Skip to main content

Advertisement

Log in

Investigation of cold-active and mesophilic cellulases: opportunities awaited

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the recent decade, the global demand and fuel prices have urged a need to track down an alternate resource. Second-generation (2G) biofuel from the lignocellulosic biomass (LCB) is trending as the fundamental alternative resource. Although LCB is the most abundantly available renewable resource, its commercialization into 2G biofuel technology is a major challenge. Efficient LCB hydrolysis requires a proper lignocellulolytic enzyme cocktail. In view to addressing this problem, several researchers are investigating for efficient enzymes to hydrolyze LCB. To date, there are very few commercial enzymes that aid in the breakdown of LCB, and these enzymes are traditionally isolated from culturable microbes. As only 1% of the microbes can be cultivated in the laboratory, the potentials of the uncultured remain under-explored. In the recent decade, advances in metagenomics using next-generation sequencing (NGS) technologies have revealed the vast diversity of hydrolytic enzymes and multiple domain proteins in the ecosystem. Aiming this, we focus our review on investigating efficient cold-active and mesophilic cellulases from the metagenome. India is an agro-based country with various climatic regions, ranging from warm and humid in the south to mild or moderate and cold or snowy in the Himalayan north; therefore, both cold-active and mesophilic cellulases are needed for LCB to ethanol. Along with downsizing, the conversion cost of LCB to fermentable sugars not only increases the enzymatic conversion but also increases the fermentation efficiency, which ultimately helps to commercialize the second-generation biofuel technology. Metagenomics is an evolving concept, and it has opened new horizons for the discovery of micro-organisms and new enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Handelsman J, Rondon MR, Brady SF, et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry and Biology 5.https://doi.org/10.1016/S1074-5521(98)90108-9

  2. Malla MA, Dubey A, Kumar A et al (2019) Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front Immunol 10:2868

    Article  Google Scholar 

  3. Chopra RS, Chopra C,, Sharma NR (2020) Metagenomics: techniques, applications, challenges and opportunities, 1st ed. Springer Singapore. https://doi.org/10.1007/978-981-15-6529-8

  4. Xing MN, Zhang XZ, Huang H (2012) Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv 30:920–929. https://doi.org/10.1016/j.biotechadv.2012.01.021

    Article  Google Scholar 

  5. Schröder C, Elleuche S, Blank S, Antranikian G (2014) Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome. Enzyme Microb Technol 57:48–54. https://doi.org/10.1016/j.enzmictec.2014.01.010

    Article  Google Scholar 

  6. Kim IJ, Lee HJ, Choi IG, Kim KH (2014) Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 98:8469–8480. https://doi.org/10.1007/s00253-014-6001-3

    Article  Google Scholar 

  7. Paula CCPD, Montoya QV, Meirelles LA, et al (2019) High cellulolytic activities in filamentous fungi isolated from an extreme oligotrophic subterranean environment (Catão cave) in Brazil. Anais da Academia Brasileira de Ciencias 91.https://doi.org/10.1590/0001-3765201920180583

  8. Cui J, Mai G, Wang Z, et al (2019) Metagenomic insights into a cellulose-rich niche reveal microbial cooperation in cellulose degradation. Front Microbiol 10.https://doi.org/10.3389/fmicb.2019.00618

  9. Escuder-Rodríguez J-J, DeCastro M-E, Cerdán M-E et al (2018) Cellulases from thermophiles found by metagenomics. Microorganisms 6:66. https://doi.org/10.3390/microorganisms6030066

    Article  Google Scholar 

  10. Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179. https://doi.org/10.1016/S1369-703X(02)00129-8

    Article  Google Scholar 

  11. Mishra C, Rao M, Seeta R et al (1984) Hydrolysis of lignocelluloses by Penicillium funiculosum cellulase. Biotechnol Bioeng 26:370–373. https://doi.org/10.1002/bit.260260412

    Article  Google Scholar 

  12. Kumar R, Singh S, Singh O, v. (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391. https://doi.org/10.1007/s10295-008-0327-8

    Article  Google Scholar 

  13. Payne CM, Knott BC, Mayes HB et al (2015) Fungal cellulases. Chem Rev 115:1308–1448. https://doi.org/10.1021/cr500351c

    Article  Google Scholar 

  14. Himmel ME (2008) Biomass recalcitrance : 804:. https://doi.org/10.1126/science.1137016

  15. Garg R, Srivastava R, Brahma V et al (2016) Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome. Sci Rep 6:39634. https://doi.org/10.1038/srep39634

    Article  Google Scholar 

  16. Rees HC, Grant S, Jones B et al (2003) Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7:415–421. https://doi.org/10.1007/s00792-003-0339-2

    Article  Google Scholar 

  17. Bhiri F, Gargouri A, Ali M, ben, et al (2010) Molecular cloning, gene expression analysis and structural modelling of the cellobiohydrolase I from Penicillium occitanis. Enzyme Microb Technol 46:74–81. https://doi.org/10.1016/j.enzmictec.2009.10.002

    Article  Google Scholar 

  18. Zhu N, Yang J, Ji L et al (2016) Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose. Biotechnol Biofuels 9:1–23. https://doi.org/10.1186/s13068-016-0658-z

    Article  Google Scholar 

  19. Yi TW, Keong LC, Ibrahim D (2016) Enhancement of cellulolytic enzymes and xylanase production via classical mutational techniques under solid-state fermentation condition. Malaysian Journal of Microbiology 12:91–101. https://doi.org/10.21161/mjm.73315

    Article  Google Scholar 

  20. Laser M, Jin H, Jayawardhana K, Dale BE, Lynd LR (2009) Projected mature technology scenarios for conversion of cellulosic biomass to ethanol with coproduction thermo- chemical fuels, power, and/or animal feed protein. Biofuels, Bioprod Biorefin 3:231–246. https://doi.org/10.1002/bbb.131

    Article  Google Scholar 

  21. Chand P, Aruna A, Maqsood AM, Rao LV (2005) Novel mutation method for increased cellulase production. J Appl Microbiol 98:318–323. https://doi.org/10.1111/j.1365-2672.2004.02453.x

    Article  Google Scholar 

  22. Contreras F, Pramanik S, Rozhkova AM et al (2020) Engineering robust cellulases for tailored lignocellulosic degradation cocktails. Int J Mol Sci 21:1–25. https://doi.org/10.3390/ijms21051589

    Article  Google Scholar 

  23. Henning Jørgensen JBK, CF, (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining Biofuels, Bioproducts and Biorefining 1:119–134. https://doi.org/10.1002/bbb.4

    Article  Google Scholar 

  24. Sarsaiya S, Jain A, Kumar Awasthi S, et al (2019) Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy, challenges and future perspectives. Bioresour Technol 291.https://doi.org/10.1016/j.biortech.2019.121905

  25. Tiwari R, Nain L, Labrou NE, Shukla P (2018) Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review. Crit Rev Microbiol 44:244–257. https://doi.org/10.1080/1040841X.2017.1337713

    Article  Google Scholar 

  26. Ottoni JR, Cabral L, de Sousa STP et al (2017) Functional metagenomics of oil-impacted mangrove sediments reveals high abundance of hydrolases of biotechnological interest. World J Microbiol Biotechnol 33:1–13. https://doi.org/10.1007/s11274-017-2307-5

    Article  Google Scholar 

  27. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161. https://doi.org/10.1128/AEM.02345-10

    Article  Google Scholar 

  28. Uchiyama T, Miyazaki K (2009) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20:616–622. https://doi.org/10.1016/j.copbio.2009.09.010

    Article  Google Scholar 

  29. Bhatia Y, Mishra S, Bisaria VS, Bhatia Y (2002) Microbial β -glucosidases : cloning, properties, and applications. Crit Rev Biotechnol 22:375–407. https://doi.org/10.1080/07388550290789568

    Article  Google Scholar 

  30. Gong X, Gruninger RJ, Qi M et al (2012) Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res Notes 5:2101791285670509. https://doi.org/10.1186/1756-0500-5-2101791285670509

