Skip to main content
Log in

A comprehensive kinetic simulation of different types of plant fibers: autocatalytic degradation mechanism

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Kinetic analysis of the non-isothermal degradation of three different plant fibers has been performed using isoconversional model-free methods, model-fitting methods in order to establish if different kinetic approaches provide consistent kinetic parameters. It has been shown that these approaches provide consistent kinetic parameters and can be combined in such a way as to enhance the reliability and quality of each other and consequently the overall kinetic analysis. As a result, the most probable kinetic parameters for the non-isothermal degradation of three different types of plant fibers determined were autocatalytic-type mechanism, following recent literature. The reaction pathway followed the Waterloo’s mechanism. All models were compared with the most common solid-state reaction models using a powerful statistical tool. Activation energy of 180 kJ mol−1 was found for all degradation steps, suggesting that cellulose plays a major role on Arrhenius parameters. Hemicellulose and lignin seems to affect more significantly the reaction order. The potential of the kinetic parameters for reliable prediction has been noticed due correlation coefficient above 0.99.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali I, Bahaitham H, Naibulharam R (2017) A comprehensive kinetics study of coconut shell waste pyrolysis. Bioresour Technol 235:1–11

    Article  CAS  PubMed  Google Scholar 

  • Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  CAS  Google Scholar 

  • Beg MDH, Pickering KL (2008) Accelerated weathering of unbleached and bleached Kraft wood fibre reinforced polypropylene composites. Polym Degrad Stabil 93:1939–1946

    Article  CAS  Google Scholar 

  • Budrugeac P (2009) Application of model-free and multivariate non-linear regression methods for evaluation of the thermo-oxidative endurance of a recent manufactured parchment. J Therm Anal Calorim 97:443–451

    Article  CAS  Google Scholar 

  • Cabeza A, Sobróm F, Yedro FM, Gracía-Serna J (2015) Autocatalytic kinetic model for thermogravimetric analysis and composition estimation of biomass and polymeric fractions. Fuel 148:212–225

    Article  CAS  Google Scholar 

  • Chrissafis K (2008) Kinetics of thermal degradation of polymers: complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim 95:273–283

    Article  Google Scholar 

  • Erceg M, Kresic I, Stipanelov N, Jakic M (2017) Different approaches to the kinetic analysis of thermal degradation of poly(ethylene oxide). J Therm Anal Calorim 131:325–334

    Article  CAS  Google Scholar 

  • Friedman H (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C 6:183–195

    Article  Google Scholar 

  • Galwey AK (1997a) Arrhenius parameters and compensation behaviour in solid-state decompositions. Thermochim Acta 300:107–115

    Article  CAS  Google Scholar 

  • Galwey AK (1997b) Compensation effect in heterogeneous catalysis. Adv Catal 5:247–322

    Google Scholar 

  • Galwey AK, Brown ME (2002) Application of the Arrhenius equation to solid state kinetics: can this be justified? Thermochim Acta 386:91–98

    Article  CAS  Google Scholar 

  • Khawam A, Flanagan D (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328

    Article  CAS  PubMed  Google Scholar 

  • Madhusmita D, Kaustubha M (2019) Effect of different ionic liquids and anti-solvents on dissolution and regeneration of Miscanthus towards bioethanol. Biomass Bionerg 124:33–42

    Article  CAS  Google Scholar 

  • Manfredi LB, Rodríguez ES, Wladyka-Przybylak M, Vásquez A (2006) Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stabil 91:255–261

    Article  CAS  Google Scholar 

  • Mano B, Araújo JRS, Spinacé SMA, De Paoli MA (2010) Polyolefin composites with curauafibres: effect of the processing conditions on mechanical properties, morphology and fibres dimensions. Compos Sci Technol 70:29–35

    Article  CAS  Google Scholar 

  • Methacanon P, Weerawatsophon U, Sumransin N, Prahsarn C, Bergado DT (2010) Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydr Polym 82:1090–1096

    Article  CAS  Google Scholar 

  • Miura K, Maki T (1998) A Simple Method for Estimating f(E) and k0(E) in the Distributed Activation Energy Model. Energy Fuel 12:864–869

    Article  CAS  Google Scholar 

  • Moukhina E (2012) Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim 109:1203–1214

