Skip to main content
Log in

Exploring the sheep rumen microbiome for carbohydrate-active enzymes

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The rumen is a complex ecosystem enriched for microorganisms able to degrade biomass during the animal’s digestion process. The recovery of new enzymes from naturally evolved biomass-degrading microbial communities is a promising strategy to overcome the inefficient enzymatic plant destruction in industrial production of biofuels. In this context, this study aimed to describe the bacterial composition and functions in the sheep rumen microbiome, focusing on carbohydrate-active enzymes (CAE). Here, we used phylogenetic profiling analysis (inventory of 16S rRNA genes) combined with metagenomics to access the rumen microbiome of four sheep and explore its potential to identify fibrolytic enzymes. The bacterial community was dominated by Bacteroidetes and Firmicutes, followed by Proteobacteria. As observed for other ruminants, Prevotella was the dominant genus in the microbiome, comprising more than 30 % of the total bacterial community. Multivariate analysis of the phylogenetic profiling data and chemical parameters showed a positive correlation between the abundance of Prevotellaceae (Bacteroidetes phylum) and organic matter degradability. A negative correlation was observed between Succinivibrionaceae (Proteobacteria phylum) and methane production. An average of 2 % of the shotgun metagenomic reads was assigned to putative CAE when considering nine protein databases. In addition, assembled contigs allowed recognition of 67 putative partial CAE (NCBI-Refseq) representing 12 glycosyl hydrolase families (Pfam database). Overall, we identified a total of 28 lignocellulases, 22 amylases and 9 other putative CAE, showing the sheep rumen microbiome as a promising source of new fibrolytic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asanuma N, Hino T (2000) Activity and properties of fumarate reductase in ruminal bacteria. J Gen Appl Microbiol 46:119–125

    Article  CAS  PubMed  Google Scholar 

  • Bach A, Calsamiglia S, Stern MD (2005) Nitrogen metabolism in the rumen. J Dairy Sci 88:E9–E21

    Article  PubMed  Google Scholar 

  • Blankenberg D, Gordon A, von Kuster G, Coraor N, Taylor J, Nekrutenko A, Team Galaxy (2010) Manipulation of FASTQ data with galaxy. Bioinformatics 26:1783–1785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissa B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 106:1948–1953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buddle BM, Denis M, Attwood GT, Altermann E, Janssen PH, Ronimus RS, Patiño CSP, Muetzel S, Wedlock DN (2011) Strategies to reduce methane emissions from farmed ruminants grazing on pasture. Vet J 188:11–17

    Article  CAS  PubMed  Google Scholar 

  • Bueno ICS, Filho SLSC, Gobbo SP, Louvandini H, Vitti DMSS, Abdalla AL (2005) Influence of inoculum source in a gas production method. Anim Feed Sci and Technol 123–124:95–105

    Article  Google Scholar 

  • Cairns JRK, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67:3389–3405

    Article  Google Scholar 

  • Callaway TR, Dowd SE, Edrington TS, Anderson RC, Krueger N, Bauer N, Kononoff PJ, Nisbet DJ (2010) Evaluation of bacterial diversity in rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag encoded FLX amplicon pyrosequencing. J Anim Sci 88:3977–3983

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaucheyras-Durand F, Durand H (2010) Probiotics in animal nutrition and health. Benef Microbes 1:3–9

    Article  CAS  PubMed  Google Scholar 

  • Christopherson MR, Suen G (2013) Nature’s bioreactor: the rumen as a model for biofuel production. Biofuels 4:511–521

    Article  CAS  Google Scholar 

  • Dai X, Zhu Y, Luo Y, Song L, Liu D, Liu L, Chen F, Wang M, Li J, Zeng X, Dong Z, Hu S, Li L, Xu J, Huang L, Dong X (2012) Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS One 7:e40430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dodd D, Moon YH, Swaminathan K, Mackie RI, Cann IKO (2010) Transcriptomic analysis of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic Bacteroidetes. J Biol Chem 285:30261–30273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flynt HJ, Bayer EA (2008) Plant cell wall breakdown by anaerobic microorganisms from the mammalian diggestive tract. Ann N Y Acad Sci 1125:280–288

    Article  Google Scholar 

  • Garret S, Stevenson DM, Bruce DC, Chertkov O, Copeland A, Cheng J-F, Detter C, Detter JC, Goodwin LA, Han CS, Hauser LJ, Ivanova NN, Kyrpides NC, Land ML, Lapidus A, Lucas S, Ovchinnikova G, Pitluck S, Tapia R, Woyke T, Boyum J, Mead D, Weimer PJ (2011) Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7. J Bacteriol 193:5574–5575

    Article  Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J, Team Galaxy (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:1–13

    Article  Google Scholar 

  • Golder HM, Denman SE, McSweeney C, Celi P, Lean IJ (2014) Ruminal bacterial community shifts in grain-, sugar-, and histidine-challenged dairy heifers. J Dairy Sci 97:5131–5150

    Article  CAS  PubMed  Google Scholar 

  • Gong X, Gruninger R, Qi M, Paterso L, Forster RJ, Teather RM, McAllister TA (2012) Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res Notes 5:1–11

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4:1–9

    Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennachio LA, Tring SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass degrading genes and genomes on cow rumen. Science 331:463–467

    Article  CAS  PubMed  Google Scholar 

  • Hook SE, Wright ADG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea. doi:10.1155/2010/945785 (Article ID 945785)

    PubMed Central  PubMed  Google Scholar 

  • Iakiviak M, Mackie RI, Cann IK (2011) Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus. Appl Environ Microbiol 77:7541–7550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jami E, Mizrahi I (2012) Composition and similarity of bovine rumen microbiota across individual animals. PLoS One 7:e33306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jami E, Israel A, Kotser A, Mizrahi I (2013) Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 6:1069–1079

