Skip to main content
Log in

Comparative Analysis of Lignocellulose Agricultural Waste and Pre-treatment Conditions with FTIR and Machine Learning Modeling

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Resource-efficient production of value-added products from lignocellulosic waste is an important requisite for sustainable development. Since constituent separation of lignocellulosic waste is challenging due to the energetically robust structure of the cellulose-hemicellulose-lignin network, Fourier transform infrared (FTIR) spectroscopy is used for rapid, non-invasive analysis of cellulose and lignin for lignocellulose farm waste procured from about 30 different crops post-harvest. FTIR mode peak heights show linear concentration dependence over a narrow range, and yield 44 ± 5% cellulose and 9.95 ± 2% lignin content in one variety of rice straw, with high standard deviation for inter-species yield. Due to compositional heterogeneity and multivariate nature, FTIR data is analyzed with machine learning models. Species-wide pattern classification for cellulose and lignin in the lignocellulose data is first conducted with linear discriminant analysis, decision tree, and random forest algorithms. For the present data, the best classification accuracy is obtained with random forest algorithm with an accuracy score of 0.75, with least mismatches between the predicted and true values. Convolutional neural network modeling with Bayesian regularization training algorithm using FTIR absorption peak parameters resulted in a good representation of the lignocellulose data with root mean square error ~ 0.11. The structural changes produced in cellulose due to different pre-treatments is analyzed with peak heights of FTIR modes and correlated with efficiency of enzymatic hydrolysis to form glucose. Lignocellulose pre-treatment with deep eutectic solvent improves cellulose accessibility to enzymes, with 38% glucose yield enhancement in comparison to acid and alkali pre-treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6

Similar content being viewed by others

Abbreviations

FTIR:

Fourier transform infrared spectroscopy

CNN:

Convolutional neural network

LDA:

Linear decomposition analysis

HCA:

Hierarchical cluster analysis

References

  1. Abo BO, Gao M, Wang Y, Wu C, Ma H, Wang Q (2019) Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. Rev Environ Health 34(1):57–68

    Article  CAS  PubMed  Google Scholar 

  2. Chen H, Qiu W (2010) Key technologies for bioethanol production from lignocellulose. Biotechnol Adv 28(5):556–562

    Article  PubMed  Google Scholar 

  3. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Biofuels, Advances in Biochemical Engineering/Biotechnology 108:41–65

  4. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27

    Article  CAS  Google Scholar 

  5. Banerjee S, Sen R, Pandey RA, Chakrabarti T, Satpute D, Giri BS, Mudliar S (2009) Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenerg 33(12):1680–1686

    Article  CAS  Google Scholar 

  6. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30(6):419–427

    Article  CAS  PubMed  Google Scholar 

  7. Morone A, Pandey RA (2014) Lignocellulosic biobutanol production: gridlocks and potential remedies. Renew Sustain Energy Rev 37:21–35

    Article  CAS  Google Scholar 

  8. Xu N, Liu S, Xin F, Zhou J, Jia H, Xu J, Jiang M, Dong W (2019) Biomethane production from lignocellulose: biomass recalcitrance and its impacts on anaerobic digestion. Frontiers in Bioengineering and Biotechnology 7:191

  9. Monlau F, Sambusiti C, Barakat A, Guo XM, Latrille E, Trably E, Steyer JP, Carrere H (2012) Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ Sci Technol 46(21):12217–12225

    Article  CAS  PubMed  Google Scholar 

  10. Kumar R, Strezov V, Weldekidan H, He J, Singh S, Kan T, Dastjerdi B (2020) Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renew Sustain Energy Rev 123:109763

    Article  CAS  Google Scholar 

  11. Kabir G, Hameed BH (2017) Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew Sustain Energy Rev 70:945–967

    Article  CAS  Google Scholar 

  12. Reshmy R, Thomas D, Philip E, Paul SA, Madhavan A, Sindhu R, Sirohi R, Varjani S, Pugazhendhi A, Pandey A, Binod P (2021) Bioplastic production from renewable lignocellulosic feedstocks: a review. Rev Environ Sci Bio/Technol 20(1):167–187

    Article  CAS  Google Scholar 

  13. Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers 11(5):751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xia Q, Chen C, Yao Y, Li J, He S, Zhou Y, Li T, Pan X, Yao Y, Hu L (2021) A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat Sustain 4(7):627–635

    Article  Google Scholar 

  15. Singhvi M, Gokhale D (2013) Biomass to biodegradable polymer (PLA). RSC Adv 3(33):13558–13568

    Article  CAS  Google Scholar 

  16. Petridis L, Smith JC (2018) Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nat Rev Chem 2(11):382–389

    Article  CAS  Google Scholar 

  17. Zhang X, Yang W, Blasiak W (2011) Modeling study of woody biomass: interactions of cellulose, hemicellulose, and lignin. Energy Fuels 25(10):4786–4795

