Skip to main content
Log in

Pomegranate peel utilization by an indigenous fungal strain of Trichoderma reesei NCIM 1186: Optimization and Kinetics studies on production of cellulase

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Pomegranate peels, which are normally considered waste, are used for the synthesis of cellulase in this study. Through submerged state fermentation, Trichoderma reesei filamentous fungus was employed to manufacture cellulase from pomegranate peels. Response Surface Methodology was used to screen the nutritional medium and improve the media composition for cellulase production using statistical experimental methods (RSM). Nine nutrients were screened using the Plackett–Burman Design (PBD) technique and the most impacting nutrient mediums were chosen. Central Composite design (CCD) identified four nutrients as being more critical for cellulase production, and their compositions were optimized as well. The best medium compositions for submerged fermentation of cellulase using pomegranate peel were Avicel—24.812 g/L, KH2PO4—4.626 g/L, soybean cake flour—20.7 g/L, and MnSO4.H2O—1.036 g/L. Cellulase production was determined to be 9.3 IU/mL under optimum medium conditions. Furthermore, Box–Behnken Design improved process parameters such as pH (5.5), temperature (36 °C), initial substrate concentration (3.2%), inoculum concentration (7%), and fermentation length (5 days). Finally, under the optimum medium and process conditions, the maximal cellulase production was 12.3 IU/mL. The Monod model (R2:0.9316), Luedeking–Piret model-substrate consumption (R2:0.9217), Michaelis–Menten kinetics (R2:0.94), Lineweaver–Burk plot (R2:0.9264), Hanes–Woolf plot (R2:0.0642), and Eadie–Hofstee plot (R2:0.0642) were used to model the cellulase production process. Furthermore, pomegranate peels, a cheap waste raw material, would be the best carbon source for a high production of cellulase enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5

Similar content being viewed by others

References

  1. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24:38–50

    Article  Google Scholar 

  2. Halkos GE, Gkampoura EC (2020) Reviewing usage, potentials, and limitations of renewable energy sources. Energies 13(11):2906

    Article  Google Scholar 

  3. Kumar A, Bhattacharya T, Hasnain SM, Nayak AK, Hasnain S (2020) Applications of biomass-derived materials for energy production, conversion, and storage. Mater Sci Energy Technol 3:905–920

    CAS  Google Scholar 

  4. Gupta VK, Kubicek CP, Berri JG, Wilson DW, Couturier M, Berlin A, Ezeji T (2016) Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem Sci 41(7):633–645

    Article  CAS  PubMed  Google Scholar 

  5. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27

    Article  CAS  Google Scholar 

  6. Mohanty SK, Swain MR (2019) Bioethanol production from corn and wheat: food, fuel, and future. In Bioethanol production from food crops (pp. 45–59). Academic Press.

  7. Yang H, Shi Z, Xu G, Qin Y, Deng J, Yang J (2019) Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresour Technol 274:261–266

    Article  CAS  PubMed  Google Scholar 

  8. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467

    Article  CAS  Google Scholar 

  9. Zhou Z, Lei F, Li P, Jiang J (2018) Lignocellulosic biomass to biofuels and biochemicals: A comprehensive review with a focus on ethanol organosolvpretreatment technology. Biotechnol Bioeng 115(11):2683–2702

    Article  CAS  PubMed  Google Scholar 

  10. Mussatto SI, Teixeira JA (2010) Lignocellulose as raw material in fermentation processes. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (book chapter), 897–907.

