Skip to main content
Log in

Cellulolytic thermophilic microorganisms in white biotechnology: a review

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Enzymes of microbial origin are of immense importance for organic material decomposition leading to bioremediation of organic waste, bioenergy generation, large-scale industrial bioprocesses, etc. The market demand for microbial cellulase enzyme is growing more rapidly which ultimately becomes the driving force towards research on this biocatalyst, widely used in various industrial activities. The use of novel cellulase genes obtained from various thermophiles through metagenomics and genetic engineering as well as following metabolic engineering pathways would be able to enhance the production of thermophilic cellulase at industrial scale. The present review is mainly focused on thermophilic cellulolytic bacteria, discoveries on cellulase gene, genetically modified cellulase, metabolic engineering, and their various industrial applications. A lot of lacunae are yet to overcome for thermophiles such as metagenome analysis, metabolic pathway modification study, search of heterologous hosts in gene expression system, and improved recombinant strain for better cellulase yield as well as value-added product formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acharya S, Chaudhary A (2012a) Alkaline cellulase produced by a newly isolated thermophilic Aneurinibacillus thermoaerophilus WBS2 from hot spring, India. Afr J Microbiol Res 6(26):5453–5458

    CAS  Google Scholar 

  • Acharya S, Chaudhary A (2012b) Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from Indian hot spring. Braz Arch Biol Technol 55:497–503

    CAS  Google Scholar 

  • Acharya S, Chaudhary A (2012c) Bioprospecting thermophiles for cellulase production: a review. Braz J Microbiol 43:844–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139

    PubMed  PubMed Central  Google Scholar 

  • Agrawal S (2014) Cellulases of bacterial origin and their applications: a review. Int J Sci Res 3:1652–1655

    Google Scholar 

  • Aksenova HY, Rainey FA, Janssen PH, et al (1992) Spirochaeta thermophila sp. nov., an Obligately Anaerobic, Polysaccharolytic, Extremely Thermophilic Bacterium. Int J Syst Bacteriol 42:175–177

    Google Scholar 

  • Ali S, Hall J, Soole KL, et al (1995) Targeted expression of microbial cellulases in transgenic animals. In: Progress in Biotechnology. pp 279–293

    Google Scholar 

  • Alvarez TM, Paiva JH, Ruiz DM, Cairo JPLF, Pereira IO, Paixão DAA, de Almeida RF, Tonoli CCC, Ruller R, Santos CR, Squina FM, Murakami MT (2013) Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One. https://doi.org/10.1371/journal.pone.0083635

    PubMed  PubMed Central  Google Scholar 

  • Amore A, Pepe O, Ventorino V, Birolo L, Giangrande C, Faraco V (2013) Industrial waste based compost as a source of novel cellulolytic strains and enzymes. FEMS Microbiol Lett 339:93–101

    CAS  PubMed  Google Scholar 

  • Anbar M, Bayer EA (2012) Approaches for improving thermostability characteristics in cellulases. Methods in enzymology 510:261–271

  • Ando S, Ishida H, Kosugi Y, Ishikawa K (2002) Hyperthermostable Endoglucanase from Pyrococcus horikoshii. Appl Env Microbiol 68:430–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Annamalai N, Rajeswari MV, Elayaraja S, Balasubramanian T (2013) Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Carbohydr Polym 94:409–415

    CAS  PubMed  Google Scholar 

  • Antunes LP, Martins LF, Pereira RV, Thomas AM, Barbosa D, Lemos LN, Silva GMM, Moura LMS, Epamino GWC, Digiampietri LA, Lombardi KC, Ramos PL, Quaggio RB, de Oliveira JCF, Pascon RC, Cruz JB, da Silva AM, Setubal JC (2016) Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Sci Rep 6:38915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77(23):8288–8294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Attri S, Garg G (2014) Isolation of microorganisms simultaneously producing xylanase, pectinase and cellulase enzymes using cost effective substrates. J Innov Biol 1:45–50

    Google Scholar 

  • Azizi M, Hemmat J, Seifati SM, Torktaz I, Karimi S (2015) Characterization of a thermostable endoglucanase produced by Isoptericola variabilis sp. IDAH9. Braz J Microbiol 46:1225–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baharuddin AS, Razak MNA, Hock LS et al (2010) Isolation and characterization of thermophilic cellulase-producing bacteria from empty fruit bunches-palm oil mill effluent compost. Am J Appl Sci 7:56–62

    CAS  Google Scholar 

  • Bahrami A, Shojaosadati SA, Mohebali G (2001) Biodegradation of dibenzothiophene by thermophilic bacteria. Biotechnol Lett 23:899–901

    CAS  Google Scholar 

  • Bai S, Ravi M, Mukesh DJ, et al (2012) Cellulase Production by Bacillus subtilis isolated from Cow Dung. Sch Res Libr 4:269–279

