Skip to main content
Log in

A study on adsorption isotherm and kinetics of petroleum by cellulose cryogels

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The development of cellulose aerogels for the adsorption of petroleum becomes interesting due to the cellulose being obtained from biomasses, thus being a natural and biodegradable source. The study of adsorption kinetics and isotherms for this material and application are not reported in the literature. So the objective of this work was to evaluate the behavior of the adsorption process through isothermal and kinetic adsorption models of cellulose cryogels. The cryogel was produced from a cellulose suspension in water obtained by mechanical fibrillation of 1.5% (w/w) unbleached long fiber cellulose of the species Pinus elliotti. The suspension received 4% (w/w) of sodium hydroxide NaOH, and subsequently was frozen and freeze-dried. After freeze-drying, 2 mL of methyltrimethoxysilane (MTMS) was vapor deposited in the cryogel. The study of the kinetics (pseudo-first and second order) and isotherms (Langmuir and Freundlich) of adsorption was performed. Cryogels presented a porosity of 93.51 ± 0.77% and a specific mass of 0.034 ± 0.004 g cm−3, in addition to being hydrophobic (water contact angle of 128.7° ± 3.81). Heterogeneous adsorption capacity was of 23.19 g g−1 with 94% oil retention. In the study of isotherm and kinetics of adsorption, the models that fit the process were pseudo-second order and Langmuir, respectively. Based on the results the adsorption process of oil by the cellulose cryogels samples occurs in monolayer. In addition, the cellulose cryogel developed in the present work is suitable for use in the adsorption of petroleum.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S (2003) Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater 10:159–170

    Article  CAS  Google Scholar 

  • Aghajanloo K, Pirooz MD (2011) The simulation of the oil weathering processes in marine environment. In: International conference on environmental and computer science. IACSIT Press, Singapura

  • Ahmad AL, Sumathi S, Hameed BH (2005) Adsorption of residue oil from palm oil mil effluent using poder and flake chitosan: equilibrium and kinetics studies. Water Res 39:2483–2494

    Article  CAS  Google Scholar 

  • Aulin C, Netrval J, Wagberg L, Lindstrom T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305

    Article  CAS  Google Scholar 

  • ASTM. F726-12 (2012) Standard test methods for sorbent performance of adsorbents. Philadelphia

  • Bracelpa. Disponível em: http://bracelpa.org.br/. Acesso em: 20 ago. 2018

  • Brandão PC (2006) Avaliação do uso do bagaço de cana como adsorvente para a remoção de contaminantes, derivados do petróleo, de efluentes. 2006. 147 f. Dissertação (Mestrado em Engenharia Química). Programa de Pós-Graduação em Engenharia Química—Universidade Federal de Uberlândia, Uberlândia

  • Carvalho BMA, da Silva SL, da Silva LHM, Minim VPR, da Silva MCH, Carvalho LM, Minim LA (2014) Cryogel poly(acrylamide): synthesis, structure and applications. Sep Purif Rev 43:241–262

    Article  CAS  Google Scholar 

  • Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410

    Article  CAS  Google Scholar 

  • Cheng H, Gu B, Pennefather MP, Nguyen TX, Phan-Thien N, Duong HM (2017) Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater Des 130:452–458

    Article  CAS  Google Scholar 

  • Chin SF, Romainor ANB, Pang SC (2014) Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett 115:241–243

    Article  CAS  Google Scholar 

  • Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I to cellulose II. Cellulose 9:7–18

    Article  CAS  Google Scholar 

  • Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968

    Article  CAS  Google Scholar 

  • Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 300:98–118

    Google Scholar 

  • Feng J, Le D, Nguyen ST, Nien VTC, Jewell D, Duong HM (2016) Silica-cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloid Surface A 506:298–305

    Article  CAS  Google Scholar 

  • Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J Amsterdam 156(1):2–10

    Article  CAS  Google Scholar 

  • Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohydr Polym 147:89–999666

    Article  CAS  Google Scholar 

  • Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose-NaOH-water gels and comparison with cellulose-N-Methylmorpholine-N-oxide-water solutions. Biomacromolecules 8:424–432

    Article  CAS  Google Scholar 

  • Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277

    Article  CAS  Google Scholar 

  • Han S, Sun Q, Zheng H, Li J, Jin C (2016) Green and facile fabrication of carbon aerogels from cellulose—based waste newspaper for solving organic pollution. Carbohydr Polym 136:95–100