  11. Goukanapalle PKR, Kanderi DK, Rajoji G, Shanthi Kumari BS, Bontha RR (2020) Optimization of cellulase production by a novel endophytic fungus Pestalotiopsismicrospora TKBRR isolated from Thalakona forest. Cellulose 27:6299–6316

    Article  CAS  Google Scholar 

  12. Demiray E, Karatay SE, Dönmez G (2019) Improvement of bioethanol production from pomegranate peels via acidic pretreatment and enzymatic hydrolysis. Environ Sci Pollut Res 26(28):29366–29378

    Article  CAS  Google Scholar 

  13. Adsul M, Sandhu SK, Singhania RR, Gupta R, Puri SK, Mathur A (2020) Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme Microb Technol 133:109442

    Article  CAS  PubMed  Google Scholar 

  14. Johnson E (2016) Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuel Bioprod Biorefin 10(2):164–174

    Article  CAS  Google Scholar 

  15. Singhvi MS, Gokhale DV (2019) Lignocellulosic biomass: hurdles and challenges in its valorization. Appl Microbiol Biotechnol 103(23):9305–9320

    Article  CAS  PubMed  Google Scholar 

  16. Ge S, Duo L, Wang J, Yang J, Li Z, Tu Y (2021) A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status. J Ethnopharmacol 113877

  17. Rosas-Burgos EC, Burgos-Hernández A, Noguera-Artiaga L, Kačániová M, Hernández-García F, Cárdenas-López JL, Carbonell-Barrachina ÁA (2017) Antimicrobial activity of pomegranate peel extracts as affected by cultivar. J Sci Food Agric 97(3):802–810

    Article  CAS  PubMed  Google Scholar 

  18. FAO (2012) Statistical database. Food and Agriculture Organization of the United Nations. Codex Alimentarius Commission, Tunis http://www.fao.org. Accessed May 23, 2012

  19. Saleem A, Hussain A, Chaudhary A, Iqtedar M, Javid A, Akram AM (2020) Acid hydrolysis optimization of pomegranate peels waste using response surface methodology for ethanol production. Biomass Convers Biorefin 1–12

  20. Derakhshan Z, Ferrante M, Tadi M, Ansari F, Heydari A, Hosseini MS, Sadrabad EK (2018) Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem Toxicol 114:108–111

    Article  CAS  PubMed  Google Scholar 

  21. Salgado JM, Ferreira TRB, de Oliveira BF, dos Santos Dias CT (2012) Increased antioxidant content in juice enriched with dried extract of pomegranate (Punica granatum) peel. Plant Foods Hum Nutr 67(1):39–43

    Article  CAS  Google Scholar 

  22. Paul T, Sinharoy A, Baskaran D, Pakshirajan K, Pugazhenthi G, Lens PN (2020) Bio-oil production from oleaginous microorganisms using hydrothermal liquefaction: a biorefinery approach. Crit Rev Environ Sci Technol1–39

  23. Vázquez-Montoya EL, Castro-Ochoa LD, Maldonado-Mendoza IE, Luna-Suárez S, Castro-Martínez C (2020) Moringa straw as cellulase production inducer and cellulolytic fungi source. Rev Argent Microbiol 52(1):4–12

    PubMed  Google Scholar 

  24. Qian Y, Zhong L, Sun Y, Sun N, Zhang L, Liu W, Zhong Y (2019) Enhancement of cellulase production in Trichoderma reesei via disruption of multiple protease genes identified by comparative secretomics. Front Microbio 10:2784

    Article  Google Scholar 

  25. Bajaj P, Mahajan R (2019) Cellulase and xylanase synergism in industrial biotechnology. Appl Microbiol Biotechnol 103(21):8711–8724

    Article  CAS  PubMed  Google Scholar 

  26. Sathendra ER, Baskar G, Praveenkumar R, Gnansounou E (2019) Bioethanol production from palm wood using Trichoderma reesei and Kluveromycesmarxianus. Bioresour Technol 271:345–352

    Article  Google Scholar 

  27. Gooruee R, Hojjati M, Behbahani BA et al (2022) Extracellular enzyme production by different species of Trichoderma fungus for lemon peel waste bioconversion. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02626-7