    Article  CAS  Google Scholar 

  18. Miyoshi K, Uezu K, Sakurai K, Shinkai S (2006) Inter-chain and arrayed hydrogen bonds in β-1, 3-d-xylan triple helix predicted by quantum mechanics calculation. Carbohyd Polym 66(3):352–356

    Article  CAS  Google Scholar 

  19. Schmidt M, Gierlinger N, Schade U, Rogge T, Grunze M (2006) Polarized infrared microspectroscopy of single spruce fibers: hydrogen bonding in wood polymers. Biopolymers Original Res Biomol 83(5):546–555

    CAS  Google Scholar 

  20. Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42(3):963–969

    Article  Google Scholar 

  21. Zhang Y, He H, Liu Y, Wang Y, Huo F, Fan M, Adidharma H, Li X, Zhang S (2019) Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chem 21(1):9–35

    Article  CAS  Google Scholar 

  22. Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuels 20(4):1727–1737

    Article  CAS  Google Scholar 

  23. Ciesielski PN, Pecha MB, Lattanzi AM, Bharadwaj VS, Crowley MF, Bu L, Vermaas JV, Steirer KX, Crowley MF (2020) Advances in multiscale modeling of lignocellulosic biomass. ACS Sustain Chem Eng 8(9):3512–3531

    Article  CAS  Google Scholar 

  24. Foston M, Nishiyama Y, Schulz R, Lindner B, Hanson BL, Harton S, Heller WT, Urban V, Evans BR, Gnanakaran S, Ragauskas AJ (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chemistry 16:63–68

  25. Pingali SV, O’Neill HM, Nishiyama Y, He L, Melnichenko YB, Urban V, Petridis L, Davison B, Langan P (2014) Morphological changes in the cellulose and lignin components of biomass occur at different stages during steam pretreatment. Cellulose 21(2):873–878

    Article  CAS  Google Scholar 

  26. Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC, Ruiz-Ramos E, Castro-Galiano E, Cardona-Alzate CA (2019) Acid pretreatment of lignocellulosic biomass for energy vectors production: a review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sustain Energy Rev 107:587–601

    Article  CAS  Google Scholar 

  27. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  28. Johnson CW, Salvachúa D, Khanna P, Smith H, Peterson DJ, Beckham GT (2016) Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metab Eng Commun 3:111–119

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ullah H, Wilfred CD, Shaharun MS (2019) Ionic liquid-based extraction and separation trends of bioactive compounds from plant biomass. Sep Sci Technol 54(4):559–579

    Article  CAS  Google Scholar 

  30. Halder P, Kundu S, Patel S, Setiawan A, Atkin R, Parthasarthy R, Paz-Ferreiro J, Surapaneni A, Shah K (2019) Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renew Sustain Energy Rev 105:268–292

    Article  CAS  Google Scholar 

  31. Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4(10):3913–3929

    Article  CAS  Google Scholar 

  32. Hamawand I, Seneweera S, Kumarasinghe P, Bundschuh J (2020) Nanoparticle technology for separation of cellulose, hemicellulose and lignin nanoparticles from lignocellulose biomass: a short review. Nano-Struct Nano-Objects 24:100601

    Article  CAS  Google Scholar 

  33. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280

    Article  CAS  Google Scholar 

  34. Ranjan A, Khanna S, Moholkar VS (2013) Feasibility of rice straw as alternate substrate for biobutanol production. Appl Energy 103:32–38

    Article  CAS  Google Scholar 

  35. Ranjan A, Moholkar VS (2013) Comparative study of various pretreatment techniques for rice straw saccharification for the production of alcoholic biofuels. Fuel 112:567–571

    Article  CAS  Google Scholar 

  36. Liew YX, Chan YJ, Manickam S, Chong MF, Chong S, Tiong TJ, Lim JW, Pan GT (2020) Enzymatic pretreatment to enhance anaerobic bioconversion of high strength wastewater to biogas: a review. Sci Total Environ 713:136373

    Article  CAS  PubMed  Google Scholar 

  37. Chen Z, Bai X, Wan C (2018) High-solid lignocellulose processing enabled by natural deep eutectic solvent for lignin extraction and industrially relevant production of renewable chemicals. ACS Sustain Chem Eng 6(9):12205–12216

    Article  CAS  Google Scholar 

  38. Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res 23(10):9265–9275

    Article  CAS  Google Scholar 

  39. Bano S, Negi YS (2017) Studies on cellulose nanocrystals isolated from groundnut shells. Carbohyd Polym 157:1041–1049

    Article  CAS  Google Scholar 

  40. Geng W, Narron R, Jiang X, Pawlak JJ, Chang HM, Park S, Jameel H, Venditti RA (2019) The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass. Cellulose 26(5):3219–3230

    Article  CAS  Google Scholar 

  41. Zhu M, Li T, Davis CS, Yao Y, Dai J, Wang Y, AlQatari F, Gilman JW, Hu L (2016) Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26:332–339

