoma. Frontiers in genetics. 2022;13:938259. https://doi.org/10.3389/fgene.2022.938259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bao JH, Li JB, Lin HS, Zhang WJ, Guo BY, Li JJ, Fu LM, Sun YP. Deciphering a novel necroptosis-related miRNA signature for predicting the prognosis of clear cell renal carcinoma. Anal Cell Pathol (Amst). 2022;2022:2721005. https://doi.org/10.1155/2022/2721005.

    Article  CAS  PubMed  Google Scholar 

  55. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  56. Deng J, Li L, Xia H, Guo J, Wu X, Yang X, Hong Y, Chen Q, Hu J. A comparison of the prognosis of papillary and clear cell renal cell carcinoma: Evidence from a meta-analysis. Medicine (Baltimore). 2019;98:e16309. https://doi.org/10.1097/MD.0000000000016309.

    Article  CAS  PubMed  Google Scholar 

  57. Gray RE, Harris GT. Renal cell carcinoma: diagnosis and management. Am Fam Phys. 2019;99:179–84.

    Google Scholar 

  58. Kim SP, Alt AL, Weight CJ, Costello BA, Cheville JC, Lohse C, Allmer C, Leibovich BC. Independent validation of the 2010 American Joint Committee on Cancer TNM classification for renal cell carcinoma: results from a large, single institution cohort. J Urol. 2011;185:2035–9. https://doi.org/10.1016/j.juro.2011.02.059.

    Article  PubMed  Google Scholar 

  59. Loibl S, Gianni L. HER2-positive breast cancer. Lancet (London, England). 2017;389:2415–29. https://doi.org/10.1016/s0140-6736(16)32417-5.

    Article  CAS  PubMed  Google Scholar 

  60. Cuzick J, Thorat MA, Andriole G, Brawley OW, Brown PH, Culig Z, Eeles RA, Ford LG, Hamdy FC, Holmberg L, et al. Prevention and early detection of prostate cancer. Lancet Oncol. 2014;15:e484-492. https://doi.org/10.1016/s1470-2045(14)70211-6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hastings K, Yu HA, Wei W, Sanchez-Vega F, DeVeaux M, Choi J, Rizvi H, Lisberg A, Truini A, Lydon CA, et al. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann Oncol. 2019;30:1311–20. https://doi.org/10.1093/annonc/mdz141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gong Y, Ji P, Yang YS, Xie S, Yu TJ, Xiao Y, Jin ML, Ma D, Guo LW, Pei YC, et al. Metabolic-pathway-based subtyping of triple-negative breast cancer reveals potential therapeutic targets. Cell Metab. 2021;33:51-64.e59. https://doi.org/10.1016/j.cmet.2020.10.012.

    Article  CAS  PubMed  Google Scholar 

  63. Li K, Lin Y, Luo Y, Xiong X, Wang L, Durante K, Li J, Zhou F, Guo Y, Chen S, et al. A signature of saliva-derived exosomal small RNAs as predicting biomarker for esophageal carcinoma: a multicenter prospective study. Mol Cancer. 2022;21:21. https://doi.org/10.1186/s12943-022-01499-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Deng H, Yang W, Zhou Z, Tian R, Lin L, Ma Y, Song J, Chen X. Targeted scavenging of extracellular ROS relieves suppressive immunogenic cell death. Nat Commun. 2020;11:4951. https://doi.org/10.1038/s41467-020-18745-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ladoire S, Enot D, Andre F, Zitvogel L, Kroemer G. Immunogenic cell death-related biomarkers: impact on the survival of breast cancer patients after adjuvant chemotherapy. Oncoimmunology. 2016;5:e1082706. https://doi.org/10.1080/2162402X.2015.1082706.

    Article  CAS  PubMed  Google Scholar 

  66. Fucikova J, Moserova I, Urbanova L, Bezu L, Kepp O, Cremer I, Salek C, Strnad P, Kroemer G, Galluzzi L, et al. Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol. 2015;6:402. https://doi.org/10.3389/fimmu.2015.00402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun. 2019;10:3349. https://doi.org/10.1038/s41467-019-11269-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer. Mol Oncol. 2020;14:2994–3006. https://doi.org/10.1002/1878-0261.12851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao X, Yang K, Zhao R, Ji T, Wang X, Yang X, Zhang Y, Cheng K, Liu S, Hao J, et al. Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials. 2016;102:187–97. https://doi.org/10.1016/j.biomaterials.2016.06.032.

    Article  CAS  PubMed  Google Scholar 

  70. Stelmach P, Putz M, Pollmann R, Happel M, Stei S, Schlegel K, Seipelt M, Eienbroker C, Eming R, Mandic R, et al. Alternative splicing of the TNFSF13B (BAFF) pre-mRNA and expression of the BAFFX1 isoform in human immune cells. Gene. 2020;760:145021. https://doi.org/10.1016/j.gene.2020.145021.