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157

    CAS  PubMed  Google Scholar 

  • Bakare MK, Adewale IO, Shonukan OO (2005) Purification and characterization of cellulase from the wild-type and two improved mutants of Pseudomonas fluorescens. Afr J Biotechnol 4:898–904

    CAS  Google Scholar 

  • Bala A, Singh B (2016) Cost-effective production of biotechnologically important hydrolytic enzymes by Sporotrichum thermophile. Bioprocess Biosyst Eng 39:181–191

    PubMed  Google Scholar 

  • Barabote RD, Xie G, Leu DH, et al (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus IIB provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19:1033–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashir Y, Singh SP, Konwar BK (2014) Metagenomics: an application based perspective. Chinese J Biol 1–7. https://doi.org/10.1155/2014/146030

    Google Scholar 

  • Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107(6):2098–2107

    CAS  PubMed  Google Scholar 

  • Beauchemin K, Yang W, Rode L (2003) Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production. J Dairy Sci 86:630–643

    CAS  PubMed  Google Scholar 

  • Bee H (2005) Studies on plant growth promoting bacteria and recycling of crop residues for sustainable agriculture. PhD Thesis Submitted to Osmania University

  • Belaich A, Parsiegla G, Gal L, Villard C, Haser R, Belaich JP (2002) Cel9M, a New Family 9 Cellulase of the Clostridium cellulolyticum Cellulosome. Jol of Bact. 184(5):1378–1384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berger E, Zhang D, Zverlov VV, Schwarz WH (2007) Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol Lett 268:194–201

    CAS  PubMed  Google Scholar 

  • Bergmann JC, Costa OYA, Gladden JM, Singer S, Heins R, D’haeseleer P, Simmons BA, Quirino BF (2014) Discovery of two novel β-glucosidases from an Amazon soil metagenomic library. FEMS Microbiology 351(2):147–155

    PubMed  Google Scholar 

  • Bergquist PL, Gibbs MD, Morris DD, te'o VSJ, Saul DJ, Morgan HW (1999) Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28:99–110

    CAS  Google Scholar 

  • Beukes N, Pletschke BI (2006) Effect of sulfur-containing compounds on Bacillus cellulosome-associated “CMCase” and “Avicelase” activities. FEMS Microbiol Lett 264:226–231

    CAS  PubMed  Google Scholar 

  • Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759

    CAS  PubMed  Google Scholar 

  • Bhatia S, Batra N, Pathak A et al (2015) Metagenomic evaluation of bacterial and archaeal diversity in the geothermal hot springs of Manikaran, India. Genome Announc 3:e01544–e01514

    PubMed  PubMed Central  Google Scholar 

  • Bhattacharya AS, Bhattacharya A, Pletschke BI (2015) Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett 37:1117–1129

    CAS  PubMed  Google Scholar 

  • Biswas R (2014) Production of cellulolytic enzymes. In: Bioprocessing of renewable resources to commodity bioproducts, First Edition. John Wiley & Sons, Inc. Publisher 105-132

  • Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64:4774–4781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouraoui H, Desrousseaux M-L, Ioannou E, Alvira P, Manaï M, Rémond C, Dumon C, Fernandez-Fuentes N, O’Donohue MJ (2016) The GH51 α-l-arabinofuranosidase from Paenibacillus sp. THS1 is multifunctional, hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans. Biotechnol Biofuels 9:140

    PubMed  PubMed Central  Google Scholar 

  • Bredholt S, Mathrani IM, Ahring BK (1995) Extremely thermophilic cellulolytic anaerobes from icelandic hot springs. Antonie Van Leeuwenhoek 68:263–271

    CAS  PubMed  Google Scholar 

  • Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489

    CAS  PubMed  Google Scholar 

  • Bronnenmeier K, Staudenbauer WL (1990) Cellulose hydrolysis by a highly thermostable endo-l,4-p-glucanase (Avicelase I) from Clostridium stercoraritirn. Enzym Microb Technol 12:431–436

    CAS  Google Scholar 

  • Bronnenmeier K, Rucknagel KP, Staudenbauer WL (1991) Purification and properties of a novel type of exo-1,4-beta glucanase (Avicelase II) from the cellulolytic thermophile Clostridium stercorarium. Eur J Biochem 200:379–385

    CAS  PubMed  Google Scholar 

  • Bronnenmeier K, Kern A, Liebl W, Staudenbauer WL (1995) Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 61(4):1399–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty A, Mahajan A (2014) Cellulase activity enhancement of bacteria isolated from oil-pump soil using substrate and medium optimization. Am J Microbiol Res 2:52–56