    Article  CAS  Google Scholar 

  42. Song Z, Liu X, Yan Z, Yuan Y, Liao Y (2014) Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion. PloS one 9(4):e93801

    Article  PubMed  PubMed Central  Google Scholar 

  43. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6(1):24–27

    Article  CAS  Google Scholar 

  44. Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809

    Article  CAS  Google Scholar 

  45. Garside P, Wyeth P (2003) Identification of cellulosic fibres by FTIR spectroscopy-thread and single fibre analysis by attenuated total reflectance. Stud Conserv 48(4):269–275

    Article  CAS  Google Scholar 

  46. Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71(12):1969–1975

    Article  CAS  Google Scholar 

  47. Mendes FR, Bastos MS, Mendes LG, Silva AR, Sousa FD, Monteiro-Moreira AC, Cheng HN, Biswas A, Moreira RA (2017) Preparation and evaluation of hemicellulose films and their blends. Food Hydrocolloids 70:181–190

    Article  CAS  Google Scholar 

  48. Khenblouche A, Bechki D, Gouamid M, Charradi K, Segni L, Hadjadj M, Boughali S (2019) Extraction and characterization of cellulose microfibers from Retama raetam stems. Polímeros 29(1):1–8, e2019011

  49. El-Sakhawy M, Kamel S, Salama A, Tohamy HAS (2018) Preparation and infrared study of cellulose based amphiphilic materials. J Cellulose Chem Technol 52(3–4):193–200

    CAS  Google Scholar 

  50. Shi Z, Xu G, Deng J, Dong M, Murugadoss V, Liu C, Shao Q, Wu S, Guo Z (2019) Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. Green Chem Lett Rev 12(3):235–243

    Article  CAS  Google Scholar 

  51. Zhang Q, Vigier KDO, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41(21):7108–7146

    Article  CAS  PubMed  Google Scholar 

  52. Wang D, Tian F, Yang SX, Zhu Z, Jiang D, Cai B (2020) Improved deep CNN with parameter initialization for data analysis of near-infrared spectroscopy sensors. Sensors 20(3):874

    Article  PubMed  PubMed Central  Google Scholar 

  53. Peng H, Gao X, He Y, Li Y, Ji Y, Liu C, Ekahana SA, Pei D, Liu Z, Shen Z, Chen Y (2020) Super resolution convolutional neural network for feature extraction in spectroscopic data. Rev Sci Instrum 91(3):033905

    Article  CAS  PubMed  Google Scholar 

  54. Ho CS, Jean N, Hogan CA, Blackmon L, Jeffrey SS, Holodniy M, Banaei N, Saleh AA, Ermon S, Dionne J (2019) Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun 10(1):1–8

    Article  Google Scholar 

  55. Kirchberger-Tolstik T, Pradhan P, Vieth M, Grunert P, Popp J, Bocklitz TW, Stallmach A (2020) Towards an interpretable classifier for characterization of endoscopic Mayo scores in ulcerative colitis using Raman Spectroscopy. Anal Chem 92(20):13776–13784

    Article  CAS  PubMed  Google Scholar 

  56. Burden F, Winkler D (2008) Bayesian regularization of neural networks. In: Livingstone DJ (ed) Artificial Neural Networks. Methods in Molecular Biology, Humana Press 458:23–42

  57. Ng W, Minasny B, Mendes WDS, Demattê JAM (2020) The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil 6(2):565–578

    Article  CAS  Google Scholar 

  58. Aghbashlo M, Peng W, Tabatabaei M, Kalogirou SA, Soltanian S, Hosseinzadeh-Bandbafha H, Mahian O, Lam SS (2021) Machine learning technology in biodiesel research: a review. Prog Energy Combust Sci 85:100904

    Article  Google Scholar 

  59. Ghosh M, Prajapati BP, Suryawanshi RK, Dey KK, Kango N (2019) Study of the effect of enzymatic deconstruction on natural cellulose by NMR measurements. Chem Phys Lett 727:105–115

    Article  CAS  Google Scholar 

Download references

Funding

Funding for the results presented here was obtained from Gujarat State Biotechnology Mission, Gujarat, India (GSBTM/JDR&D/608/2020/462).

Author information

Authors and Affiliations

Authors

Contributions

Debjani Bagchi contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Manali Jayesh Pancholi, Anand Khristi, and Athira K.M. The first draft of the manuscript was written by Debjani Bagchi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Debjani Bagchi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 331 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pancholi, M.J., Khristi, A., M., A.K. et al. Comparative Analysis of Lignocellulose Agricultural Waste and Pre-treatment Conditions with FTIR and Machine Learning Modeling. Bioenerg. Res. 16, 123–137 (2023). https://doi.org/10.1007/s12155-022-10444-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10444-y

Keywords

Navigation