    Article  Google Scholar 

  31. Yang J, Dang H (2011) Cloning and characterization of a novel cold-active endoglucanase establishing a new subfamily of glycosyl hydrolase family 5 from a psychrophilic deep-sea bacterium. FEMS Microbiol Lett 325:71–76. https://doi.org/10.1111/j.1574-6968.2011.02413.x

    Article  Google Scholar 

  32. Khalili Ghadikolaei K, Akbari Noghabi K, Shahbani Zahiri H (2017) Development of a bifunctional xylanase-cellulase chimera with enhanced activity on rice and barley straws using a modular xylanase and an endoglucanase procured from camel rumen metagenome. Appl Microbiol Biotechnol 101:6929–6939. https://doi.org/10.1007/s00253-017-8430-2

    Article  Google Scholar 

  33. Knoshaug EP, Selig MJ, Baker JO et al (2008) Heterologous expression of two ferulic acid esterases from Penicillium funiculosum. Appl Biochem Biotechnol 146:79–87. https://doi.org/10.1007/s12010-007-8074-2

    Article  Google Scholar 

  34. Kumar U, Tapwal A, Kalkal P et al (2014) Isolation and screening of cellulase producing fungi from forest waste. International Journal of Pharmaceutical & Biological Archives 5:56–59

    Google Scholar 

  35. Vassilev S, v., Baxter D, Andersen LK, et al (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33. https://doi.org/10.1016/j.fuel.2011.09.030

    Article  Google Scholar 

  36. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353. https://doi.org/10.1007/s13205-014-0246-5

  37. Iqbal HMN, Ahmed I, Zia MA, Irfan M (2011) Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv Biosci Biotechnol 02:149–156. https://doi.org/10.4236/abb.2011.23024

    Article  Google Scholar 

  38. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. https://doi.org/10.3390/ijms9091621

    Article  Google Scholar 

  39. Tursi A (2019) A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal 6:962–979. https://doi.org/10.18331/BRJ2019.6.2.3

  40. Bonechi C, Consumi M, Donati A, et al (2017) Biomass: an overview. In: Dalena F, Basile A,, Rossi C (eds) Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen, 1st ed. Elsevier Publishing, London, london, pp 3–42. https://doi.org/10.1016/B978-0-08-101031-0.00001-6

  41. Arias Arias FE, Beneduci A, Chidichimo F et al (2017) Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions. Chemosphere 180:11–23. https://doi.org/10.1016/j.chemosphere.2017.03.137

    Article  Google Scholar 

  42. Tursi A, Chatzisymeon E, Chidichimo F, et al (2018) Removal of endocrine disrupting chemicals from water: Adsorption of bisphenol-a by biobased hydrophobic functionalized cellulose. Int J Environ Res Publ Health 15.https://doi.org/10.3390/ijerph15112419

  43. Tursi A, Beneduci A, Chidichimo F et al (2018) Remediation of hydrocarbons polluted water by hydrophobic functionalized cellulose. Chemosphere 201:530–539. https://doi.org/10.1016/j.chemosphere.2018.03.044

    Article  Google Scholar 

  44. Bala JD, Lalung J, Al-Gheethi AAS, Norli I (2016) A review on biofuel and bioresources for environmental applications. In: Renewable Energy and Sustainable Technologies for Building and Environmental Applications. Springer International Publishing, pp 205–225. https://doi.org/10.1007/978-3-319-31840-0_13

  45. Peter M, McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Biores Technol 83:37–46. https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  Google Scholar 

  46. Jindal MK, Jha MK (2016) Hydrothermal liquefaction of wood: a critical review. Rev Chem Eng 32:459–488. https://doi.org/10.1515/revce-2015-0055

    Article  Google Scholar 

  47. Bajpai P (2009) Xylanases. Encyclopedia of. Microbiology 4:600–612. https://doi.org/10.1016/B978-012373944-5.00165-6

    Article  Google Scholar 

  48. Madeira Jr, J.V., Contesini FJ, et al (2017) Agro-industrial residues and microbial enzymes: an overview on the eco-friendly bioconversion into high value-added products. Biotechnology of microbial enzymes- Production, biocatalysis and industrial applications. Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications 475–511. https://doi.org/10.1016/B978-0-12-803725-6.00018-2

  49. Nutt A (2006) Hydrolytic and oxidative mechanisms involved in cellulose degradation. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the faculty of Science and Technology 185.51 pp. Uppsala.ISBN91–554–6571–4.

  50. López-mondéjar R, Algora C, Baldrian P (2019) Lignocellulolytic systems of soil bacteria : a vast and diverse toolbox for biotechnological conversion processes. Biotechnol Adv 37:107374. https://doi.org/10.1016/j.biotechadv.2019.03.013

    Article  Google Scholar 

  51. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. Journal of Radiation Research and Applied Sciences 7:163–173. https://doi.org/10.1016/j.jrras.2014.02.003

    Article  Google Scholar 

  52. Schaechter M (2009) Encyclopedia of microbiology, in: Cell Structure, Organization, Bacteria and Archaea,. In: Nanninga N (ed) 3rd ed. Academic Press, New York, pp 357–374

  53. Xu F, Zhong XC, Sun RC, Jones GLL (2005) Lignin distribution and ultrastructure of Salix psammophila. Transactions of China Pulp and Paper 1:6–9

    Google Scholar 

  54. Krogh KBRM, Kastberg H, Jørgensen CI et al (2009) Cloning of a GH5 endoglucanase from genus Penicillium and its binding to different lignins. Enzyme Microb Technol 44:359–367. https://doi.org/10.1016/j.enzmictec.2009.02.007

    Article  Google Scholar 

  55. Pérez J, Muñoz-Dorado J, de La Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63. https://doi.org/10.1007/s10123-002-0062-3

    Article  Google Scholar 

  56. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605. https://doi.org/10.1021/cr950046o

    Article  Google Scholar 

  57. Sikora B, Kubik C, Kalinowska H et al (2016) Application of byproducts from food processing for production of 2,3-butanediol using Bacillus amyloliquefaciens TUL 308. Prep Biochem Biotechnol 46:610–619. https://doi.org/10.1080/10826068.2015.1085401

    Article  Google Scholar 

  58. Hamelinck CNCN, van Hooijdonk G, Faaij APCC et al (2005) Ethanol from lignocellulosic biomass: Techno-economic performance in short, middle and long term. Biomass Bioenerg 28:384–410. https://doi.org/10.1016/j.biombioe.2004.09.002

    Article  Google Scholar 

  59. Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol 38:803–807. https://doi.org/10.1007/s10295-010-0812-8

    Article  Google Scholar 

  60. Rabemanolontsoa H, Saka S (2013) Comparative study on chemical composition of various biomass species. RSC Adv 3:3946–3956. https://doi.org/10.1039/c3ra22958k

    Article  Google Scholar 

  61. Kamoldeen AA, Lee CK, Wan Abdullah WN, Leh CP (2017) Enhanced ethanol production from mild alkali-treated oil-palm empty fruit bunches via co-fermentation of glucose and xylose. Renewable Energy 107:113–123. https://doi.org/10.1016/j.renene.2017.01.039

    Article  Google Scholar 

  62. Qu T, Guo W, Shen L et al (2011) Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind Eng Chem Res 50:10424–10433. https://doi.org/10.1021/ie1025453

    Article  Google Scholar 

  63. Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50(1):1–39. https://doi.org/10.1016/j.resconrec.2006.05.007

    Article  Google Scholar 

  64. Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13:151–172. https://doi.org/10.3109/07388559309040630

    Article  Google Scholar 

  65. John F, Monsalve G, Victoria Isabel, et al (2006) Ethanol production of banana shell and cassava starch. Dyna (Medellin); ISSN 0012–7353; Worldcat; v 73(150); p 21–27 38:21–27