    CAS  Google Scholar 

  • Chandrashekar R, Curtis KC, Rawot BW, Kobayashi GS, Weil GJ (1997) Molecular Cloning and Characterization of a Recombinant Histoplasma capsulatum Antigen for Antibody-Based Diagnosis of Human Histoplasmosis. J Clin Micro 35 (5): 1071–1076Chandrashekar R, Curtis KC, Rawot BW, Kobayashi GS, Weil GJ (1997) Molecular Cloning and Characterization of a Recombinant Histoplasma capsulatum Antigen for Antibody-Based Diagnosis of Human Histoplasmosis. J Clin Micro 35 (5): 1071–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CJ, Lee CC, Te Chan Y et al (2016) Exploring the mechanism responsible for cellulase thermostability by structure-guided recombination. PLoS One 11:e0147485. https://doi.org/10.1371/journal.pone.0147485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci 111:8931–8936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clemente-Jiminez JM, Mingorance-Cazorla L, MartÖNez-Rodriguez S et al (2005) Influence of sequential mixtures on wine fermentation. Int J Food Microbiol 98:301–308

    Google Scholar 

  • Conway de Macario E, Macario AJ (2000) Stressors, stress and survival: overview. Front Biosci 5:780–786

    Google Scholar 

  • Couturier M, Feliu J, Haon M, Navarro D, Lesage-Meessen L, Coutinho PM, Berrin JG (2011) A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity. Microbial Cell Factories 10:103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408

    CAS  PubMed  Google Scholar 

  • Dahal S, Poudel S, Thompson RA (2017) Genome-scale modeling of thermophilic microorganisms. Adv Biochem Eng Biotechnol 160:103–119

    PubMed  Google Scholar 

  • de Carvalho LMJ, de Castro IM, da Silva CAB (2008) A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L. Merril) by micro- and ultra-filtration. J Food Eng 87:447–454

    Google Scholar 

  • Deka D, Bhargavi P, Sharma A, Goyal D, Jawed M, Goyal A (2011) Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrates. Enzyme Res 2011:1–8

    Google Scholar 

  • Demirjian DC, Morís-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    CAS  PubMed  Google Scholar 

  • Dinçer A, Telefoncu A (2007) Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B Enzym 45:10–14

    Google Scholar 

  • Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 107:245–256

    CAS  PubMed  Google Scholar 

  • Eichorst SA, Varanasi P, Stavila V, Zemla M, Auer M, Singh S, Simmons BA, Singer SW (2013) Community dynamics of cellulose-adapted thermophilic bacterial consortia. Environ Microbiol 15:2573–2587

    CAS  PubMed  Google Scholar 

  • Fang ZG, Ouyang ZY (2010) Cellulose degradation and ethanol production of different Clostridium strain. Huan Jing Ke Xue 31(8):1926–1931

    CAS  PubMed  Google Scholar 

  • Feinberg L, Foden J, Barrett T, Davenport KW, Bruce D, Detter C, et al. (2011) Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313. J Bacteriol 193(11):2906–2907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frock AD, Kelly RM (2012) Extreme thermophiles: moving beyond single-enzyme biocatalysis. Curr Opin Chem Eng 1:363–372

    PubMed  PubMed Central  Google Scholar 

  • Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U (2013) Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 31:581–593

    CAS  PubMed  Google Scholar 

  • Gaur R, Tiwari S (2015) Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15:19

    PubMed  PubMed Central  Google Scholar 

  • Gautam R, Sharma J (2014) Production and optimization of alkaline cellulase from bacillus subtilis in submerged fermentation. Int J Sci Res 3:1186–1194

    Google Scholar 

  • Girfoglio M, Rossi M, Cannio R (2012) Cellulose degradation by Sulfolobus solfataricus requires a cell-anchored endo-β-1-4-glucanase. J Bacteriol 194:5091–5100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Gruninger RJ, Qi M, Paterson L, Forster RJ, Teather RM, McAllister TA (2012) Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res Notes 5:566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V (2016) Microbial cellulase system properties and applications. In: New and future developments in microbial biotechnology and bioengineering. Elsevier Publisher

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    CAS  PubMed  Google Scholar 

  • Hall J, Ali S, Surani MA, Hazlewood GP, Clark AJ, Simons JP, Hirst BH, Gilbert HJ (1993) Manipulation of the repertoire of digestive enzymes secreted into the gastrointestinal tract of transgenic mice. Biotechnology (N Y) 11:376–379

    CAS  Google Scholar 

  • Halldórsdóttir S, Thórólfsdóttir ET, Spilliaert R et al (1998) Cloning, sequencing and overexpression of a Rhodothermus marinus gene encoding a thermostable cellulase of glycosyl hydrolase family 12. Appl Microbiol Biotechnol 49:277–284

    PubMed  Google Scholar 

  • Hamilton-Brehm SD, Mosher JJ, Vishnivetskaya T, Podar M, Carroll S, Allman S, Phelps TJ, Keller M, Elkins JG (2010) Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from obsidian pool, yellowstone National Park. Appl Environ Microbiol 76:1014–1020