    Article  CAS  Google Scholar 

  • Ho YS (2004) Pseudo-isotherms using a second order kinetic expression constant. Adsorption 10:151–158

    Article  CAS  Google Scholar 

  • Husing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure and properties. Angew Chem Int Edit 37:22–45

    Article  CAS  Google Scholar 

  • Ibrahim S, Ang HM, Wang S (2009) Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw. Bioresour Technol 100:5744–5749

    Article  CAS  Google Scholar 

  • Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellulose for application in composites. IJIRSET 2:5444–5451

    Google Scholar 

  • Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar celulose aerogels. Colloid Surface A 240:63–67

    Article  CAS  Google Scholar 

  • Jin C, Han S, Li J, Sun Q (2015) Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydr Polym 123:150–156

    Article  CAS  Google Scholar 

  • Khalil HPSA, Davoudpour Y, Islam N, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  Google Scholar 

  • Khosravi M, Azizan S (2017) Preparation of superhydrophobic and superoleophilic nanostructured layer on steel mesh for oil-water separation. Sep Purif Technol 172:366–373

    Article  CAS  Google Scholar 

  • Kingston PF (2002) Long-term environmental impact of oil spills. Spill Sci Technol B 7:53–61

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material angewandte. Angew Chem Int Edit 44:3358–3393

    Article  CAS  Google Scholar 

  • Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocelulose aerogels as floating, sustainable, reusable and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816

    Article  CAS  Google Scholar 

  • Larsson E, Boujemaoui A, Malmstrom E, Carlmark A (2015) Thermoresponsive cryogels reinforced with cellulose nanocrystals. RSC Adv 5:77643–77650

    Article  CAS  Google Scholar 

  • Lavoratti A, Romanzini D, Amico SC, Zattera AJ (2017) Influence of fibre treatment on the characteristics of buriti and ramie polyester composites. Polym Polym Compos 25:247–256

    CAS  Google Scholar 

  • Lazzari LK, Zampieri VB, Zanini M, Zattera AJ, Baldasso C (2017) Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods. Cellulose 24:3421–3431

    Article  CAS  Google Scholar 

  • Lee JA, Yoon MJ, Lee ES, Lim DY, Kim KY (2014) Preparation and characterization of cellulose nanofibers (CNFs) from microcrystalline cellulose (MCC) and CNF/polyamide 6 composites. Macromol Res 22(7):738–745

    Article  CAS  Google Scholar 

  • Lei E, Li W, Ma CH, Liu SX (2018) An ultra-lightweight recyclable carbon aerogel from bleached softwood kraft pulp for efficient oil and organic absorption. Mater Chem Phys 214:291–296

    Article  CAS  Google Scholar 

  • Li B, Xu W, Kronlund D, Maattanen A, Liu J, Smatt J, Peltonen J, Willfor S, Mu X, Xu C (2005) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydr Polym 133:605–612

    Article  Google Scholar 

  • Lozinsky IV, Damshkaln LG, Kurochkin IN, Kurochkin II (2014) Cryostructuring of polymeric systems. 36. Poly(vinyl alcohol) cryogels prepared from solutions of the polymer in water/low-molecular alcohol mixtures. Eur Polym J 53:189–205

    Article  CAS  Google Scholar 

  • Nguyen ST, Feng J, Le NT, Le ATT, Hoang N, Tan VBC, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. I&EC Res 52:18386–18391

    CAS  Google Scholar 

  • Nguyen ST, Feng J, Ng SK, Wong JPW, Tan VBC, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloid Surface A 445:128–134

    Article  CAS  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Peng D, Lan Z, Guo C, Yang C, Dang Z (2013) Application of 362 cellulase for the modification of corn stalk: leading to oil sorption. Bioresour Technol 137:414–418

    Article  CAS  Google Scholar 

  • Plazinski W, Rudzinski W, Plazinka A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interface 152:2–13

    Article  CAS  Google Scholar 

  • Pons A, Casas LL, Estop E, Molins E, Harris KDM, Xu MA (2012) A new route to aerogels: monolithic silica cryogels. J Non-Cryst Solids 358:461–469

    Article  CAS  Google Scholar 

  • Rengasamy R, Das D, Karan CP (2011) Study of oil sorption behavior of filles and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J Hazard Mater 186:526–532