    Article  CAS  PubMed  Google Scholar 

  71. Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. 2013;131:959–71. https://doi.org/10.1016/j.jaci.2013.01.046.

    Article  CAS  PubMed  Google Scholar 

  72. Mackay F, Ambrose C. The TNF family members BAFF and APRIL: the growing complexity. Cytokine Growth Factor Rev. 2003;14:311–24. https://doi.org/10.1016/s1359-6101(03)00023-6.

    Article  CAS  PubMed  Google Scholar 

  73. Ghait M, Husain RA, Duduskar SN, Haack TB, Rooney M, Gohrig B, Bauer M, Rubio I, Deshmukh SD. The TLR-chaperone CNPY3 is a critical regulator of NLRP3-inflammasome activation. Eur J Immunol. 2022;52:907–23. https://doi.org/10.1002/eji.202149612.

    Article  CAS  PubMed  Google Scholar 

  74. Dijkstra JM, Yamaguchi T. Ancient features of the MHC class II presentation pathway, and a model for the possible origin of MHC molecules. Immunogenetics. 2019;71:233–49. https://doi.org/10.1007/s00251-018-1090-2.

    Article  CAS  PubMed  Google Scholar 

  75. Rutten CE, van Luxemburg-Heijs SA, Griffioen M, Marijt EW, Jedema I, Heemskerk MH, Posthuma EF, Willemze R, Falkenburg JH. HLA-DP as specific target for cellular immunotherapy in HLA class II-expressing B-cell leukemia. Leukemia. 2008;22:1387–94. https://doi.org/10.1038/leu.2008.90.

    Article  CAS  PubMed  Google Scholar 

  76. Herr W, Eichinger Y, Beshay J, Bloetz A, Vatter S, Mirbeth C, Distler E, Hartwig UF, Thomas S. HLA-DPB1 mismatch alleles represent powerful leukemia rejection antigens in CD4 T-cell immunotherapy after allogeneic stem-cell transplantation. Leukemia. 2017;31:434–45. https://doi.org/10.1038/leu.2016.210.

    Article  CAS  PubMed  Google Scholar 

  77. Zhou L, Li J, Liao M, Zhang Q, Yang M. LncRNA MIR155HG induces M2 macrophage polarization and drug resistance of colorectal cancer cells by regulating ANXA2. Cancer Immunol Immunother. 2022;71:1075–91. https://doi.org/10.1007/s00262-021-03055-7.

    Article  CAS  PubMed  Google Scholar 

  78. Peng L, Pan B, Zhang X, Wang Z, Qiu J, Wang X, Tang N. Lipopolysaccharide facilitates immune escape of hepatocellular carcinoma cells via m6A modification of lncRNA MIR155HG to upregulate PD-L1 expression. Cell Biol Toxicol. 2022;38:1159–73. https://doi.org/10.1007/s10565-022-09718-0.

    Article  CAS  PubMed  Google Scholar 

  79. Niu L, Lou F, Sun Y, Sun L, Cai X, Liu Z, Zhou H, Wang H, Wang Z, Bai J, et al. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci Adv. 2020;6:eaaz2059. https://doi.org/10.1126/sciadv.aaz2059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu Z, Liu L, Weng S, Guo C, Dang Q, Xu H, Wang L, Lu T, Zhang Y, Sun Z, et al. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer. Nat Commun. 2022;13:816. https://doi.org/10.1038/s41467-022-28421-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018;9:77–102. https://doi.org/10.1007/s13167-018-0128-8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48. https://doi.org/10.1038/nrclinonc.2018.8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell. 2018;173:321-337 e310. https://doi.org/10.1016/j.cell.2018.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Balkwill F. TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev. 2006;25:409–16. https://doi.org/10.1007/s10555-006-9005-3.

    Article  CAS  PubMed  Google Scholar 

  85. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168:613–28. https://doi.org/10.1016/j.cell.2017.01.018.

    Article  CAS  PubMed  Google Scholar 

  86. Masclef L, Ahmed O, Estavoyer B, Larrivee B, Labrecque N, Nijnik A, Affar EB. Roles and mechanisms of BAP1 deubiquitinase in tumor suppression. Cell Death Differ. 2021;28:606–25. https://doi.org/10.1038/s41418-020-00709-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kanu N, Gronroos E, Martinez P, Burrell RA, Yi Goh X, Bartkova J, Maya-Mendoza A, Mistrik M, Rowan AJ, Patel H, et al. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene. 2015;34:5699–708. https://doi.org/10.1038/onc.2015.24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hakimi AA, Ostrovnaya I, Reva B, Schultz N, Chen YB, Gonen M, Liu H, Takeda S, Voss MH, Tickoo SK, et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res. 2013;19:3259–67. https://doi.org/10.1158/1078-0432.CCR-12-3886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hsieh JJ, Chen D, Wang PI, Marker M, Redzematovic A, Chen YB, Selcuklu SD, Weinhold N, Bouvier N, Huberman KH, et al. Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur Urol. 2017;71:405–14. https://doi.org/10.1016/j.eururo.2016.10.007.