    Article  CAS  Google Scholar 

  • Orfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materialsÐthree independent reactions model. Fuel 78:349–358

    Article  Google Scholar 

  • Ornaghi HLJ, Poletto M, Zattera AJ, Amico SC (2014a) Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose 21:177–178

    Article  CAS  Google Scholar 

  • Ornaghi HL, Zattera AJ, Amico SC (2014b) Thermal behavior and the compensation effect of vegetal fibers. Cellulose 21:189–201

    Article  CAS  Google Scholar 

  • Ornaghi HLJ, Moraes A, Poletto M, Zattera AJ, Amico SC (2016) Chemical composition, tensile properties and structural characterization of buriti fiber. Cell Chem Technol 50:15–22

    CAS  Google Scholar 

  • Ornaghi FG, Bianchi O, Ornaghi HL Jr, Jacobi MAM (2019) Fluoroelastomers reinforced with carbon nanofibers: A survey on rheological, swelling, mechanical, morphological, and prediction of the thermal degradation kinetic behavior. Polym Eng Sci 59:1223–1232

    Article  CAS  Google Scholar 

  • Ourique PA, Bianchi O, Ornaghi HLJ, Ornaghi FG (2019) Thermo-oxidative degradation kinetics of renewable hybrid polyurethane–urea obtained from air-oxidized soybean oil. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08089-9

    Article  Google Scholar 

  • Pereira PHF, Rosa MF, Cioffi MOH, Benini KCC, Milanese AC, Voorwald HJC, Mulinari DR (2015) Vegetal fibers in polymeric materials: a review. Mater Res 25:9–22

    CAS  Google Scholar 

  • Pistor V, Fiorio R, Ornaghi FG, Ornaghi HLJ, Zattera AJ (2001) Degradation kinetics of vulcanized ethylene–propylene–diene terpolymer residues. J Appl Polym Sci 122:1053–1057

    Article  CAS  Google Scholar 

  • Pistor V, Ornaghi FG, Ornaghi HL, Zattera AJ (2012) Degradation kinetic of epoxy nanocomposites containing different percentage of epoxycyclohexyl—POSS. Polym Compos 33:1224–1232

    Article  CAS  Google Scholar 

  • Poletto M, Zattera AJ, Santana RMC, Forte MMC (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioreour Technol 109:148–153

    Article  CAS  Google Scholar 

  • Poletto M, Ornaghi HLJ, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez P, Pérez-Maqueda L, Perejon A, Criado JM (2013) Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim Acta 552:54–59

    Article  CAS  Google Scholar 

  • Sbirrazzuoli N, Girault Y, Elégant L (1995) Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 1. Application to single-peak methods: freeman-Carroll, Ellerstein, Achar-Brindley-Sharp and multiple linear regression methods. Thermochim Acta 260:147–164

    Article  CAS  Google Scholar 

  • Sunphorka S, Chalermsinsiwan B, Piumsomboon P (2017) Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituints. Fuel 193:142–158

    Article  CAS  Google Scholar 

  • Vyazovkin S et al (2006) Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Calorim 83:45–51

    Article  CAS  Google Scholar 

  • Vyazovkin S, Burnham A, Criado JM, Pérez-Maqueda L, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendationsfor performing kinetic computations on thermalanalysis data. Thermochim Acta 20:1–19

    Article  CAS  Google Scholar 

  • Woo Park J, Cheon OhS, Pyeong Lee H, Taik Kim H, Ok Yoo K (2000) A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab 67:535–540

    Article  Google Scholar 

  • Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98

    Article  CAS  Google Scholar 

  • Zanchet A, Demori R, de Souza FDB, Ornaghi jr. HL, Schiavo LSA, Scuracchio C (2019) Sugar cane as na alternative green activator to conventional vulcanization additives in natural rubber compounds: thermal degradation study. J Clean Prod 207:24–260

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thanks Brazilian National Council for Scientific and Technological Development (Project Number: 153335/2018-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heitor L. Ornaghi Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ornaghi, H.L., Ornaghi, F.G., de Carvalho Benini, K.C.C. et al. A comprehensive kinetic simulation of different types of plant fibers: autocatalytic degradation mechanism. Cellulose 26, 7145–7157 (2019). https://doi.org/10.1007/s10570-019-02610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02610-x

Keywords

Navigation