  66. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  Google Scholar 

  67. Ludueña L, Fasce D, Alvarez VA, Stefani PM (2011) Nanocellulose from rice husk following alkaline treatment to remove silica. BioResources 6:1440–1453. https://doi.org/10.15376/biores.6.2.1440-1453

  68. Zhu Y, Lee YY, Elander RT (2005) Optimization of dilute-acid pretreatment of corn stover using a high-solids percolation reactor. In: Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology. Appl Biochem Biotechnol, pp 1045–1054

  69. Ding MZ, Wang X, Yang Y, Yuan YJ (2012) Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics 8:232–243. https://doi.org/10.1007/s11306-011-0303-6

    Article  Google Scholar 

  70. Rudolf A, Baudel H, Zacchi G et al (2008) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99:783–790. https://doi.org/10.1002/bit.21636

    Article  Google Scholar 

  71. Wilkins MR, Widmer WW, Grohmann K (2007) Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem 42:1614–1619. https://doi.org/10.1016/j.procbio.2007.09.006

    Article  Google Scholar 

  72. Srichuwong S, Fujiwara M, Wang X et al (2009) Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass Bioenerg 33:890–898. https://doi.org/10.1016/j.biombioe.2009.01.012

    Article  Google Scholar 

  73. Hoyer K, Galbe M, Zacchi G (2009) Production of fuel ethanol from softwood by simultaneous saccharification and fermentation at high dry matter content. J Chem Technol Biotechnol 84:570–577. https://doi.org/10.1002/jctb.2082

    Article  Google Scholar 

  74. Liu ZH, Qin L, Zhu JQ et al (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels 7:167. https://doi.org/10.1186/s13068-014-0167-x

    Article  Google Scholar 

  75. Brethauer S, Wyman CE (2010) Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Biores Technol 101:4862–4874. https://doi.org/10.1016/j.biortech.2009.11.009

    Article  Google Scholar 

  76. Jin M, Lau MW, Balan V, Dale BE (2010) Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Biores Technol 101:8171–8178. https://doi.org/10.1016/j.biortech.2010.06.026

    Article  Google Scholar 

  77. Moreno AD, Tomás-Pejó E, Ibarra D et al (2013) Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: Effect of laccase supplementation. Biotechnol Biofuels 6:160. https://doi.org/10.1186/1754-6834-6-160

    Article  Google Scholar 

  78. Jin M, Gunawan C, Balan V, Dale BE (2012) Consolidated bioprocessing (CBP) of AFEXTM-pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading. Biotechnol Bioeng 109:1929–1936. https://doi.org/10.1002/bit.24458

    Article  Google Scholar 

  79. Aden A, Ruth M, Ibsen K, et al (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. United States: N p 1–154. https://doi.org/10.2172/15001119

  80. Davis R, Grundl N, Tao L, et al (2018) Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels and coproducts : 2018 Biochemical Design Case Update Biochemical Deconstruction and Conversion of Biomass to Fuels and Products via Integrated Biorefinery Pathways. United States: N p, 1–147. https://doi.org/10.2172/1483234

  81. Singh A, Hayashi K (1995) Construction of chimeric β -glucosidases with improved enzymatic properties *. J Biol Chem 270:21928–21933

    Article  Google Scholar 

  82. Gautam SP, Bundela PS, Pandey AK et al (2012) Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. International Journal of Microbiology. https://doi.org/10.1155/2012/325907

    Article  Google Scholar 

  83. Gautam SP, Bundela PS, Pandey AK et al (2010) Cellulase production by Pseudomomas sp. isolated from Municipal solid waste compost. International journal of academic research 2:330–333

    Google Scholar 

  84. Doi RH (2008) Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci 1125:267–279. https://doi.org/10.1196/annals.1419.002

    Article  Google Scholar 

  85. Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407. https://doi.org/10.1080/07388550290789568

    Article  Google Scholar 

  86. Imran M, Anwar Z, Irshad M et al (2016) Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry : a review. Advances in Enzyme Research 4:44–55. https://doi.org/10.4236/aer.2016.42005

    Article  Google Scholar 

  87. Ali UF, El-dein HSS (2008) Production and partial purification of cellulase complex by Aspergillus niger and A . nidulans grown on water hyacinth blend. J Appl Sci Res 4:875–891. Corpus ID: 97338560

  88. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492

    Article  Google Scholar 

  89. Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824. https://doi.org/10.1002/bit.20282

    Article  Google Scholar 

  90. Andberg M, Penttilä M, Saloheimo M (2015) Swollenin from Trichoderma reesei exhibits hydrolytic activity against cellulosic substrates with features of both endoglucanases and cellobiohydrolases. Biores Technol 181:105–113. https://doi.org/10.1016/j.biortech.2015.01.024

    Article  Google Scholar 

  91. Gutiérrez-Rojas I, Moreno-Sarmiento N, Montoya D (2015) Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models. Revista Iberoamericana de Micologia 32:1–12. https://doi.org/10.1016/j.riam.2013.10.009

    Article  Google Scholar 

  92. Kang K, Wang S, Lai G, et al (2013) Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnol 13.https://doi.org/10.1186/1472-6750-13-42

  93. Rocha J, Shapiro LR, Kolter R (2020) A horizontally acquired expansin gene increases virulence of the emerging plant pathogen Erwinia tracheiphila. Sci Rep 10.https://doi.org/10.1038/s41598-020-78157-w

  94. Tsumura R, Sawada K, Kunitake E et al (2021) A component of the septation initiation network complex, AaSepM, is involved in multiple cellulose-responsive signaling pathways in Aspergillus aculeatus. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-021-11110-7

    Article  Google Scholar 

  95. Yao Q, Sun TT, Liu WF, Chen GJ (2008) Gene cloning and heterologous expression of a novel endoglucanase, swollenin, from Trichoderma pseudokoningii S38. Biosci Biotechnol Biochem 72:2799–2805. https://doi.org/10.1271/bbb.80124

    Article  Google Scholar 

  96. Brenchley JE (1996) Psychrophilic microorganisms and their cold-active enzymes. J Ind Microbiol 17:432–437. https://doi.org/10.1007/BF01574774

    Article  Google Scholar 

  97. Violot S, Haser R, Sonan G et al (2003) Expression, purification, crystallization and preliminary X-ray crystallographic studies of a psychrophilic cellulase from Pseudoalteromonas haloplanktis. Acta Crystallographica - Section D Biological Crystallography 59:1256–1258. https://doi.org/10.1107/S0907444903008849

    Article  Google Scholar 

  98. Akanuma S, Bessho M, Kimura H, et al (2019) Establishment of mesophilic-like catalytic properties in a thermophilic enzyme without affecting its thermal stability. Sci Rep 9:https://doi.org/10.1038/S41598-019-45560-X

  99. Siddiqui KS (2015) Some like it hot, some like it cold: temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol Adv 33:1912–1922. https://doi.org/10.1016/J.BIOTECHADV.2015.11

    Article  Google Scholar 

  100. Saha BC, Freer SN, Bothast RJ (1994) Production, purification, and properties of a thermostable 13-glucosidase from a color variant strain of Aureobasidium pullulans. Appl Environ Microbiol 60:3774–3780. https://doi.org/10.1128/aem.60.10.3774-3780.1994

    Article  Google Scholar 

  101. Parry NJ, Beever DE, Owen E et al (2001) Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochemical Journal 353:117–127. https://doi.org/10.1042/bj3530117

    Article  Google Scholar 

  102. Gu N-Y, Kim J-L, Kim H-JH-WH, et al (2009) Gene cloning and enzymatic properties of hyperthermostable β -glycosidase from Thermus thermophilus HJ6Journal of bioscience and bioengineering, 107(1), 21–26. https://doi.org/10.1016/j.jbiosc.2008.10.002

  103. Zanoelo FF, de Lourdes M, de Moraes T et al (2004) b -Glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett 240:137–143. https://doi.org/10.1016/j.femsle.2004.09.021