    Article  CAS  PubMed  Google Scholar 

  90. Dizman N, Philip EJ, Pal SK. Genomic profiling in renal cell carcinoma. Nat Rev Nephrol. 2020;16:435–51. https://doi.org/10.1038/s41581-020-0301-x.

    Article  PubMed  Google Scholar 

  91. Lu M, Zhao B, Liu M, Wu L, Li Y, Zhai Y, Shen X. Pan-cancer analysis of SETD2 mutation and its association with the efficacy of immunotherapy. NPJ Precis Oncol. 2021;5:51. https://doi.org/10.1038/s41698-021-00193-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Meng JY, Kataoka H, Itoh H, Koono M. Amyloid beta protein precursor is involved in the growth of human colon carcinoma cell in vitro and in vivo. Int J Cancer. 2001;92:31–9.

    Article  CAS  PubMed  Google Scholar 

  93. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111. https://doi.org/10.1038/nri.2016.107.

    Article  CAS  PubMed  Google Scholar 

  94. Boutilier AJ, Elsawa SF, Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22136995

  95. Hojyo S, Tumes D, Murata A, Tokoyoda K. Multiple developmental pathways lead to the generation of CD4 T-cell memory. Int Immunol. 2020;32:589–95. https://doi.org/10.1093/intimm/dxaa051.

    Article  CAS  PubMed  Google Scholar 

  96. Yap TA, Parkes EE, Peng W, Moyers JT, Curran MA, Tawbi HA. Development of immunotherapy combination strategies in cancer. Cancer Discov. 2021;11:1368–97. https://doi.org/10.1158/2159-8290.Cd-20-1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49. https://doi.org/10.1146/annurev-pathol-042020-042741.

    Article  CAS  PubMed  Google Scholar 

  98. Sen S, Hufnagel S, Maier EY, Aguilar I, Selvakumar J, DeVore JE, Lynch VM, Arumugam K, Cui Z, Sessler JL, et al. Rationally designed redox-active Au(I) N-heterocyclic carbene: an immunogenic cell death inducer. J Am Chem Soc. 2020;142:20536–41. https://doi.org/10.1021/jacs.0c09753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang X, Chen Z, Xiang X, Liu Y, Long X, Li K, Qin M, Long C, Mo X, Tang W, et al. Comprehensive multi-omics analysis of the m7G in pan-cancer from the perspective of predictive, preventive, and personalized medicine. EPMA J. 2022;13:671–97. https://doi.org/10.1007/s13167-022-00305-1.

    Article  PubMed  Google Scholar 

  100. Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J, Du G. The biology, function, and applications of exosomes in cancer. Acta pharmaceutica Sinica B. 2021;11:2783–97. https://doi.org/10.1016/j.apsb.2021.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Larsen LK, Lind GE, Guldberg P, Dahl C. DNA-methylation-based detection of urological cancer in urine: overview of biomarkers and considerations on biomarker design, Source of DNA, and Detection Technologies. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20112657.

  102. Paleari L. Cancer prevention with molecular targeted therapies. Int J Mol Sci. 2022; 23. https://doi.org/10.3390/ijms23158429.

  103. de Castro Sant' Anna C, Junior AGF, Soares P, Tuji F, Paschoal E, Chaves LC, Burbano RR. Molecular biology as a tool for the treatment of cancer. Clin Exp Med. 2018;18: 457–464. https://doi.org/10.1007/s10238-018-0518-1.

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.L. and Y.S. conceived the study and wrote the article. Y.Z. reviewed the article. J.L. contributed to data collection, analysis, interpretation, and data visualization. The final manuscript was read and approved by all authors. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Jinsong Liu.

Ethics declarations

Ethics approval

Since the sequenced data generated from TCGA, ArrayExpress, and GEO were all publicly available data, further approval by an ethics committee was not required.

Consent to participate

All authors voluntarily participated in this study.

Consent for publication

All authors agreed to the publication of this paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 676 KB)

Supplementary file2 (PDF 1606 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Shi, Y. & Zhang, Y. Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework. EPMA Journal 14, 275–305 (2023). https://doi.org/10.1007/s13167-023-00327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-023-00327-3

Keywords

Navigation