    CAS  PubMed  Google Scholar 

  • Hanafy EA, Zaghloul RA, Abou-Aly HE, Ahmed AE (2011) Isolation and identification of cellulases producing thermophilic bacteria and their ability to produce xylanase enzymes. Ann Agric Sci Moshtohor 49(4):455–461

    Google Scholar 

  • Hardiman E, Gibbs M, Reeves R, Bergquist P (2010) Directed evolution of a thermophilic beta-glucosidase for cellulosic bioethanol production. Appl Biochem Biotechnol 161:301–312

    CAS  PubMed  Google Scholar 

  • Hasegawa S, Maier VP, King AD (1974) Isolation of new limonoate dehydrogenase from Pseudomonas. J Agric Food Chem 22:523–526

    CAS  PubMed  Google Scholar 

  • Hasegawa, S., Kim A, et al (1975) Biochemistry of limonoids. A new limonoid debittering enzyme. In: Citrus research conference Pasadena CA

  • Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467

    CAS  PubMed  Google Scholar 

  • Hiras J, Wu YW, Deng K, et al (2016) Comparative community proteomics demonstrates the unexpected importance of actinobacterial glycoside hydrolase family 12 protein for crystalline cellulose hydrolysis. MBio 7(4):e01106–16. https://doi.org/10.1128/mBio.01106-16

  • Hong SY, Lee JS, Cho KM, Math RK, Kim YH, Hong SJ, Cho YU, Cho SJ, Kim H, Yun HD (2007) Construction of the bifunctional enzyme cellulase-β-glucosidase from the hyperthermophilic bacterium Thermotoga maritima. Biotechnol Lett 29(6):931–936

    CAS  PubMed  Google Scholar 

  • Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Boil 3:39–46

    CAS  Google Scholar 

  • Hreggvidsson GO, Kaiste E, Holst O et al (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62(8):3047–3049

    CAS  Google Scholar 

  • Huang XP, Monk C (2004) Purification and characterization of a cellulase (CMCase) from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov., sp. nov. World J Microbiol Biotechnol 20:85–92

    CAS  Google Scholar 

  • Huang Y, Krauss G, Cottaz S et al (2005) A highly acid-stable and thermostable endo-beta-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385:581–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izquierdo JA, Sizova MV, Lynd LR (2010) Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. Appl Environ Microbiol 76:3545–3553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jampala P, Tadikamalla S, Preethi M et al (2017) Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method. 3 Biotech 7:–14

  • Jurick WM II, Vico I, Whitaker BD, Gaskins VL, Janisiewicz WJ (2012) Application of the 2-cyanoacetamide method for spectrophotometric assay of cellulase enzyme activity. Plant Pathol J 11:38–41

    CAS  Google Scholar 

  • Kaper T, Lebbink JH, Pouwels J et al (2000) Comparative structural analysis and substrate specificity engineering of the hyperthermostable beta-glucosidase CelB from Pyrococcus furiosus. Biochemistry 39:5097–5103

    Google Scholar 

  • Karmakar M, Ray RR (2011) Current trends in research and applications of microbial cellulases. Res J Microbiol 6:41–53

    CAS  Google Scholar 

  • Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57:503–507

    CAS  PubMed  Google Scholar 

  • Kaur A, Mahajan R, Singh A, Garg G, Sharma J (2010) Application of cellulase-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour Technol 101:9150–9155

    CAS  PubMed  Google Scholar 

  • Kazeem MO, Shah UKM, Baharuddin AS, Abdul Rahman NA (2016) Enhanced cellulase production by a novel thermophilic bacillus licheniformis 2D55: characterization and application in lignocellulosic saccharification. BioResources 11:5404–5423

    CAS  Google Scholar 

  • Kengen SW, Luesink EJ, Stams AJ, Zehnder AJ (1993) Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 213:305–312

    CAS  PubMed  Google Scholar 

  • Khatiwada P, Ahmed J, Sohag MH et al (2016) Isolation, screening and characterization of cellulase producing bacterial isolates from municipal solid wastes and rice straw wastes. J Bioprocess Biotech 6:4–8

    Google Scholar 

  • Kim DS, Kim CH (1992) Production and characterization of crystalline cellulose-degrading cellulase components from a thermophilic and moderately alkalophilic bacterium. J Microbiol Biotechnol 2:7–13

    Google Scholar 

  • Kim SJ, Lee CM, Han BR, Kim MY, Yeo YS, Yoon SH, Koo BS, Jun HK (2008) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282:44–51

    CAS  PubMed  Google Scholar 

  • Kim MK, Kang TH, Kim J, Kim H, Yun HD (2012) Evidence showing duplication and recombination of cell genes in tandem from hyperthermophilic Thermotoga sp. Appl Biochem Biotechnol 168:1834–1848