    Article  Google Scholar 

  104. Shipkowski S, Brenchley JE (2005) Characterization of an unusual cold-active β-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Appl Environ Microbiol 71:4225–4232. https://doi.org/10.1128/AEM.71.8.4225-4232.2005

    Article  Google Scholar 

  105. Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condensed Matter 22.https://doi.org/10.1088/0953-8984/22/32/323101

  106. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208. https://doi.org/10.1038/nrmicro773

    Article  Google Scholar 

  107. Bizuye A, Moges F, Andualem B (2013) Isolation and screening of antibiotic producing Actinomycetes from soils in Gondar town, North West Ethiopia. Asian Pacific Journal of Tropical Disease. https://doi.org/10.1016/S2222-1808(13)60087-0

  108. Elbehery AHA, Leak DJ, Siam R (2017) Novel thermostable antibiotic resistance enzymes from the Atlantis II Deep Red Sea brine pool. Microb Biotechnol 10:189–202. https://doi.org/10.1111/1751-7915.12468

    Article  Google Scholar 

  109. Polizzi KM, Goers L, Freemont P (2014) Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 11:1–13. https://doi.org/10.1098/rsif.2014.0065

    Article  Google Scholar 

  110. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  Google Scholar 

  111. Schiano-di-Cola C, Røjel N, Jensen K et al (2019) Systematic deletions in the cellobiohydrolase (CBH) Cel7A from the fungus Trichoderma reesei reveal flexible loops critical for CBH activity. J Biol Chem 294:1807–1815. https://doi.org/10.1074/jbc.RA118.006699

    Article  Google Scholar 

  112. Santos CA, Morais MAB, Terrett OM, et al (2019) An engineered GH1 β-glucosidase displays enhanced glucose tolerance and increased sugar release from lignocellulosic materials. Sci Rep 9.https://doi.org/10.1038/s41598-019-41300-3

  113. Saavedra JM, Azócar MA, Rodríguez V, et al (2018) Relevance of local flexibility near the active site for enzymatic catalysis: biochemical characterization and engineering of cellulase Cel5A from Bacillus agaradherans. Biotechnol J 13.https://doi.org/10.1002/biot.201700669

  114. Taylor LE, Knott BC, Baker JO, et al (2018) Engineering enhanced cellobiohydrolase activity. Nat Commun 9.https://doi.org/10.1038/s41467-018-03501-8

  115. Zheng F, Tu T, Wang X, et al (2018) Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6. Biotechnology for Biofuels 11:. https://doi.org/10.1186/s13068-018-1080-5

  116. Han C, Li W, Hua C et al (2018) Enhancement of catalytic activity and thermostability of a thermostable cellobiohydrolase from Chaetomium thermophilum by site-directed mutagenesis. Int J Biol Macromol 116:691–697. https://doi.org/10.1016/j.ijbiomac.2018.05.088

    Article  Google Scholar 

  117. Chen X, Li W, Ji P, et al (2018) Engineering the conserved and noncatalytic residues of a thermostable β-1,4-endoglucanase to improve specific activity and thermostability. Sci Rep 8:https://doi.org/10.1038/s41598-018-21246-8

  118. Sinha SK, Goswami S, Das S, Datta S (2017) Exploiting non-conserved residues to improve activity and stability of Halothermothrix orenii β-glucosidase. Appl Microbiol Biotechnol 101:1455–1463. https://doi.org/10.1007/s00253-016-7904-y

    Article  Google Scholar 

  119. Lin L, Fu C, Huang W (2016) Improving the activity of the endoglucanase, Cel8M from Escherichia coli by error-prone PCR. Enzyme and Microbial Technology 86:52–58. ://doi.org/https://doi.org/10.1016/j.enzmictec.2016.01.011

  120. Körfer G, Pitzler C, Vojcic L, et al (2016) In vitro flow cytometry-based screening platform for cellulase engineering. Sci Rep 6.https://doi.org/10.1038/srep26128

  121. Gladden JM, Park JI, Bergmann J, et al (2014) Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community. Biotechnol Biofuels 7https://doi.org/10.1186/1754-6834-7-15

  122. Larue K, Melgar M, Martin VJJ (2016) Directed evolution of a fungal β-glucosidase in Saccharomyces cerevisiae. Biotechnology for Biofuels 9:https://doi.org/10.1186/s13068-016-0470-9

  123. Liu M, Gu J, Xie W, Yu H (2013) Directed co-evolution of an endoglucanase and a β-glucosidase in Escherichia coli by a novel high-throughput screening method. Chem Commun 49:7219–7221. https://doi.org/10.1039/c3cc42485e

    Article  Google Scholar 

  124. Sun H, Xue Y, Lin Y (2014) Enhanced catalytic efficiency in quercetin-4′-glucoside hydrolysis of Thermotoga maritima β-glucosidase a by site-directed mutagenesis. J Agric Food Chem 62:6763–6770. https://doi.org/10.1021/jf501932v

    Article  Google Scholar 

  125. Lee HL, Chang CK, Jeng WY et al (2012) Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Eng Des Sel 25:733–740. https://doi.org/10.1093/protein/gzs073

    Article  Google Scholar 

  126. Liang C, Fioroni M, Rodríguez-Ropero F et al (2011) Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol 154:46–53. https://doi.org/10.1016/j.jbiotec.2011.03.025

    Article  Google Scholar 

  127. Hardiman E, Gibbs M, Reeves R, Bergquist P (2010) Directed evolution of a thermophilic β-glucosidase for cellulosic bioethanol production. Appl Biochem Biotechnol 161:301–312. https://doi.org/10.1007/s12010-009-8794-6

    Article  Google Scholar 

  128. Lee KT, Toushik SH, Baek JY et al (2018) Metagenomic mining and functional characterization of a novel KG51 bifunctional cellulase/hemicellulase from black goat rumen. J Agric Food Chem 66:9034–9041. https://doi.org/10.1021/acs.jafc.8b01449

    Article  Google Scholar 

  129. Lewin A, Zhou J, Pham VTT, et al (2017) Novel archaeal thermostable cellulases from an oil reservoir metagenome. AMB Express 7:https://doi.org/10.1186/s13568-017-0485-z

  130. Sato M, Suda M, Okuma J et al (2017) Isolation of highly thermostable β-xylosidases froma hot spring soil microbial community using a metagenomic approach. DNA Res 24:649–656. https://doi.org/10.1093/dnares/dsx032

    Article  Google Scholar 

  131. Ransom-Jones E (2017) Lignocellulose-degrading microbial communities in landfill sites represent a repository of unexplored biomass-degrading diversity. Applied and Environmental Science 2:1–13. https://doi.org/10.1128/mSphere.00300-17

    Article  Google Scholar 

  132. Colombo LT, de Oliveira MNV, Carneiro DG et al (2016) Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure. Antonie Van Leeuwenhoek 109:1217–1233. https://doi.org/10.1007/s10482-016-0723-4

    Article  Google Scholar 

  133. Fabiano E, Mart A, Noya F et al (2016) EndoG: a novel multifunctional halotolerant glucanase and xylanase isolated from cow rumen. J Mol Catal B Enzym 126:1–9. https://doi.org/10.1016/j.molcatb.2016.01.004

    Article  Google Scholar 

  134. Henneberger R, Batista-garcía RA, Wierzbicka-wo A, Dobson ADW (2019) Biochemical characterization of a novel monospecific endo- β -1, 4-glucanase belonging to GH family 5 from a rhizosphere metagenomic library. Front Microbiol 10:1–19. https://doi.org/10.3389/fmicb.2019.01342

    Article  Google Scholar 

  135. Klippel B, Blank S, Astrid V et al (2019) Characterization of a thermoactive endoglucanase isolated from a biogas plant metagenome. Extremophiles 23:479–486. https://doi.org/10.1007/s00792-019-01099-3

    Article  Google Scholar 

  136. Yang C, Xia Y, Qu H et al (2016) Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnol Biofuels 9:138. https://doi.org/10.1186/s13068-016-0557-3