    Article  Google Scholar 

  28. Gao J, Qian Y, Wang Y, Qu Y, Zhong Y (2017) Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of Trichoderma reesei. Biotechnol Biofuels 10:272. https://doi.org/10.1186/s13068-017-0963-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Verma N, Bansal MC, Kumar V (2018) Utility of Luffa cylindrica and Litchi chinensis peel, an agricultural waste biomass in cellulase production by Trichoderma reesei under solid state cultivation. Biocatal Agricult Biotechnol 16:483–492. https://doi.org/10.1016/j.bcab.2018.09.021

    Article  Google Scholar 

  30. Verma N, Kumar V (2022) Utilization of bottle gourd vegetable peel waste biomass in cellulase production by Trichoderma reesei and Neurospora crassa. Biomass Conv Bioref 12:1105–1114. https://doi.org/10.1007/s13399-020-00727-9

    Article  CAS  Google Scholar 

  31. Askari H, Shahbazi S (2018) Improvement of cellulose degrading enzymes activity by mutagenesis in Trichoderma reesei fungi. Agric Biotechnol 9:41–50

    Google Scholar 

  32. Ellilä S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Siika-Aho M (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10(1):1–17

    Article  Google Scholar 

  33. Salim N, Santhiagu A, Joji K (2019) Process modeling and optimization of high yielding L-methioninase from a newly isolated Trichoderma harzianum using response surface methodology and artificial neural network coupled genetic algorithm. Biocatal Agric Biotechnol 17:299–308

    Article  Google Scholar 

  34. Latha S, Sivaranjani G, Dhanasekaran D (2017) Response surface methodology: A non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites. Crit Rev Microbiol 43(5):567–582

    Article  CAS  PubMed  Google Scholar 

  35. Paul T, Baskaran D, Pakshiraja K, Pugazhenthi G (2020) Valorization of refinery wastewater for lipid-rich biomass production by Rhodococcusopacus in batch system: A kinetic approach. Biomass Bioenerg 143:105867

    Article  CAS  Google Scholar 

  36. Sinharoy A, Baskaran D, Pakshirajan K (2019) Sustainable biohydrogen production by dark fermentation using carbon monoxide as the sole carbon and energy source. Int J Hydrog Energy 44(26):13114–13125

    Article  CAS  Google Scholar 

  37. Baskaran D, Rajamanickam R (2019) Aerobic biodegradation of trichloroethylene by consortium microorganism from turkey litter compost. J Environ Chem Eng 7(4):103260

    Article  CAS  Google Scholar 

  38. Saravanan P, Ramesh S, Jaya N, Jabasingh SA (2021) Prospective evaluation of xylitol production using Dabaryomyceshansenii var hansenii, Pachysolentannophilus, and Candida guillermondii with sustainable agricultural residues. Biomass Convers Biorefin 1–19

  39. Ghosh TK (1987) Measurement of cellulase activities. Inter Union Pure Appl Chem 59(2):257–262

    Article  Google Scholar 

  40. Chang XG, Yang J, Wang D (2011) Box-Behnken design: an alternative for the optimization of analytical methods. Chem Prod Process Model 6:14

    Google Scholar 

  41. Montesano D, Cossignani L, Giua L, Urbani E, Simonetti MS, Blasi F (2016) A simple HPLC-ELSD method for sugar analysis in goji berry. J Chem. https://doi.org/10.1155/2016/6271808

  42. Brijwani K, Oberoi HS, Vadlani PV (2010) Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45(1):120–128

    Article  CAS  Google Scholar 

  43. Singh K, Richa K, Bose H, Karthik L, Kumar G, Rao KVB (2014) Statistical media optimization and cellulase production from marine Bacillus VITRKHB. 3 Biotech 4(6):591–598

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yahya S, Jahangir S, Shaukat SS, Sohail M, Khan SA (2016) Production optimization by using Plackett-Burman design and partial characterization of amylase from Aspergillus tubingensis SY 1. Pak J Bot 48(6):2557–2561