    CAS  PubMed  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 1:1–10

    Google Scholar 

  • Kumar S, Srivastava N, Sen Gupta B et al (2014) Lovastatin production by Aspergillus terreus using lignocellulose biomass in large scale packed bed reactor. Food Bioprod Process 92:416–424

    CAS  Google Scholar 

  • Kumar V, Sangwan P, Singh D, Gill PK (2014a) Global scenario of industrial enzyme market. In: Industrial enzymes: trends, scope and relevance. Pp. 173-196. ISBN:978-1-63321-338-8. Nova Science Publishers, Inc

  • Ladeira SA, Cruz E, Delatorre AB, Barbosa JB, Martins MLL (2015) Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electron J Biotechnol 18:110–115

    CAS  Google Scholar 

  • Laitila A, Sweins H, Vilpola A, Kotaviita E, Olkku J, Home S, Haikara A (2006) Lactobacillus plantarum and Pediococcus pentosaceus starter cultures as a tool for microflora management in malting and for enhancement of malt processability. J Agric Food Chem 54:3840–3851

    CAS  PubMed  Google Scholar 

  • Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7:1–15

    Google Scholar 

  • Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp nov, an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168(2):114–119

    CAS  PubMed  Google Scholar 

  • Leis B, Heinze S, Angelov A et al (2015a) Functional screening of hydrolytic activities reveals an extremely thermostable cellulase from a Deep-Sea Archaeon. Front Bioeng Biotechnol 3:95

    PubMed  PubMed Central  Google Scholar 

  • Leis B, Heinze S, Angelov A, Pham VT, Thürmer A, Jebbar M, Golyshin PN, Streit WR, Daniel R, Liebl W (2015b) Functional screening of hydrolytic activities reveals an extremely thermostable cellulase from a deep-sea archaeon. Front Bioeng Biotechnol 3:95

    PubMed  PubMed Central  Google Scholar 

  • Levin DB, Carere CR, Cicek N, Sparling R (2009) Challenges for biohydrogen production via direct lignocellulose fermentation. Int J Hydrog Energy 34:7390–7403

    CAS  Google Scholar 

  • Li W, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40:195–201

    CAS  PubMed  Google Scholar 

  • Li Y, Tschaplinski TJ, Engle NL, Hamilton CY, Rodriguez M, Liao JC, Schadt CW, Guss AM, Yang Y, Graham DE (2012) Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol Biofuels 5:2

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Yesuf J, Feng Z (2010) Toward plant cell wall degradation under thermophilic condition: a unique microbial community developed originally from swine waste. Appl Biochem Biotechnol 161:147–156

    CAS  PubMed  Google Scholar 

  • Liang YL, Zhang Z, Wu M, Wu Y, Feng JX (2014) Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1 BioMed Research International. 1-13. https://doi.org/10.1155/2014/512497

    Google Scholar 

  • Lin L, Xu J (2013) Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. Biotechnol Adv 31:827–837

    CAS  PubMed  Google Scholar 

  • Liu SL, Du K, Chen WZ et al (2012) Effective approach to greatly enhancing selective secretion and expression of three cytoplasmic enzymes in Escherichia coli through synergistic effect of EDTA and lysozyme. J Ind Microbiol Biotechnol 39:1301–1307

    PubMed  Google Scholar 

  • Lv W, Yu Z (2012) Isolation and characterization of two thermophilic cellulolytic strains of Clostridium thermocellum from a compost sample. J Appl Microbiol 114:1001–1007

    Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makky EA (2009) Avicelase production by a thermophilic Geobacillus stearothermophilus isolated from soil using sugarcane bagasse. World Acad Sci Eng Technol 3:469–473

    Google Scholar 

  • Makky EA, Abdel-Ghany TM (2009) Cellulases applications in biological de-inking of old newspaper wastes as carbon source produced by Bacillus subtilis. Egypt J Exp Biol (Bot) 5:85–89

    Google Scholar 

  • Mawadza C, Hatti-Kaul R, Zvauya R, Mattiasson B (2000) Purification and characterization of cellulases produced by two Bacillus strains. J Biotechnol 83(3):177–187

    CAS  PubMed  Google Scholar 

  • Mazzoli R (2012) Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers’ tricks. Comput Struct Biotechnol J 3(4):1–9 e201210007

    Google Scholar 

  • Mazzoli R, Lamberti C, Pessione E (2012) Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol 30:111–119

    CAS  PubMed  Google Scholar 

  • McCarter SL, Adney WS, Vinzant TB et al (2002) Exploration of cellulose surface-binding properties of Acidothermus cellulolyticus Cel5A by site-specific mutagenesis. Appl Biochem Biotechnol 98–100:273–287. https://doi.org/10.1385/ABAB:98-100:1-9:273

    Article  PubMed  Google Scholar 

  • Menendez E, Garcia-Fraile P, Rivas R (2015) Biotechnological applications of bacterial cellulases. AIMS Bioeng 2(3):163–182

