Skip to main content
Log in

Influence of different cellulose/hemicellulose/lignin ratios on the thermal degradation behavior: prediction and optimization

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Vegetal fibers can be applied in several areas, from the medical field to the development of new advanced materials. They have a complex chemical structure including cellulose, hemicellulose, and lignin. Each component plays a different role in the thermal degradation. Apart from it, this study aims to simulate and predict different ratios of cellulose/hemicellulose/lignin in the thermal degradation behavior of a vegetal fiber. This study was divided into two distinct parts: (i) firstly, the thermogravimetric curves (TG) were simulated based on their chemical composition to verify the influence of each component ratio in the degradation behavior. Briefly, 100% hemicellulose sample showed the lowest Tonset, 100% lignin sample showed the highest residue, and 100% cellulose sample showed the lowest residue at 600 °C among all samples studied. (ii) Secondly, a prediction of the thermal behavior for any combination of cellulose, hemicellulose, and lignin was performed by using an artificial neural network (ANN) combined with a surface response methodology (SRM). The prediction curves presented high reliability with the experimental fit, which allowed the thermal degradation behavior prediction of a vegetal fiber with any cellulose, hemicellulose, and lignin ratio.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from Hosoya et al. [12]

Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ali I, Bahaitham H, Naebulharam R (2017) A comprehensive kinetics study of coconut shell waste pyrolysis. Bioresour Technol 235:1–11. https://doi.org/10.1016/j.biortech.2017.03.089

    Article  Google Scholar 

  2. Angrizani CC, Ornaghi HL Jr, Zattera AJ, Amico SC (2016) Thermal and mechanical investigation of interlaminate glass/curaua hybrid polymer composites. J Nat Fibers 14:271–277. https://doi.org/10.1080/15440478.2016.1193091

    Article  Google Scholar 

  3. Barana D, Ali SD, Salanti A, Orlandi M, Castellani L, Hanel T, Zoia L (2016) Influence of lignin features on thermal stability and mechanical properties of natural rubber compounds. ACS Sustain Chem Eng 4:5258–5267. https://doi.org/10.1021/acssuschemeng.6b00774

    Article  Google Scholar 

  4. Van Boekel MAJS (1996) Statistical aspects of kinetic modeling for food science problems. J Food Sci 61:477–486. https://doi.org/10.1111/j.1365-2621.1996.tb13138.x

    Article  Google Scholar 

  5. Borsoi C, Ornaghi HL Jr, Scienza LC, Zattera AJ, Ferreira CA (2017) Isolation and characterisation of cellulose nanowhiskers from microcrystalline cellulose using mechanical processing. Polym Polym Compos 25:563–570. https://doi.org/10.1177/096739111702500801

    Article  Google Scholar 

  6. Burguillo FJ, Wright AJ, Bardsley WG (1983) Use of the F test for determining the degree of enzyme-kinetic and ligand-binding data. A Monte Carlo simulation study. Biochem J 211:23–34. https://doi.org/10.1042/bj2110023

    Article  Google Scholar 

  7. Cabeza A, Sobrón F, Yedro FM, García-Serna J (2015) Autocatalytic kinetic model for thermogravimetric analysis and composition estimation of biomass and polymeric fractions. Fuel 148:212–225. https://doi.org/10.1016/j.fuel.2015.01.048

    Article  Google Scholar 

  8. Conesa JA, Caballero JA, Reyes-Labarta JA (2004) Artificial neural network for modelling thermal decompositions. J Anal Appl Pyrolysis 71:343–352. https://doi.org/10.1016/s0165-2370(03)00093-7

    Article  Google Scholar 

  9. Dall Agnol L, Ornaghi HL Jr, Monticeli FM, Dias FTG, Bianchi O (2021) Polyurethanes synthetized with polyols of distinct molar masses: use of the artificial neural network for prediction of degree of polymerization. Polymer Eng Sci 61:1810–1818. https://doi.org/10.1002/pen.25702

    Article  Google Scholar 

  10. Frigerio P, Zoia L, Orlandi M, Hanel T, Castellani L (2014) Application of sulphur-free lignins as a filler for elastomers: effect of hexamethylenetetramine treatment. Bioresources 9:1387–1400. https://doi.org/10.15376/biores.9.1.1387-1400

  11. Gong X, Yu Y, Gao X, Qiao Y, Xu M, Wu H (2014) Formation of anhydro-sugars in the primary volatiles and solid residues from cellulose fast pyrolysis in a wire-mesh reactor. Energy Fuels 28:5204–5211. https://doi.org/10.1021/ef501112q

    Article  Google Scholar 

  12. Hosoya T, Kawamoto H, Saka S (2007) Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J Anal Appl Pyrolysis 80:118–125. https://doi.org/10.1016/j.jaap.2007.01.006

    Article  Google Scholar 

  13. Kleen M, Gellerstedt G (1995) Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps. J Anal Appl Pyrolysis 35:15–41. https://doi.org/10.1016/0165-2370(95)00893-j