    CAS  Google Scholar 

  45. Naghipour D, Taghavi K, Jaafari J, Mahdavi Y, GhanbariGhozikali M, Ameri R, Hossein Mahvi A (2016) Statistical modeling and optimization of the phosphorus biosorption by modified Lemna minor from aqueous solution using response surface methodology (RSM). Desalin Water Treat 57(41):19431–19442

    Article  CAS  Google Scholar 

  46. Keharom S, Mahachai R, Chanthai S (2016) The optimization study of α-amylase activity based on central composite design-response surface methodology by dinitrosalicylic acid method. Int Food Res J 23(1):10–17

    CAS  Google Scholar 

  47. Ciric A, Krajnc B, Heath D, Ogrinc N (2020) Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food Chem Toxicol 135:110976

    Article  CAS  PubMed  Google Scholar 

  48. Vardhan MV, Sankaraiah G, Yohan M, Rao HJ (2017) Optimization of Parameters in CNC milling of P20 steel using Response Surface methodology and Taguchi Method. Mater Today Proc 4(8):9163–9169

    Article  Google Scholar 

  49. Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 127:500–507

    Article  CAS  PubMed  Google Scholar 

  50. Badhan AK, Chadha BS, Sonia KG, Saini HS, Bhat MK (2004) Functionally diverse multiple xylanases of thermophilic fungus Myceliophthora sp. IMI 387099. Enzyme Microb Technol 35(5):460–466

    Article  CAS  Google Scholar 

  51. Mondala AH (2015) Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J Ind Microbiol Biotechnol 42(4):487–506

    Article  CAS  PubMed  Google Scholar 

  52. Ouedraogo N, Savadogo A, Somda MK, Tapsoba F, Zongo C, Traore AS (2017) Effect of mineral salts and nitrogen source on yeast (Candida utilis NOY1) biomass production using tubers wastes. Afr J Biotechnol 16(8):359–365

    Article  CAS  Google Scholar 

  53. Rajeswari P, Jose PA, Amiya R, Jebakumar SRD (2015) Characterization of saltern based Streptomyces sp. and statistical media optimization for its improved antibacterial activity. Front Microbiol 5: 753

  54. Zhang K, Yu C, Yang ST (2015) Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae. Process Biochem 50(2):173–179

    Article  CAS  Google Scholar 

  55. Alemawor F, Dzogbefi VP, Oddoye EO, Oldham JH (2009) Effect of Pleurotusostreatus fermentation on cocoa pod husk composition: Influence of fermentation period and Mn2+ supplementation on the fermentation process. Afr J Biotechnol 8(9):1950–1958

  56. Sangian HF (2016) Analysis of retention time and substances released enzymatically from lignocellulose, coconut coir treated by alkaline, ionic liquid [mmim][dmp] and combined method by observing the HPLC-RI spectra. Int J ChemTech Res 9(12):715–724

    CAS  Google Scholar 

  57. Jaradat Z, Dawagreh A, Ababneh Q, Saadoun I (2008) Influence of culture conditions on cellulase production by Streptomyces sp. (strain J2). Jordan J Biol Sci 1(4):141–146

    Google Scholar 

  58. Liming X, Xueliang S (2004) High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour Technol 91(3):259–262

    Article  PubMed  Google Scholar 

  59. Kashyap P, Sabu A, Pandey A, Szakacs G, Soccol CR (2002) Extra-cellular L-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. Process Biochem 38(3):307–312

    Article  CAS  Google Scholar 

  60. Pachauri P, More S, Aranganathan V, Sullia SB, Deshmukh S (2018) Kinetic study and characterization of cellulase enzyme from isolated Aspergillus niger subsp. awamori for cellulosic biofuels. J Sci Ind Res 77:55–60

    CAS  Google Scholar 

  61. Membrillo I, Sánchez C, Meneses M, Favela E, Loera O (2008) Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotusostreatus strains. Bioresour Technol 99(16):7842–7847