    CAS  Google Scholar 

  • Meng F, Ma L, Ji S, Yang W, Cao B (2014) Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass. Lett Appl Microbiol 59:306–312

    CAS  PubMed  Google Scholar 

  • Mg Mg ZL, Than WM, Myint M (2015) Study on the cellulase enzyme producing activity of bacteria isolated from manure waste and degrading soil. Inter J Tech Res Appl 3:165–169

    Google Scholar 

  • Mingardon F, Bagert JD, Maisonnier C, Trudeau DL, Arnold FH (2011) Comparison of family 9 cellulases from mesophilic and thermophilic bacteria. Appl Environ Microbiol 77(4):1436–1442

    CAS  PubMed  Google Scholar 

  • Mohagheghi A, Grohmann K, Himmel M et al (1986) Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int J Syst Bacteriol 36:435–443

    CAS  Google Scholar 

  • Morag (Morgenstern) E, Bayer EA, Lamed R (1992) Affinity digestion for the near-total recovery of purified cellulosome from Clostridium thermocellum. Enzym Microb Technol 14:289–292

    Google Scholar 

  • Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA (2010) Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio 1(5):e00285–10. https://doi.org/10.1128/mBio.00285-10

  • Morais S, Stern J, Kahn A et al (2016) Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability. Biotechnol Biofuels 9:164

    PubMed  PubMed Central  Google Scholar 

  • Moreno R, Zafra O, Cava F, Berenguer J (2003) Development of a gene expression vector for Thermus thermophilus based on the promoter of the respiratory nitrate reductase. Plasmid 49:2–8

    CAS  PubMed  Google Scholar 

  • Mori T, Kamei I, Hirai H, Kondo R (2014) Identification of novel glycosyl hydrolases with cellulolytic activity against crystalline cellulose from metagenomic libraries constructed from bacterial enrichment cultures. Springerplus 3:365

    PubMed  PubMed Central  Google Scholar 

  • Mortabit D, Zyani M, Saad IK (2014) Improvement of olive oil quality of moroccan picholine by bacillus licheniformis enzyme’s preparation. Int J Pure Appl Sci Technol 20(2):44–52

    Google Scholar 

  • Munjal N, Jawed K, Wajid S, Yazdani SS (2015) A constitutive expression system for cellulase secretion in Escherichia coli and its use in bioethanol production. PLoS One 10:e0119917

    PubMed  PubMed Central  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331

    CAS  PubMed  Google Scholar 

  • Norsalwani TLT, Norulaini NAN (2012) Utilization of lignocellulosic wastes as a carbon source for the production of bacterial cellulases under solid state fermentation. Int J Environ Sci Dev 3:136–140

    CAS  Google Scholar 

  • Nugroho IB, Handayani NSN (2016) Primer design and in silico analysis using CLUSTALW and MUSCLE for L-arabinose isomerase (araA) gene detection in thermophilic bacteria. In: AIP Conference Proceedings

  • O’Neill GP, Kilburn DG, Warren RA, Miller RC Jr (1986) Overproduction from a cellulase gene with a high guanosine-plus-cytosine content in Escherichia coli. Appl Environ Microbiol 52:737–743

    PubMed  PubMed Central  Google Scholar 

  • Oh YK, Raj SM, Jung GY, Park S (2011) Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresour Technol 102:8357–8367

    CAS  PubMed  Google Scholar 

  • Otajevwo FD, Aluyi HSA (2011) Cultural conditions necessary for optimal cellulase yield by cellulolytic bacterial organisms as they relate to residual sugars released in broth medium. Mod Appl Sci 5:141–151

    CAS  Google Scholar 

  • Padilha IQM, Carvalho LCT, Dias PVS, Grisi TCSL, Silva FLH, Santos SFM, Araújo DAM (2015) Production and characterization of thermophilic carboxymethyl cellulase synthesized by Bacillus sp. growing on sugarcane bagasse in submerged fermentation. Braz J Chem Eng 32:35–42

    CAS  Google Scholar 

  • Park JI, Steen EJ, Burd H, Evans SS, Redding-Johnson AM, Batth T, Benke PI, D'haeseleer P, Sun N, Sale KL, Keasling JD, Lee TS, Petzold CJ, Mukhopadhyay A, Singer SW, Simmons BA, Gladden JM (2012) A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 7:e37010. https://doi.org/10.1371/journal.pone.0037010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peerapong P, Pornwongthong P, Muenmuang C, Phusantisampan T, Sriariyanun M (2017) Effect of cellulase-producing microbial consortium on biogas production from lignocellulosic biomass. Energy Procedia 141:180–183

    Google Scholar 

  • Pérez-Avalos O, Sánchez-Herrera LM, Salgado LM, Ponce-Noyola T (2008) A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at different pH. Curr Microbiol 57:39–44