    Article  Google Scholar 

  137. Feng Y, Duan C, Pang H, Mo X (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol 75:319–328. https://doi.org/10.1007/s00253-006-0820-9

    Article  Google Scholar 

  138. Zhu L, Wu Q, Dai J et al (2011) Evidence of cellulose metabolism by the giant panda gut microbiome. Proc Natl Acad Sci USA 108:17714–17719. https://doi.org/10.1073/pnas.1017956108

    Article  Google Scholar 

  139. Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A (2015) Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Frontiers in Microbiology 6.https://doi.org/10.3389/fmicb.2015.00672

  140. Pabbathi NPP, Velidandi A, Tavarna T, et al (2021) Role of metagenomics in prospecting novel endoglucanases , accentuating functional metagenomics approach in second-generation biofuel production : a review. Biomass Conversion and Biorefinery 1–28.https://doi.org/10.1007/s13399-020-01186-y

  141. Thies S, Rausch SC, Kovacic F et al (2016) Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Sci Rep 6:1–12. https://doi.org/10.1038/srep27035

    Article  Google Scholar 

  142. Lopes LD, de Souza Lima AO, Taketani RG et al (2015) Exploring the sheep rumen microbiome for carbohydrate-active enzymes. Antonie Van Leeuwenhoek 108:15–30. https://doi.org/10.1007/s10482-015-0459-6

    Article  Google Scholar 

  143. Ngara TR, Zhang H (2018) Recent advances in function-based metagenomic screening. Genomics Proteomics Bioinformatics 16:405–415. https://doi.org/10.1016/j.gpb.2018.01.002

    Article  Google Scholar 

  144. Liu N, Li H, Chevrette MG et al (2019) Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J 13:104–117. https://doi.org/10.1038/s41396-018-0255-1

    Article  Google Scholar 

  145. Al-Masaudi S, el Kaoutari A, Drula E et al (2019) A metagenomics investigation of carbohydrate-active enzymes along the goat and camel intestinal tract. Int Microbiol 22:429–435. https://doi.org/10.1007/s10123-019-00068-2

    Article  Google Scholar 

  146. Gharechahi J, Salekdeh GH (2018) A metagenomic analysis of the camel rumen’s microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnol Biofuels 11:1–19. https://doi.org/10.1186/s13068-018-1214-9

    Article  Google Scholar 

  147. Oh HN, Park D, Seong HJ et al (2019) Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. J Microbiol 57:865–873. https://doi.org/10.1007/s12275-019-9217-1

    Article  Google Scholar 

  148. Montella S, Ventorino V, Lombard V et al (2017) Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses. Sci Rep 7:1–15. https://doi.org/10.1038/srep42623

    Article  Google Scholar 

  149. Al-Masaudi S, el Kaoutari A, Drula E, et al (2017) A metagenomics investigation of carbohydrate-active enzymes along the gastrointestinal tract of Saudi sheep. Frontiers in Microbiology 8:https://doi.org/10.3389/fmicb.2017.00666

  150. Jose VL, Appoothy T, More RP, Arun AS (2017) Metagenomic insights into the rumen microbial fibrolytic enzymes in Indian crossbred cattle fed finger millet straw. AMB Express 7:https://doi.org/10.1186/s13568-016-0310-0

  151. Svartström O, Alneberg J, Terrapon N et al (2017) Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. ISME J 11:2538–2551. https://doi.org/10.1038/ismej.2017.108

    Article  Google Scholar 

  152. Güllert S, Fischer MA, Turaev D et al (2016) Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol Biofuels 9:1–20. https://doi.org/10.1186/s13068-016-0534-x

    Article  Google Scholar 

  153. Apolinar-Hernández MM, Peña-Ramírez YJ, Pérez-Rueda E et al (2016) Identification and in silico characterization of two novel genes encoding peptidases S8 found by functional screening in a metagenomic library of Yucatán underground water. Gene 593:154–161. https://doi.org/10.1016/j.gene.2016.08.009

    Article  Google Scholar 

  154. Suenaga H, Ohnuki T, Miyazaki K (2007) Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 9:2289–2297. https://doi.org/10.1111/j.1462-2920.2007.01342.x

    Article  Google Scholar 

  155. Ilmberger N, Güllert S, Dannenberg J et al (2014) A comparative metagenome survey of the fecal microbiota of a breast-and a plant-fed asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS ONE 9:1–12. https://doi.org/10.1371/journal.pone.0106707

    Article  Google Scholar 

  156. Xu B, Xu W, Li J et al (2015) Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genomics 16:1–11. https://doi.org/10.1186/s12864-015-1378-7

    Article  Google Scholar 

  157. Do TH, Nguyen TT, Nguyen TN et al (2014) Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam. J Biosci Bioeng 118:665–671. https://doi.org/10.1016/j.jbiosc.2014.05.010

    Article  Google Scholar 

  158. Wang L, Hatem A, Catalyurek UV, et al (2013) Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows. PLoS ONE 8:https://doi.org/10.1371/journal.pone.0078507

  159. Reddy AP, Simmons CW, D’haeseleer P, et al (2013) Discovery of microorganisms and enzymes involved in high-solids decomposition of rice straw using metagenomic analyses. PLoS ONE 8:https://doi.org/10.1371/journal.pone.0077985

  160. Cardoso AM, Cavalcante JJV, Cantão ME, et al (2012) Metagenomic analysis of the microbiota from the crop of an invasive snail reveals a rich reservoir of novel genes. PLoS ONE 7:https://doi.org/10.1371/journal.pone.0048505

  161. Pope PB, Mackenzie AK, Gregor I et al (2012) Metagenomics of the svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7:1–10. https://doi.org/10.1371/journal.pone.0038571

    Article  Google Scholar 

  162. Lu HP, Wang Y bin, Huang SW, et al (2012) Metagenomic analysis reveals a functional signature for biomass degradation by cecal microbiota in the leaf-eating flying squirrel (Petaurista alborufus lena). BMC Genomics 13.https://doi.org/10.1186/1471-2164-13-466

  163. Swanson KS, Dowd SE, Suchodolski JS et al (2011) Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J 5:639–649. https://doi.org/10.1038/ismej.2010.162

    Article  Google Scholar 

  164. Pope PB, Denman SE, Jones M et al (2010) Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci USA 107:14793–14798. https://doi.org/10.1073/pnas.1005297107

    Article  Google Scholar 

  165. Edwards JL, Smith DL, Connolly J et al (2010) Identification of carbohydrate metabolism genes in the metagenome of a marine biofilm community shown to be dominated by Gammaproteobacteria and Bacteroidetes. Genes 1:371–384. https://doi.org/10.3390/genes1030371

    Article  Google Scholar 

  166. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821

    Article  Google Scholar 

  167. Brulc JM, Antonopoulos DA, Berg Miller ME et al (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 106:1948–1953. https://doi.org/10.1073/pnas.0806191105

    Article  Google Scholar 

  168. Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565. https://doi.org/10.1038/nature06269

    Article  Google Scholar 

  169. Mtimka S, Pillay P, Rashamuse K et al (2020) Functional screening of a soil metagenome for DNA endonucleases by acquired resistance to bacteriophage infection. Mol Biol Rep 47:353–361. https://doi.org/10.1007/s11033-019-05137-3

    Article  Google Scholar 

  170. Morimoto S, Fujii T (2009) A new approach to retrieve full lengths of functional genes from soil by PCR-DGGE and metagenome walking. Appl Microbiol Biotechnol 83:389–396. https://doi.org/10.1007/s00253-009-1992-x

    Article  Google Scholar 

  171. Wohlgemuth R, Littlechild J, Monti D et al (2018) Discovering novel hydrolases from hot environments. Biotechnol Adv 36:2077–2100. https://doi.org/10.1016/j.biotechadv.2018.09.004