    Article  CAS  PubMed  Google Scholar 

  62. Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK (2007) Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp IMI 387099. Bioresour Technol 98(3):504–510

    Article  CAS  PubMed  Google Scholar 

  63. Kalogeris E, Christakopoulos P, Katapodis P, Alexiou A, Vlachou S, Kekos D, Macris BJ (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascusaurantiacus under solid state cultivation of agricultural wastes. Process Biochem 38(7):1099–1104

    Article  CAS  Google Scholar 

  64. Manikandan K, Saravanan V, Viruthagiri T (2008) Kinetics studies on ethanol production from banana peel waste using mutant strain of Saccharomyces cerevisiae. Indian J Biotechnol 83–88

  65. Tomczak JM, Węglarz-Tomczak E (2019) Estimating kinetic constants in the Michaelis-Menten model from one enzymatic assay using Approximate Bayesian Computation. FEBS Lett 593(19):2742–2750

    Article  CAS  PubMed  Google Scholar 

  66. Rodriguez JMG, Hux NP, Philips SJ, Towns MH (2019) Michaelis-Menten graphs, Lineweaver-Burk plots, and reaction schemes: investigating introductory biochemistry students’ conceptions of representations in enzyme kinetics. J Chem Educ 96(9):1833–1845

    Article  CAS  Google Scholar 

  67. Tracy TS (2008) Enzyme kinetics. Drug Metab Drug Des Develop: Basic Concepts Pract 4:89–112

    Google Scholar 

  68. Guerra NP (2017) Enzyme kinetics experiment with the multi enzyme complex viscozyme L and two substrates for the accurate determination of michaelian parameters. J Chem Educ 94(6):795–799

    Article  CAS  Google Scholar 

  69. Manikandan K, Saravanan V, Viruthagiri T (2008) Kinetics studies on bioethanol production from banana peel waste using mutant strain of saccharomyces cerevisiae. Indian J Biotechnol 7:83–88

    CAS  Google Scholar 

  70. Bezerra RMF, Dias AA, Fraga I, Pereira AN (2011) Cellulose hydrolysis by cellobiohydrolase Cel7A shows mixed hyperbolic product inhibition. Appl Biochem Biotechnol 165:178–189. https://doi.org/10.1007/s12010-011-9242-y

    Article  CAS  PubMed  Google Scholar 

  71. Khalseh R (2016) Evaluation of Different Kinetics for Bioethanol Production withEmphasis to Analytical Solution of Substrate Equation. Theor Found Chem Eng 50(4):392–397. https://doi.org/10.1134/S0040579516040357

    Article  CAS  Google Scholar 

  72. Monod J (1949) The growth of bacterial cultures. Ann Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  73. Jin H, Liu R, He Y (2011) Kinetics for batch fermentations for ethanol production withimmobilized Saccharomyces cerevisiae growing on sweet sorghum stalk juice. Procedia Environ Sci 12:137–145. https://doi.org/10.1016/j.proenv.2012.01

    Article  Google Scholar 

  74. Sivarathnakumara S, Jayamuthunagai J, Baskar G, Praveenkumar R, Aberna Ebenezer Selvakumari I, Bharathiraja B (2019) Bioethanol production from woody stem Prosopis juliflora using thermo tolerant yeast Kluyveromyces marxianus and its kinetics studies. Bioresour Technol 293:122060

    Article  Google Scholar 

  75. Mansouri A, Rihani R, Laoufi AN, Özkan M (2016) Production of bioethanol from amixture of agricultural feedstocks: Biofuels characterization. Fuel 185:612–621. https://doi.org/10.1016/j.fuel.2016.08.008