    PubMed  Google Scholar 

  • Podar M, Reysenbach AL (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotechnol 17:250–255

    CAS  PubMed  Google Scholar 

  • Podosokorskaya OA, Merkel YA, Kolganova TV et al (2011) Fervidobacterium riparium sp. nov., a thermophilic anaerobic cellulolytic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 61:2697–2701

    CAS  PubMed  Google Scholar 

  • Raman B, McKeown CK, Rodriguez M Jr, Brown SD, Mielenz JR (2011) Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. BMC Microbiol 11:134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramasamy P, Sharmilli A (2016) Thermophilic bacteria as a source of novel polymers for biotechnological applications. J Adv Biol Biotechnol 6:1–16

    Google Scholar 

  • Renouf V, Falcou M, Miot-Sertier C, Perello MC, de Revel G, Lonvaud-Funel A (2006) Interactions between Brettanomyces bruxellensis and other yeast species during the initial stages of winemaking. J Appl Microbiol 100:1208–1219

    CAS  PubMed  Google Scholar 

  • Report on: technical enzymes market by type, application and by region, 2016

  • Romaniec MP, Fauth U, Kobayashi T et al (1992) Purification and characterization of a new endoglucanase from Clostridium thermocellum. Biochem J 283:69–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruttersmith LD, Daniel RM (1991) Thermostable cellobiohydrolase from the thermophilic eubacterium Thermotoga sp. strain FjSS3-B.1. Purification and properties. Biochem J 277:887–890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3:235–258

    CAS  Google Scholar 

  • Sadhu S, Ghosh PK, Aditya G, Maiti TK (2014) Optimization and strain improvement by mutation for enhanced cellulase production by Bacillus sp. (MTCC10046) isolated from cow dung. J King Saud Univ - Sci 26:323–332

    Google Scholar 

  • Sakon J, Adney WS, Himmel ME, Thomas SR, Karplus PA (1996) Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35:10648–10660

    CAS  PubMed  Google Scholar 

  • Salah A, Ibrahim S, El-diwany AI (2007) Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust J Basic Appl Sci 1:473–478

    Google Scholar 

  • Sangkharak K, Vangsirikul P, Janthachat S (2011) Isolation of novel cellulase from agricultural soil and application for ethanol production. Int J Adv Biotechnol Res 2:230–239

    CAS  Google Scholar 

  • Sangkharak K, Vangsirikul P, Janthachat S (2012) Strain improvement and optimization for enhanced production of cellulase in Cellulomonas sp. TSU-03. Afr J Microbiol Res 6:1079–1084

    CAS  Google Scholar 

  • Sang-Mok L, Koo YM (2001) Pilot-scale production of cellulase using Trichoderma reesei Rut C-30 in fed-batch mode. J Microbiol Biotechnol 11(2):229–233

    Google Scholar 

  • Santangelo TJ, Cubonová L, Reeve JN (2011) Deletion of alternative pathways for reductant recycling in Thermococcus kodakarensis increases hydrogen production. Mol Microbiol 81(4):897–911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89:78–90

    Google Scholar 

  • Schut GJ, Boyd ES, Peters JW, Adams MWW (2013) The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev 37:182–203

    CAS  PubMed  Google Scholar 

  • Schwarz WH, Grabnitz F, Staudenbauer WL (1986) Properties of a clostridium thermocellum endoglucanase produced in Escherichia coli. Appl Environ Microbiol 51(6):1293–1299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selmer Olsen I, Henderson AR, Robertson S, Mcginn R (1993) Cell wall degrading enzymes for silage. 1. The fermentation of enzyme-treated ryegrass in laboratory silos. Grass Forage Sci 48:45–54

    CAS  Google Scholar 

  • Selvarajan E, Veena R, Manoj Kumar N (2018) Polyphenol oxidase, Beyond enzyme browning. In: Singh J., Sharma D., Kumar G., Sharma N. (eds) Microbial bioprospecting for sustainable development. Springer Nature Publisher Singapore 203–222

  • Seo JK, Park TS, Kwon IH, Piao MY, Lee CH, Ha JK (2013) Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. Asian-Australasian J Anim Sci 26:50–58

    CAS  Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A 105:13769–13774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Moholkar VS (2013) Optimization of carboxymethylcellulase production from Bacillus amyloliquefaciens SS35. Biotech 3:411–424

    PubMed  PubMed Central  Google Scholar 

  • Singh G, Singh AK (2014) Alternative substrates for the amylase and cellulase production with rhizobial isolates. Int J Avd Res Sci Technol 3(2):79–85

    Google Scholar 

  • Song YH, Lee KT, Baek JY, Kim MJ, Kwon MR, Kim YJ, Park MR, Ko H, Lee JS, Kim KS (2017) Isolation and characterization of a novel glycosyl hydrolase family 74 (GH74) cellulase from the black goat rumen metagenomic library. Folia Microbiol (Praha) 62:175–181

