Skip to main content
Log in

Cellulose Hydrolysis by Cellobiohydrolase Cel7A Shows Mixed Hyperbolic Product Inhibition

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to establish which are the contribution of linear (total), hyperbolic (partial) or parabolic inhibitions by cellobiose, and also a special case of substrate inhibition, the kinetics of cellobiohydrolase Cel7A obtained from Trichoderma reesei was investigated. Values of kinetic parameters were estimated employing integrated forms of Michaelis–Menten equations through the use of non-linear regression, and criteria for selecting inhibition models are discussed. With cellobiose added at the beginning of the reaction, it was found that cellulose hydrolysis follows a kinetic model, which takes into account a mixed hyperbolic inhibition, by cellobiose with the following parameter values: K m 5.0 mM, K ic 0.029 mM, K iu 1.1 mM, k cat 3.6 h−1 and k cat′ 0.2 h−1. Cellulose hydrolysis without initial cellobiose added also follows the same inhibition model with similar values (4.7, 0.029 and 1.5 mM and 3.2 and 0.2 h−1, respectively). According to Akaike information criterion, more complex models that take into account substrate and parabolic inhibitions do not increase the modulation performance of cellulose hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

E:

Free enzyme

EI:

Enzyme inhibitor complex

EIS:

Enzyme substrate inhibitor complex

ES:

Enzyme substrate complex

k cat :

Catalytic constant (per hour) to the breakdown of the ES complex

k cat′ :

Catalytic constant (per hour) to the breakdown of the ESI complex

K ic :

Competitive inhibition constant (millimolar) to cellobiose

K iu :

Uncompetitive inhibition constant (millimolar) to cellobiose

K ip :

Parabolic inhibition constant (millimolar) to cellobiose

K m :

Michaelis constant (millimolar)

n :

Experimental points

P:

Reaction product (cellobiose)

pA, pB:

Parameters

Po :

Initial Product

Pt :

Product at time t (minutes)

S:

Substrate

SSE:

Sum of squares error

t :

Time (minutes)

V max :

Maximum velocity

References

  1. He, X.-Y., Yang, S.-Y., & Schulz, H. (1989). Analytical Biochemistry, 180, 105–109.

    Article  CAS  Google Scholar 

  2. Bezerra, R. M. F., & Dias, A. A. (2007). Biochemistry and Molecular Biology Education, 35, 145–150.

    Article  CAS  Google Scholar 

  3. Yun, S.-L., & Suelter, C. H. (1977). Biochimica et Biophysica Acta, 480, 1–13.

    CAS  Google Scholar 

  4. Duggleby, R. G. (1995). Methods in Enzymology, 249, 61–90.

    Article  CAS  Google Scholar 

  5. Liao, F., Tian, K.-C., Yang, X., Zhou, Q.-X., Zeng, Z.-C., & Zuo, Y.-P. (2003). Analytical and Bioanalytical Chemistry, 375, 756–762.