    Article  Google Scholar 

  172. Yadav D, Tanveer A, Yadav S (2019) Metagenomics for novel enzymes: a current perspective. In: Bharagava RN (ed) Environmental Contaminants: Ecological Implications and Management. Springer, Singapore, pp 137–162. https://doi.org/10.1007/978-981-13-7904-8_7

  173. Verma SK, Sharma PC (2020) NGS-based characterization of microbial diversity and functional profiling of solid tannery waste metagenomes. Genomics 112:2903–2913. https://doi.org/10.1016/j.ygeno.2020.04.002

    Article  Google Scholar 

  174. Gloux K, Leclerc M, Iliozer H et al (2007) Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl Environ Microbiol 73:3734–3737. https://doi.org/10.1128/AEM.02204-06

    Article  Google Scholar 

  175. Thornbury M, Sicheri J, Slaine P et al (2019) Characterization of novel lignocellulose-degrading enzymes from the porcupine microbiome using synthetic metagenomics. PLoS ONE 14:1–18. https://doi.org/10.1371/journal.pone.0209221

    Article  Google Scholar 

  176. Adesioye FA, Makhalanyane TP, Vikram S, et al (2018) Structural characterization and directed evolution of a novel acetyl xylan esterase reveals thermostability determinants of the carbohydrate esterase 7 family. Applied and Environmental Microbiology 84.https://doi.org/10.1128/AEM.02695-17

  177. Ho JCH, Pawar S, v., Hallam SJ, Yadav VG, (2018) An improved whole-cell biosensor for the discovery of lignin-transforming enzymes in functional metagenomic screens. ACS Synth Biol 7:392–398. https://doi.org/10.1021/acssynbio.7b00412

    Article  Google Scholar 

  178. Fredslund F, Borchert MS, Poulsen JCN et al (2018) Structure of a hyperthermostable carbonic anhydrase identified from an active hydrothermal vent chimney. Enzyme Microb Technol 114:48–54. https://doi.org/10.1016/j.enzmictec.2018.03.009

    Article  Google Scholar 

  179. Arjun JK, Aneesh BP, Kavitha T, Harikrishnan K (2018) Characterization of a novel asparaginase from soil metagenomic libraries generated from forest soil. Biotech Lett 40:343–348. https://doi.org/10.1007/s10529-017-2470-7

    Article  Google Scholar 

  180. Huo YY, Jian SL, Cheng H et al (2018) Two novel deep-sea sediment metagenome-derived esterases: Residue 199 is the determinant of substrate specificity and preference. Microb Cell Fact 17:1–12. https://doi.org/10.1186/s12934-018-0864-4

    Article  Google Scholar 

  181. Ranjan R, Yadav MK, Suneja G, Sharma R (2018) Discovery of a diverse set of esterases from hot spring microbial mat and sea sediment metagenomes. Int J Biol Macromol 119:572–581. https://doi.org/10.1016/j.ijbiomac.2018.07.170

    Article  Google Scholar 

  182. Pessoa TBA, Rezende RP, de Marques E, LS, et al (2017) Metagenomic alkaline protease from mangrove sediment. J Basic Microbiol 57:962–973. https://doi.org/10.1002/jobm.201700159

    Article  Google Scholar 

  183. Song C, Wang B, Tan J et al (2017) Discovery of tauroursodeoxycholic acid biotransformation enzymes from the gut microbiome of black bears using metagenomics. Sci Rep 7:1–8. https://doi.org/10.1038/srep45495

    Article  Google Scholar 

  184. Alvarez TM, Liberato MV, Cairo JPLF et al (2015) A novel member of GH16 family derived from sugarcane soil metagenome. Appl Biochem Biotechnol 177:304–317. https://doi.org/10.1007/s12010-015-1743-7

    Article  Google Scholar 

  185. Bouhajja E, McGuire M, Liles MR et al (2017) Identification of novel toluene monooxygenase genes in a hydrocarbon-polluted sediment using sequence- and function-based screening of metagenomic libraries. Appl Microbiol Biotechnol 101:797–808. https://doi.org/10.1007/s00253-016-7934-5

    Article  Google Scholar 

  186. Zhou M, Guo P, Wang T et al (2017) Metagenomic mining pectinolytic microbes and enzymes from an apple pomace-adapted compost microbial community. Biotechnol Biofuels 10:1–15. https://doi.org/10.1186/s13068-017-0885-y

    Article  Google Scholar 

  187. Ufarté L, Laville E, Duquesne S et al (2017) Discovery of carbamate degrading enzymes by functional metagenomics. PLoS ONE 12:1–21. https://doi.org/10.1371/journal.pone.0189201

    Article  Google Scholar 

  188. Ferrandi EE, Previdi A, Bassanini I et al (2017) Novel thermostable amine transferases from hot spring metagenomes. Appl Microbiol Biotechnol 101:4963–4979. https://doi.org/10.1007/s00253-017-8228-2

    Article  Google Scholar 

  189. Ausec L, Berini F, Casciello C et al (2017) The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl Microbiol Biotechnol 101:6261–6276. https://doi.org/10.1007/s00253-017-8345-y

    Article  Google Scholar 

  190. Joynson R, Pritchard L, Osemwekha E, Ferry N (2017) Metagenomic analysis of the gut microbiome of the common black slug arion ater in search of novel lignocellulose degrading enzymes. Front Microbiol 8:1–11. https://doi.org/10.3389/fmicb.2017.02181

    Article  Google Scholar 

  191. Zhang Y, Hao J, Zhang YQ et al (2017) Identification and characterization of a novel salt-tolerant esterase from the deep-sea sediment of the South China sea. Front Microbiol 8:1–10. https://doi.org/10.3389/fmicb.2017.00441

    Article  Google Scholar 

  192. Kimura N, Kamagata Y (2016) A thermostable bilirubin-oxidizing enzyme from activated sludge isolated by a metagenomic approach. Microbes Environ 31:435–441. https://doi.org/10.1264/jsme2.ME16106

    Article  Google Scholar 

  193. Sousa FMO, Moura SR, Quinto CA, et al (2016) Functional screening for cellulolytic activity in a metagenomic fosmid library of microorganisms associated with coral. Genetics and Molecular Research 15:https://doi.org/10.4238/gmr.15048770

  194. Ferrandi EE, Sayer C, Isupov MN et al (2015) Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries. FEBS J 282:2879–2894. https://doi.org/10.1111/febs.13328

    Article  Google Scholar 

  195. Salimraj R, Zhang L, Hinchliffe P et al (2016) Structural and biochemical characterization of Rm3, a subclass B3 metallo-β-lactamase identified from a functional metagenomic study. Antimicrob Agents Chemother 60:5828–5840. https://doi.org/10.1128/AAC.00750-16

    Article  Google Scholar 

  196. Alcaide M, Tchigvintsev A, Martínez-Martínez M et al (2015) Identification and characterization of carboxyl esterases of gill chamber-associated microbiota in the deep-sea shrimp Rimicaris exoculata by using functional metagenomics. Appl Environ Microbiol 81:2125–2136. https://doi.org/10.1128/AEM.03387-14

    Article  Google Scholar 

  197. Gao W, Wu K, Chen L et al (2016) A novel esterase from a marine mud metagenomic library for biocatalytic synthesis of short-chain flavor esters. Microb Cell Fact 15:1–12. https://doi.org/10.1186/s12934-016-0435-5

    Article  Google Scholar 

  198. Mai Z, Su H, Zhang S (2016) Isolation and characterization of a glycosyl hydrolase family 16 β-agarase from a mangrove soil metagenomic library. Int J Mol Sci 17:1–12. https://doi.org/10.3390/ijms17081360

    Article  Google Scholar 

  199. Pandey S, Gulati S, Goyal E et al (2016) Biocatalysis and agricultural biotechnology construction and screening of metagenomic library derived from soil. Biocatal Agric Biotechnol 5:186–192. https://doi.org/10.1016/j.bcab.2016.01.008

    Article  Google Scholar 

  200. Leis B, Angelov A, Mientus M et al (2015) Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus. Front Microbiol 6:1–12. https://doi.org/10.3389/fmicb.2015.00275