    Article  CAS  Google Scholar 

  • Russo V, Tesser R, Trifuoggi M, Giugni M, Serio MD (2015) A dynamic intraparticle model for fluid-solid adsorption kinetics. Comput Chem Eng 74:66–74

    Article  CAS  Google Scholar 

  • Ruthven DM (1984) Principles of adsorption and adsorption process. Wiley, New York, p 433

    Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogel of high specific surfasse área prepared from nanofibrillated celulose (NFC). Key Eng Mater 71:1593–1599

    CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose-ionic liquid solution: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774

    Article  CAS  Google Scholar 

  • Singh V (2013) Crude oil sorption by raw cotton. I&Ec Res 52(18):6277–6281

    CAS  Google Scholar 

  • Sokker HH, El-Sawy NM, Hassan MA, El-Anadouli BE (2011) Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J Hazard Mater 190:359–365

    Article  CAS  Google Scholar 

  • Sun F, Liu W, Dong Z, Deng Y (2017) Underwater superoleophobicity cellulose nanofibril aerogel through regioselective sulfonation for oil/water separation. Chem Eng J 330:774–782

    Article  CAS  Google Scholar 

  • Szklo AS, Uller VC, Bonfá MHP (2012) Fundamentos do refino de petróleo: tecnologia e economia, 3rd edn. Interciência, Rio de Janeiro, p 328

    Google Scholar 

  • Wahi R, Chuah LA, Choong TSY, Ngaini Z, Nourouzi MM (2013) Oil removal from aqueous state by natural fibrous sorbent: an overview. Sep Purif Technol 113:51–63

    Article  CAS  Google Scholar 

  • Wang D, McLaughlin E, Pfeffer R, Lin YS (2012) Adsorption of oils from pure liquid and oil-water emulsion on hydrophobic silica aerogels. Sep Purif Technol 99:28–35

    Article  CAS  Google Scholar 

  • Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J 20(2):228–238

    Article  CAS  Google Scholar 

  • Xiao S, Gao R, Lu Y, Li J, Sun Q (2015) Fabrication and characterization of nanofibrilated cellulose and its aerogels from natural pine needles. Carbohydr Polym 119:202–209

    Article  CAS  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Composites 41:806–819

    Article  Google Scholar 

  • Yang SZ, Jin HJ, Wei Z, He RX, Ji YJ, Li XM, Yu SP (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19:371–381

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC (2012) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals-polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237

    Article  Google Scholar 

  • Yeo H, Jung J, Song HJ, Goh M (2017) Preparation and formation mechanism of porous carbon cryogel. Micropor Mesopor Mater 245:138–146

    Article  CAS  Google Scholar 

  • Zanini M, Lavoratti A, Lazzari LK, Galiotto D, Pagnocelli M, Baldasso C, Zattera AJ (2017) Producing aerogels from silanized cellulose nanofiber suspension. Cellulose 24:769–779

    Article  CAS  Google Scholar 

  • Zaro M (2014) Capacidade de sorção e cinética de sorção/dessorção de óleos em mantas não tecidas de polipropileno. 2014. 103 f. Dissertação (Mestrado em Engenharia de Processos e Tecnologia). Programa de Pós-Graduação em Engenharia de Processos e Tecnologia—Universidade de Caxias do Sul, Caxias do Sul

  • Zhou F, Cheng G, Jiang B (2014) Effect of silane treatment on microstructure of sisal fibers. Appl Surf Sci 292:806–812

    Article  CAS  Google Scholar 

  • Zimmermann MVG (2013) Desenvolvimento de compósitos expandidos de poli(etileno-co-acetato de vinila)—EVA reforçados com pó de madeira e com fibra de bananeira. 116 f. 2013. Dissertação (Mestrado em Engenharia de Processos e Tecnologias)—Universidade de Caxias do Sul, Caxias do Sul

Download references

Acknowledgments

The authors would like to express their gratitude to the University of Caxias do Sul (UCS, Rio Grande do Sul, Brazil), to the Post-Graduate Program in Process and Technology Engineering (PGEPROTEC) and to the Brazilian Ministry of Labor and Employment (MTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lídia K. Lazzari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazzari, L.K., Zampieri, V.B., Neves, R.M. et al. A study on adsorption isotherm and kinetics of petroleum by cellulose cryogels. Cellulose 26, 1231–1246 (2019). https://doi.org/10.1007/s10570-018-2111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2111-x

Keywords

Navigation