    CAS  Google Scholar 

  • Stutzenberger FJ (1972) Cellulolytic activity of Thermomonospora curvata: optimal assay conditions, partial purification, and product of the cellulase. Appl Microbiol 24:83–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64:832–844

    CAS  Google Scholar 

  • Supriyati, Haryati T, Susanti T, Susana IWR (2015) Nutritional value of rice bran fermented by Bacillus amyloliquefaciens and humic substances and its utilization as a feed ingredient for broiler chickens. Asian-Australas J Anim Sci 28:231–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taya M, Hinoki H, Yagi T, Kobayashi T (1988) Isolation and characterization of an extremely thermophilic, cellulolytic, anaerobic bacterium. Appl Microbiol Biotechnol 29:474–479

    CAS  Google Scholar 

  • Telke AA, Zhuang N, Ghatge SS, Lee SH, Ali Shah A, Khan H, Um Y, Shin HD, Chung YR, Lee KH, Kim SW (2013) Engineering of family-5 glycoside hydrolase (Cel5A) from an uncultured bacterium for efficient hydrolysis of cellulosic substrates. PLoS One 8:e65727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teo VSJ, Saul DJ, Bergguist P (1995) celA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl Microbiol Biotechnol 43:291–296

    CAS  Google Scholar 

  • van Beek S, Priest FG (2002) Evolution of the lactic acid bacteria community during malt whisky fermentation: a polyphasic study. Appl Environ Microbiol 68:297–305

    PubMed  PubMed Central  Google Scholar 

  • Verenich S, Arumugam K, Shim E, Pourdeyhimi B (2008) Treatment of raw cotton fibers with cellulases for nonwoven fabrics. Text Res J 78:540–548

    CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1–4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26-3626–36

    Google Scholar 

  • Voutilainen SP, Boer H, Linder MB, Puranen T, Rouvinen J, Vehmaanperä J, Koivula A (2007) Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability. Enzym Microb Technol 41:234–243

    CAS  Google Scholar 

  • Wang Y, Wang X, Tang R, Yu S, Zheng B, Feng B (2010) A novel thermostable cellulase from Fervidobacterium nodosum. J Mol Catal B Enzym 66(3–4):294–301

    CAS  Google Scholar 

  • Wang C, Dong D, Wang H, Müller K, Qin Y, Wang H, Wu W (2016) Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol Biofuels 9:22

    PubMed  PubMed Central  Google Scholar 

  • Wanga Y, Wanga X, Tanga R et al (2010) A novel thermostable cellulase from Fervidobacterium nodosum. J Mol Catal B Enzym 66:294–301

    Google Scholar 

  • Wei KSC, Teoh TC, Koshy P et al (2015) Cloning, expression and characterization of the endoglucanase gene from bacillus subtilis UMC7 isolated from the gut of the indigenous termite Macrotermes malaccensis in escherichia coli. Electron J Biotechnol 18:103–109

    CAS  Google Scholar 

  • Xia Y, Wang Y, Fang HH et al (2014) Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by metatranscriptomic and metagenomic analysis. Sci Rep 4:6708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Xia Y, Qu H, Li AD, Liu R, Wang Y, Zhang T (2016) Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnol Biofuels 9:138

    PubMed  PubMed Central  Google Scholar 

  • Yeh YF, Chang SC, Yu SM, Kuo HW et al (2013) A metagenomic approach for the identification and cloning of an endoglucanase from rice straw compost. Gene 519:360–366

    CAS  PubMed  Google Scholar 

  • Yeoman CJ, Han Y, Dodd D et al (2010) Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 70:1–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yun J, Ryu S (2005) Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Factories 4:8

    Google Scholar 

  • Zeldes BM, Keller MW, Loder AJ et al (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209

    PubMed  PubMed Central  Google Scholar 

  • Zhang P, Zhang P, Himmel M et al (2006) Outlook for cellulose improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    CAS  Google Scholar 

  • Zhang YH, Hong J, Ye X (2009) Cellulase assays. Methods Mol Biol 581:213–231

    CAS  PubMed  Google Scholar 

  • Zhao C, Chu Y, Li Y, Yang C, Chen Y, Wang X, Liu B (2017) High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium. Biotechnol Lett 39:123–131

    CAS  PubMed  Google Scholar 

  • Zverlov V, Mahr S, Riedel K, Bronnenmeier K (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile “Anaerocellum thermophilum” with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144:457–465

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors are thankful to the funding agency “Science and Engineering Research Board (SERB), New Delhi (YSS/2014/000413) to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana Sahoo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, K., Sahoo, R.K., Gaur, M. et al. Cellulolytic thermophilic microorganisms in white biotechnology: a review. Folia Microbiol 65, 25–43 (2020). https://doi.org/10.1007/s12223-019-00710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-019-00710-6

Navigation