    Article  Google Scholar 

  201. Tomazetto G, Wibberg D, Schlüter A, Oliveira VM (2015) New FeFe-hydrogenase genes identified in a metagenomic fosmid library from a municipal wastewater treatment plant as revealed by high-throughput sequencing. Res Microbiol 166:9–19. https://doi.org/10.1016/j.resmic.2014.11.002

    Article  Google Scholar 

  202. Kanokratana P, Eurwilaichitr L, Pootanakit K, Champreda V (2015) Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation. J Biosci Bioeng 119:384–391. https://doi.org/10.1016/j.jbiosc.2014.09.010

    Article  Google Scholar 

  203. Masuch T, Kusnezowa A, Nilewski S et al (2015) A combined bioinformatics and functional metagenomics approach to discovering lipolytic biocatalysts. Front Microbiol 6:1–11. https://doi.org/10.3389/fmicb.2015.01110

    Article  Google Scholar 

  204. Böhnke S, Perner M (2015) A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity. ISME J 9:735–745. https://doi.org/10.1038/ismej.2014.163

    Article  Google Scholar 

  205. Wang M, Lai G, Nie Y et al (2015) Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester. Front Microbiol 6:1–10. https://doi.org/10.3389/fmicb.2015.00509

    Article  Google Scholar 

  206. Mai Z, Su H, Yang J (2014) Cloning and characterization of a novel GH44 family endoglucanase from mangrove soil metagenomic library. Biotech Lett 36:1701–1709. https://doi.org/10.1007/s10529-014-1531-4

    Article  Google Scholar 

  207. Wang C, Dong D, Wang H et al (2016) Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol Biofuels 9:22. https://doi.org/10.1186/s13068-016-0440-2

    Article  Google Scholar 

  208. Zhou Y, Wang X, Wei W et al (2016) A novel efficient β-glucanase from a paddy soil microbial metagenome with versatile activities. Biotechnol Biofuels 9:1–14. https://doi.org/10.1186/s13068-016-0449-6

    Article  Google Scholar 

  209. Hess M, Sczyrba A, Egan R et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467. https://doi.org/10.1126/science.1200387

    Article  Google Scholar 

  210. Lemos LN, Pereira R, v., Quaggio RB, et al (2017) Genome-centric analysis of a thermophilic and cellulolytic bacterial consortium derived from composting. Front Microbiol 8:644. https://doi.org/10.3389/fmicb.2017.00644

    Article  Google Scholar 

  211. Sahoo K, Sahoo RK, Gaur M, Subudhi E (2020) Cellulolytic thermophilic microorganisms in white biotechnology: a review. Folia Microbiol 65:25–43. https://doi.org/10.1007/s12223-019-00710-6

    Article  Google Scholar 

  212. Alvarez TM, Paiva JH, Ruiz DM et al (2013) Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS ONE 8:1–9. https://doi.org/10.1371/journal.pone.0083635

    Article  Google Scholar 

  213. Jeong YS, Na HB, Kim SK et al (2012) Characterization of Xyn10J, a novel family 10 xylanase from a compost metagenomic library. Appl Biochem Biotechnol 166:1328–1339. https://doi.org/10.1007/s12010-011-9520-8

    Article  Google Scholar 

  214. Romero Victorica M, Soria MA, Batista-García RA, et al (2020) Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Scientific Reports 10.https://doi.org/10.1038/s41598-020-60850-5

  215. Ariaeenejad S, Sheykhabdolahzadeh A, Maleki M et al (2020) A novel high performance metagenome-derived alkali-thermostable endo-β-1,4-glucanase for lignocellulosic biomass hydrolysis in the harsh conditions. BMC Biotechnol 20:1–13. https://doi.org/10.1186/s12896-020-00647-6

    Article  Google Scholar 

  216. Chai S, Zhang X, Jia Z et al (2020) Identification and characterization of a novel bifunctional cellulase / hemicellulase from a soil metagenomic library. Appl Microbiol Biotechnol 104:7563–7572. https://doi.org/10.1007/s00253-020-10766-x

    Article  Google Scholar 

  217. Kumar N, Kour S, Garg R, Sahni G (2019) Enhanced production of novel halostable recombinant endoglucanase derived from the metagenomic library using fed-batch fermentation. Process Biochem 78:1–7. https://doi.org/10.1016/j.procbio.2018.12.033

    Article  Google Scholar 

  218. Patel M, Patel HM, Dave S (2019) Determination of bioethanol production potential from lignocellulosic biomass using novel Cel-5m isolated from cow rumen metagenome. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.10.240

    Article  Google Scholar 

  219. Wang W, Archbold T, Lam JS et al (2019) A processive endoglucanase with multi-substrate specificity is characterized from porcine gut microbiota. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-50050-1

    Article  Google Scholar 

  220. Zhao J, Guo C, Zhang L, Tian C (2018) Biochemical and functional characterization of a novel thermoacidophilic, heat and halo-ionic liquids tolerant endo-β-1,4-glucanase from saline-alkaline lake soil microbial metagenomic DNA. Int J Biol Macromol 118:1035–1044. https://doi.org/10.1016/j.ijbiomac.2018.06.141

    Article  Google Scholar 

  221. Lee JP, Lee HW, Na HB et al (2018) Characterization of truncated endo-β-1,4-glucanases from a compost metagenomic library and their saccharification potentials. Int J Biol Macromol 115:554–562. https://doi.org/10.1016/j.ijbiomac.2018.04.102

    Article  Google Scholar 

  222. Jensen MS, Fredriksen L, MacKenzie AK, et al (2018) Discovery and characterization of a thermostable two-domain GH6 endoglucanase from a compost metagenome. PLoS ONE 13:https://doi.org/10.1371/journal.pone.0197862

  223. Dadheech T, Shah R, Pandit R et al (2018) Cloning, molecular modeling and characterization of acidic cellulase from buffalo rumen and its applicability in saccharification of lignocellulosic biomass. Int J Biol Macromol 113:73–81. https://doi.org/10.1016/j.ijbiomac.2018.02.100

    Article  Google Scholar 

  224. Song Y-H, Lee K-T, Baek J-Y et al (2017) Isolation and characterization of a novel glycosyl hydrolase family 74 (GH74) cellulase from the black goat rumen metagenomic library. Folia Microbiol 62:175–181. https://doi.org/10.1007/s12223-016-0486-3

    Article  Google Scholar 

  225. Song YH, Lee KT, Baek JY et al (2017) Isolation and characterization of a novel endo-β-1,4-glucanase from a metagenomic library of the black-goat rumen. Braz J Microbiol 48:801–808. https://doi.org/10.1016/j.bjm.2017.03.006

    Article  Google Scholar 

  226. Pimentel AAC, Ematsu GCG, Liberato V et al (2017) Biochemical and biophysical properties of a metagenome-derived GH5 endoglucanase displaying an unconventional domain architecture. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.02.075

    Article  Google Scholar 

  227. Gupta P, Mishra AK, Vakhlu J (2017) Cloning and characterization of thermo-alkalistable and surfactant stable endoglucanase from Puga hot spring metagenome of ladakh (J&K). Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.05.113

    Article  Google Scholar 

  228. Shah RK, Patel AK, Davla DM, Parikh IK (2017) Molecular cloning , heterologous expression , and functional characterization of a cellulolytic enzyme ( Cel PRII ) from buffalo rumen metagenome. 3 Biotech 7:1–10. https://doi.org/10.1007/s13205-017-0895-2

  229. Laura A, Palma M, Catalina D et al (2017) In vitro and in silico characterization of metagenomic soil-derived cellulases capable of hydrolyzing oil palm empty fruit bunch. Biotechnology Reports 15:55–62. https://doi.org/10.1016/j.btre.2017.06.003