    Article  Google Scholar 

  14. Lazzari LK, Zampieri VB, Neves RM, Zanini M, Zattera AJ, Baldasso C (2018) A study on adsorption isotherm and kinetics of petroleum by cellulose cryogels. Cellulose 26:1231–1246. https://doi.org/10.1007/s10570-018-2111-x

    Article  Google Scholar 

  15. Monticeli FM, Almeida Jr. JHS, Neves RM, Ornaghi FG, Ornaghi Jr. HL (2020) On the 3D void formation of hybrid carbon/glass fiber composite laminates: a statistical approach. Compos Part A Appl Sci Manuf 137:106036. https://doi.org/10.1016/j.compositesa.2020.106036

  16. Monticeli FM, Neves RM, Ornaghi Jr. HL (2021) Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers. Cellulose. https://doi.org/10.1007/s10570-021-03684-2

  17. Neves RM, Lopes KS, Zimmermann MVG, Poletto M, Zattera AJ (2019) Characterization of polystyrene nanocomposites and expanded nanocomposites reinforced with cellulose nanofibers and nanocrystals. Cellulose 26:4417–4429. https://doi.org/10.1007/s10570-019-02392-2

    Article  Google Scholar 

  18. Neves RM, Silveira Lopes K, Zimmermann MGV, Poletto M, Zattera AJ (2019) Cellulose nanowhiskers extracted from tempo-oxidized curaua fibers. J Nat Fibers 17:1355–1365. https://doi.org/10.1080/15440478.2019.1568346

    Article  Google Scholar 

  19. Ornaghi HL Jr, Ornaghi FG, de Carvalho Benini KCC, Bianchi O (2019) A comprehensive kinetic simulation of different types of plant fibers: autocatalytic degradation mechanism. Cellulose 26:7145–7157. https://doi.org/10.1007/s10570-019-02610-x

    Article  Google Scholar 

  20. Ornaghi HL Jr, Ornaghi FG, Neves RM, Monticeli F, Bianchi O (2020) Mechanisms involved in thermal degradation of lignocellulosic fibers: a survey based on chemical composition. Cellulose 27:4949–4961. https://doi.org/10.1007/s10570-020-03132-7

    Article  Google Scholar 

  21. Pecha B, Garcia-Perez M (2015) Pyrolysis of lignocellulosic biomass. Bioenergy, 413–442. https://doi.org/10.1016/b978-0-12-407909-0.00026-2

  22. Poletto M (2016) Thermal degradation and morphological aspects of four wood species used in lumber industry. Rev Arvore 40:941–948. https://doi.org/10.1590/0100-67622016000500018

    Article  MathSciNet  Google Scholar 

  23. Poletto M, Ornaghi Jr. HL (2015) Cellulose: fundamental aspects and current trends. BoD–Books on Demand. https://doi.org/10.5772/59889

  24. Poletto M, Ornaghi HL Jr, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Materials (Basel) 7:6105–6119. https://doi.org/10.3390/ma7096105

    Article  Google Scholar 

  25. Rostami S, Ahmadi-Danesh-Ashtiani H, Toghraie D, Fazaeli R (2020) A statistical method for simulation of boiling flow inside a Platinum microchannel. Physica A 548:123879. https://doi.org/10.1016/j.physa.2019.123879

  26. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2013) Limitations of model-fitting methods for kinetic analysis: polystyrene thermal degradation. Resour Conserv Recycl 74:75–81. https://doi.org/10.1016/j.resconrec.2013.02.014

    Article  Google Scholar 

  27. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  28. Sunphorka S, Chalermsinsuwan B, Piumsomboon P (2017) Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents. Fuel 193:142–158. https://doi.org/10.1016/j.fuel.2016.12.046s

    Article  Google Scholar 

  29. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  30. Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56. https://doi.org/10.1038/ncomms1053

  31. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT (2006) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels 20:388–393. https://doi.org/10.1021/ef0580117

    Article  Google Scholar 

  32. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012

    Article  Google Scholar 

  33. Zanchet A, Demori R, de Sousa FDB, Ornaghi HL Jr, Schiavo LSA, Scuracchio CH (2019) Sugar cane as an alternative green activator to conventional vulcanization additives in natural rubber compounds: thermal degradation study. J Clean Prod 207:248–260. https://doi.org/10.1016/j.jclepro.2018.09.203

    Article  Google Scholar 

  34. Zhang J, Choi YS, Yoo CG, Kim TH, Brown RC, Shanks BH (2015) Cellulose–hemicellulose and cellulose-lignin interactions during fast pyrolysis. ACS Sustain Chem Eng 3:293–301. https://doi.org/10.1021/sc500664h

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Brazilian Agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil)—(Finance Code 001) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heitor Luiz Ornaghi Jr..

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ornaghi, H.L., Monticeli, F.M., Neves, R.M. et al. Influence of different cellulose/hemicellulose/lignin ratios on the thermal degradation behavior: prediction and optimization. Biomass Conv. Bioref. 13, 7775–7782 (2023). https://doi.org/10.1007/s13399-021-01651-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01651-2

Keywords

Navigation