    Article  CAS  Google Scholar 

  76. Shuler ML, Kargi F, Kargi F (2002) Bioprocess engineering: basic concepts. Prentice Hall, Upper Saddle River

    Google Scholar 

  77. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. McGraw-Hill, New York

    Google Scholar 

  78. Verma N, Kumar V (2020) Impact of process parameters and plant polysaccharide hydrolysates in cellulase production by Trichoderma reesei and Neurospora crassa under wheat bran based solid state fermentation. Biotechnology Reports 25:e00416

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nitin V, Vivek MC (2011) Pea peel waste: a lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state fermentation. BioResources 6(2):1505–1519

    Article  Google Scholar 

  80. Gautam SP, Bundela PS, Pandey AK, Khan J, Awasthi MK, Sarsaiya S (2011) Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int 2011:1–8

    Article  Google Scholar 

  81. Gordillo-Fuenzalida F, Echeverria-Vega A, Cuadros-Orellana S, Faundez C, K¨ahne T, Morales-Vera R (2019) Cellulases production by a Trichoderma sp. using food manufacturing wastes. Appl. Sci. 9(20) https://doi.org/10.3390/app9204419.

  82. Silva AFV, Santos LA, Valença RB, Porto TS, Da Motta Sobrinho MA, Gomes GJC, Santos AFMS (2019) Cellulase production to obtain biogas from passion fruit (Passiflora edulis) peel waste hydrolysate. J Environ Chem Eng 7(6):103510. https://doi.org/10.1016/j.jece.2019.103510

    Article  CAS  Google Scholar 

  83. Sinjaroonsak S, Chaiyaso T, H-Kittikun A (2020) Optimization of cellulase and xylanase productions by streptomyces thermocoprophilus TC13W using low cost pretreated oil palm empty fruit bunch. Waste Biomass Valori 11(8):3925–3936. https://doi.org/10.1007/s12649-019-00720-y

    Article  CAS  Google Scholar 

  84. Nehad EA, Yoness MF, Reem AA (2019) Optimization and purification of cellulase produced by Penicillium decumbens and its application. Egypt Pharm J 18:391–402

    Article  Google Scholar 

  85. Srivastava N, Srivastava M, Manikanta A, Singh P, Ramteke PW, Mishra PK, Malhotra BD (2017) Production and optimization of physicochemical parameters of cellulase using untreated orange waste by newly isolated Emericella variecolor NS3. Appl Biochem Biotechnol 183(2):601–612. https://doi.org/10.1007/s12010-017-2561-x

    Article  CAS  PubMed  Google Scholar 

  86. Umikalsom MS, Ariff AB, Zulkifli HS, Tong CC, Hassan MA, Karim MIA (1997) The treatment of oil palm empty fruit bunch fibre for subsequent use as substrate for cellulase production by Chaetomium globosum Kunze. Bioresour Technol 62(1):1–9. https://doi.org/10.1016/S0960-8524(97)00132-6

    Article  CAS  Google Scholar 

  87. Krishna C (1999) Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour Technol 69(3):231–239. https://doi.org/10.1016/S0960-8524(98)00193-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Bharathidasan Institute of Technology (BIT) Campus, Anna University, Tiruchirappalli, and Annamalai University, Annamalainagar, Chidambaram, India, for the technical support provided.

Author information

Authors and Affiliations

Authors

Contributions

Panchamoorthy Saravanan had the idea for the article. All authors contributed to the literature search and data analysis. The first draft of the manuscript was written by Panchamoorthy Saravanan and all authors commented and critically revised the work. All authors read and approved the final manuscript. R.Muthuvelayudham contributed to supervision.

Corresponding author

Correspondence to Panchamoorthy Saravanan.

Ethics declarations

Conflicts of Interest

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskaran, D., Saravanan, P., Saravanan, V. et al. Pomegranate peel utilization by an indigenous fungal strain of Trichoderma reesei NCIM 1186: Optimization and Kinetics studies on production of cellulase. Biomass Conv. Bioref. 14, 6435–6453 (2024). https://doi.org/10.1007/s13399-022-02901-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02901-7

Keywords

Navigation