    Article  Google Scholar 

  230. Li B, Zhu Y, Gu Z et al (2016) Screening and characterization of a novel ruminal cellulase gene (Umcel-1) from a metagenomic library of gayal (Bos frontalis). J Integr Agric 15:855–861. https://doi.org/10.1016/S2095-3119(15)61144-3

    Article  Google Scholar 

  231. Martin M, Biver S, Steels S et al (2014) Identification and characterization of a halotolerant, cold-active marine endo-β-1,4-glucanase by using functional metagenomics of seaweed-associated microbiota. Appl Environ Microbiol 80:4958–4967. https://doi.org/10.1128/AEM.01194-14

    Article  Google Scholar 

  232. Lee CM, Lee YS, Seo SH et al (2014) Screening and characterization of a novel cellulase gene from the gut microflora of Hermetia Illucens using metagenomic library. J Microbiol Biotechnol 24:1196–1206. https://doi.org/10.4014/jmb.1405.05001

    Article  Google Scholar 

  233. Xiang L, Li A, Tian C et al (2014) Identification and characterization of a new acid-stable endoglucanase from a metagenomic library. Protein Expr Purif 102:20–26. https://doi.org/10.1016/j.pep.2014.07.009

    Article  Google Scholar 

  234. Zhang L, Fan Y, Zheng H et al (2013) Isolation and characterization of a novel endoglucanase from a Bursaphelenchus xylophilus metagenomic library. PLoS ONE 8:1–8. https://doi.org/10.1371/journal.pone.0082437

    Article  Google Scholar 

  235. Rashamuse KJ, Visser DF, Hennessy F et al (2013) Characterisation of two bifunctional cellulase – xylanase enzymes isolated from a bovine rumen metagenome library. Curr Microbiol 66:145–151. https://doi.org/10.1007/s00284-012-0251-z

    Article  Google Scholar 

  236. Yan X, Geng A, Zhang J et al (2013) Discovery of ( hemi- ) cellulase genes in a metagenomic library from a biogas digester using 454 pyrosequencing. Appl Microbiol Biotechnol 97:8173–8182. https://doi.org/10.1007/s00253-013-4927-5

    Article  Google Scholar 

  237. Nacke H, Engelhaupt M, Brady S et al (2012) Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes. Biotech Lett 34:663–675. https://doi.org/10.1007/s10529-011-0830-2

    Article  Google Scholar 

  238. Guyen NHN, Aruset LM, Engwetwanit TU et al (2012) Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library. Biosci Biotechnol Biochem 76:1075–1084. https://doi.org/10.1271/bbb.110786

    Article  Google Scholar 

  239. Geng A, Zou G, Yan X, Wang Q (2012) Expression and characterization of a novel metagenome-derived cellulase Exo2b and its application to improve cellulase activity in Trichoderma reesei. Appl Microbiol Biotechnol 96:951–962. https://doi.org/10.1007/s00253-012-3873-y

    Article  Google Scholar 

  240. Yi-fang Y, Chia-yu CS, Hsion-wen K et al (2013) A metagenomic approach for the identification and cloning of an endoglucanase from rice straw compost. Gene 519:360–366. https://doi.org/10.1016/j.gene.2012.07.076

    Article  Google Scholar 

  241. Liu J, Liu W, Zhao X (2011) Cloning and functional characterization of a novel endo- β -1, 4-glucanase gene from a soil-derived metagenomic library. Appl Microbiol Biotechnol 89:1083–1092. https://doi.org/10.1007/s00253-010-2828-4

    Article  Google Scholar 

  242. Pang H, Zhang P, Duan CJ et al (2009) Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr Microbiol 58:404–408. https://doi.org/10.1007/s00284-008-9346-y

    Article  Google Scholar 

  243. Duan CJ, Xian L, Zhao GC et al (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 107:245–256. https://doi.org/10.1111/j.1365-2672.2009.04202.x

    Article  Google Scholar 

  244. Berlemont R, Delsaute M, Pipers D et al (2009) Insights into bacterial cellulose biosynthesis by functional metagenomics on Antarctic soil samples. ISME J 3:1070–1081. https://doi.org/10.1038/ismej.2009.48

    Article  Google Scholar 

  245. Pottkämper J, Barthen P, Ilmberger N et al (2009) Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem 11:957–996. https://doi.org/10.1039/b820157a

    Article  Google Scholar 

  246. Sommer MO, Church GM, Dantas G (2010) A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion. Molecular Systems Biology 6:https://doi.org/10.1038/msb.2010.16

  247. van der Lelie D, Taghavi S, McCorkle SM, et al (2012) The metagenome of an anaerobic microbial community decomposing poplar wood chips. PLoS ONE 7:https://doi.org/10.1371/journal.pone.0036740

  248. Lehmann C, Bocola M, Streit WR et al (2014) Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution. Appl Microbiol Biotechnol 98:5775–5785. https://doi.org/10.1007/s00253-014-5771-y

    Article  Google Scholar 

  249. Violot S, Aghajari N, Czjzek M et al (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348:1211–1224. https://doi.org/10.1016/j.jmb.2005.03.026

    Article  Google Scholar 

  250. Iyo AH, Forsberg CW (1999) A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85. Appl Environ Microbiol 65:995–998. https://doi.org/10.1128/aem.65.3.995-998.1999

    Article  Google Scholar 

  251. Smal SAO, Leiros HKS, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57. https://doi.org/10.1016/S1387-2656(00)06018-X

    Article  Google Scholar 

  252. Feller G, Gerday C (1997) Psychrophilic enzymes: Molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  Google Scholar 

  253. Russell RJM, Gerike U, Danson MJ et al (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6:351–361. https://doi.org/10.1016/s0969-2126(98)00037-9

    Article  Google Scholar 

  254. Bae E, Phillips GN (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 279:28202–28208. https://doi.org/10.1074/jbc.M401865200

    Article  Google Scholar 

  255. Outzen H, Berglund GI, Smalås AO, Willassen NP (1996) Temperature and pH sensitivity of trypsins from Atlantic salmon (Salmo salar) in comparison with bovine and porcine trypsin. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology 115:33–45. https://doi.org/10.1016/0305-0491(96)00081-8

    Article  Google Scholar 

  256. Ásgeirsson B, Bjarnason JB (1993) Properties of elastase from Atlantic cod a cold-adapted proteinase. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1164:91–100. https://doi.org/10.1016/0167-4838(93)90116-9

  257. Kristjánsson MM, Nielsen HH (1992) Purification and characterization of two chymotrypsin-like proteases from the pyloric caeca of rainbow trout (Oncorhynchus mykiss). Comparative biochemistry and physiology. B, Comparative biochemistry 101:247–253. https://doi.org/10.1016/0305-0491(92)90187-V

    Article  Google Scholar 

  258. Ásgeirsson B, Bjarnason JB (1991) Structural and kinetic properties of chymotrypsin from atlantic cod (Gadus morhua). Comparison with bovine chymotrypsin. Comparative biochemistry and physiology. B, Comparative biochemistry 99:327–335. https://doi.org/10.1016/0305-0491(91)90050-N

    Article  Google Scholar 

  259. Kim SY, Hwang KY, Kim SH et al (1999) Structural basis for cold adaptation: sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J Biol Chem 274:11761–12117

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Directors of CSIR-NCL, Pune, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India, and Praj Matrix—R & D Center (division of Praj Industries Limited), Pune, for infrastructure and support. The manuscript has been checked for plagiarism using iThenticate software.

Author information

Authors and Affiliations

Authors

Contributions

Sambhaji Chavan: conceptualization, writing original draft preparation, visualization, and editing. Mahesh S. Dharne, Yasmin Mirza, and Ashvini Shete: editing, reviewing, visualization, and supervision.

Corresponding author

Correspondence to Mahesh S. Dharne.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavan, S., Shete, A., Mirza, Y. et al. Investigation of cold-active and mesophilic cellulases: opportunities awaited. Biomass Conv. Bioref. 13, 8829–8852 (2023). https://doi.org/10.1007/s13399-021-02047-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02047-y

Keywords

Navigation