    CAS  Google Scholar 

  6. Zhang, Y.-H. P., & Lynd, L. R. (2004). Biotechnology and Bioengineering, 88, 797–824.

    Article  CAS  Google Scholar 

  7. Gusakov, A. V., & Sinitsyn, A. P. (1992). Biotechnology and Bioengineering, 40, 663–671.

    Article  CAS  Google Scholar 

  8. Bezerra, R. M. F., & Dias, A. A. (2004). Applied Biochemistry and Biotechnology, 112, 173–184.

    Article  CAS  Google Scholar 

  9. Huang, A. A. (1975). Biotechnology and Bioengineering, 7, 1421–1433.

    Article  Google Scholar 

  10. Suga, K., van Dedem, G., & Moo-Young, M. (1975). Biotechnology and Bioengineering, 17, 185–201.

    Article  CAS  Google Scholar 

  11. Howell, J. A., & Mangat, M. (1978). Biotechnology and bioengineering, 20, 847–863.

    Article  CAS  Google Scholar 

  12. Ryu, D. D. Y., Lee, S. B., Tassinari, T., & Macy, C. (1982). Biotechnology and Bioengineering, 24, 1047–1067.

    Article  CAS  Google Scholar 

  13. Lee, Y.-H., & Fan, L. T. (1982). Biotechnology and Bioengineering, 24, 2383–2406.

    Article  CAS  Google Scholar 

  14. Ohmine, K., Ooshima, H., & Harano, Y. (1983). Biotechnology and Bioengineering, 25, 2041–2053.

    Article  CAS  Google Scholar 

  15. Holtzapple, M. T., Caram, H. S., & Humphrey, A. E. (1984). Biotechnology and Bioengineering, 26, 775–780.

    Article  CAS  Google Scholar 

  16. Fujii, M., Homma, T., Ooshima, K., & Taniguchi, M. (1991). Applied Biochemistry and Biotechnology, 28/29, 145–156.

    Article  Google Scholar 

  17. Bader, J., Bellgardt, K.-H., Singh, A., Kumar, P. K. R., & Schügerl, K. (1992). Bioprocess Engineering, 7, 235–240.

    Article  CAS  Google Scholar 

  18. Converse, A. O., & Optekar, J. D. (1993). Biotechnology and Bioengineering, 42, 145–148.

    Article  CAS  Google Scholar 

  19. Sattler, W., Esterbauer, H., Glatter, Q., & Steiner, W. (1989). Biotechnology and Bioengineering, 33, 1221–1234.

    Article  CAS  Google Scholar 

  20. Nidetzky, B., Hayn, M., Macarron, R., & Steiner, W. (1993). Biotechnological Letters, 15, 71–76.

    Article  CAS  Google Scholar 

  21. Väljamäe, P., Kipper, K., Petterson, G., & Johansson, G. (2003). Biotechnology and Bioengineering, 84, 254–257.

    Article  Google Scholar 

  22. Zhang, P. Y.-H., & Lynd, R. L. (2006). Biotechnology and Bioengineering, 94, 888–898.

    Article  CAS  Google Scholar 

  23. Andrić, P., Meyer, A. S., Jensen, P. A., & Dam-Johansen, K. (2010). Biotechnology Advances, 28, 308–324.

    Article  Google Scholar 

  24. Pereira, A. N. (1987). PhD thesis, Purdue University, West Lafayette, IN.

  25. Kim, D. W., Kim, T. S., Jeong, Y. K., & Lee, J. K. (1992). Journal of Fermentation and Bioengineering, 73, 461–466.

    Article  CAS  Google Scholar 

  26. Bezerra, R. M. F., Dias, A. A., Fraga, I., & Pereira, A. N. (2006). Applied Biochemistry and Biotechnology, 134, 27–38.

    Article  CAS  Google Scholar 

  27. Medve, J., Ståhlberg, J., & Tjerneld, F. (1997). Applied Biochemistry and Biotechnology, 66, 39–56.

    Article  CAS  Google Scholar 

  28. Palmer, T. (1985). Understanding the enzymes (4th ed.). Chichester: Ellis Horwood.

    Google Scholar 

  29. Fontes, R., Ribeiro, J. M., & Sillero, A. (2000). Acta Biochimica Polonica, 47, 233–257.

    CAS  Google Scholar 

  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  31. Nelson, N. (1944). The Journal of Biological Chemistry, 153, 375–380.

    CAS  Google Scholar 

  32. Bezerra, R. M. F., & Dias, A. A. (2005). Applied Biochemistry and Biotechnology, 126, 49–59.

    Article  CAS  Google Scholar 

  33. Klyosov, A. A., & Rabinovitch, M. L. (1980). In L. B. Wingard Jr., I. V. Berezin, & A. A. Klyosov (Eds.), Enzyme engineering future directions (pp. 83–165). New York: Plenum.

    Google Scholar 

  34. Väljamäe, P., Petterson, G., & Johansson, G. (2001). European Journal of Biochemistry, 268, 4520–4526.

    Article  Google Scholar 

  35. Harjunpää, V., Teleman, A., Koivula, A., Ruohonen, L., Teeri, T. T., Teleman, O., et al. (1998). European Journal of Biochemistry, 240, 584–591.

    Article  Google Scholar 

  36. Mannervik, B. (1982). Methods in Enzymology, 87C, 370–391.

    Article  Google Scholar 

  37. Akaike, H. (1974). IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  38. Motulsky, H. J., & Christopoulos, A. (2003). Fitting models to biological data using linear and non-linear regression. A practical guide to curve fitting. San Diego: Oxford University Press.

    Google Scholar 

  39. Pitt, M. A., & Myung, I. J. (2002). Trends in Cognitive Sciences, 6, 421–425.

    Article  Google Scholar 

  40. Myung, I. J., & Pitt, M. A. (2004). Methods in Enzymology, 383, 351–366.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Manuel Furtado Bezerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezerra, R.M.F., Dias, A.A., Fraga, I. et al. Cellulose Hydrolysis by Cellobiohydrolase Cel7A Shows Mixed Hyperbolic Product Inhibition. Appl Biochem Biotechnol 165, 178–189 (2011). https://doi.org/10.1007/s12010-011-9242-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9242-y

Keywords

Navigation