    Article  Google Scholar 

  • Kamra DN (2005) Rumen microbial ecosystem. Curr Sci 89:124–136

    CAS  Google Scholar 

  • Karasov WH, Carey HV (2009) Metabolic teamwork between gut microbes and hosts. Microbe 4:323–328

    Google Scholar 

  • Ko KC, Lee JH, Han Y, Choi JH, Song JJ (2013) A novel multifunctional cellulolytic enzyme screened from metagenomic resources representing ruminal bacteria. Biochem Biophys Res Commun 441:567–572

    Article  CAS  PubMed  Google Scholar 

  • Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Jung JY, Oh YK, Lee S-S, Madsen EL, Jeon CO (2012) Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar-coded pyrosequencing and 1H nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 78:5983–5993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li RW, Connor EE, Li C, Baldwin R, Sparks ME (2012) Characterization of the rumen microbiota of pre-ruminant calvesusing metagenomic tools. Environ Microbiol 14:129–139

    Article  PubMed  Google Scholar 

  • Longo C, Bueno ICS, Nozella EF, Goddoy PB, Filho SLSC, Abdalla AL (2006) The influence of head-space and inoculum dilution on in vitro ruminal methane measurements. Int Congr Ser 1293:62–65

    Article  CAS  Google Scholar 

  • Makkar HPS (2004) Recent advances in the in vitro gas method for evaluation of nutritional quality of feed resources. In: FAO (ed) Assessing quality and safety of animal feeds. FAO animal production and health series, Rome, pp 55–58

    Google Scholar 

  • Makkar HPS (2010) In vitro screening of feed resources for efficiency of microbial protein synthesis. In: Vercoe PE, Makkar HPS, Schlink AC (eds) In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies. Springer, Dordrecht, pp 107–144

    Chapter  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386

    Article  CAS  Google Scholar 

  • Perumbakkam S, Mitchell EA, Craig AM (2011) Changes to the rumen bacterial population of sheep with the addition of 2,4,6-trinitrotoluene to their diet. Antonie Van Leeuwenhoek 99:231–240

    Article  CAS  PubMed  Google Scholar 

  • Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J (2009) Metagenomic pyrosequencing and metagenomic identification. Clin Chem 55:856–866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piao H, Lachman M, Malfatti S, Sczyrba A, Knierim B, Auer M, Tringe SG, Mackie RI, Yeoman CJ, Hess M (2014) Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Front Microbiol 5:1–11

    Article  Google Scholar 

  • Pitta DW, Pinchak WE, Dowd SE, Osterstock J, Gontcharova V, Youn E, Dorton K, Yoon I, Min BR, Fulford JD, Wickersham TA, Malinowski DP (2010) Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb Ecol 59:511–522

    Article  PubMed  Google Scholar 

  • Pope PB, Smith W, Denman SE, Tringe SG, Barry K, Hugenholtz P, McSweeney CS, McHardy AC, Morrison M (2011) Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science 333:646–648

    Article  CAS  PubMed  Google Scholar 

  • Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VGH (2012) Metagenomics of the Svalbard Reindeer rumen microbiome reveals abundance of polysaccharide utilization Loci. PLoS One 7:e38571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purushe J, Fouts DE, Morrison M, White BA, Mackie RI, North American Consortium for Rumen Bacteria, Coutinho PM, Henrissat B, Nelson KE (2010) Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol 60:721–729

    Article  PubMed  Google Scholar 

  • Ramette A (2007) Multivariate analysis in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell JB, Rychlick JL (2001) Factors that alter rumen microbial ecology. Science 292:1119–1122

    Article  CAS  PubMed  Google Scholar 

  • Shinkai T, Enishi O, Mitsumori M, Higuchi K, Kobayashi Y, Takenaka A, Nagashima K, Mochizuki M, Kobaiashi Y (2010) Mitigation of methane production from cattle by feeding cashew nut shell liquid. J Dairy Sci 95:5308–5316

    Article  Google Scholar 

  • Sirohi SK, Singh N, Dagar SS, Puniya AK (2012) Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol 95:1135–1154

    Article  CAS  PubMed  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75:165–174

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263

    Article  CAS  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  PubMed  Google Scholar 

  • Vodovnik M, Duncan SH, Reid MD, Cantlay L, Turner K, Parkhill J, Lamed R, Yeoman CJ, Miller MEB, White BA, Bayer EA, Marinsek-Logar R, Flint HJ (2013) Expression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007. PLoS ONE 8:e65333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang F, Li F, Chen G, Liu W (2009) Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res 164:650–657

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Baldwin 6th RL, Li W, Li C, Connor EE, Li RW (2012) The bacterial community composition of the bovine rumen detected using pyrosequencing of 16S rRNA genes. Metagenomics. ID235571

  • Yue ZB, Li WW, Yu HQ (2012) Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass. Bioresour Technol 128:738–744

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by FAPESP grant 2012/03848-8 and we also thank FAPESP for scholarship support provided to R. G. T. (2010/50799-7) and E. M. R. (2012/24588-4) and CNPq for supporting L. D. L. (135815/2011-8). Also, FAPESC grant 3422/2012 and CNPq grant 565062/2010-7 (INCT-Mar COI), supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Mendes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, L.D., de Souza Lima, A.O., Taketani, R.G. et al. Exploring the sheep rumen microbiome for carbohydrate-active enzymes. Antonie van Leeuwenhoek 108, 15–30 (2015). https://doi.org/10.1007/s10482-015-0459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0459-6

Keywords

Navigation