Skip to main content
Log in

Advanced Design, Fabrication, and Applications of 3D-Printable Piezoelectric Nanogenerators

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Piezoelectric nanogenerator (PENG) is a leading-edge mechanical energy harvesting device used in portable power supply and self-powered sensor systems. Advanced 3D printers have been recently used to create 3D printed (3DP) PENGs. This has facilitated the rapid fabrication of PENGs and their integration into wearable electronics, biomedical systems, and internet of things devices. However, researchers face several critical challenges in developing robust 3DP-PENGs that can produce adequate electrical energy for self-powered systems. Therefore, this review on 3DP-PENGs is conducted to highlight their recent developments and challenges. This paper presents the latest 3D-printed piezoelectric nanogenerators in terms of their materials selection and functionalization, design and architecture formation, and applications including pressure sensors, flow sensors, microphones, and implants. Finally, crucial challenges and optimization strategies that considerably impact the output performance of 3DP-PENGs, along with a roadmap for their future enhancement are given. It is envisioned that this work will help reduce the gap between 3D printing and PENG technologies and accelerate the research and development of 3DP-PENGs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

[43] ©

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hwang, G.T., Byun, M., Jeong, C.K., Lee, K.J.: Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthc. Mater. 4(5), 646–658 (2015). https://doi.org/10.1002/adhm.201400642

    Article  CAS  Google Scholar 

  2. Shi, B., et al.: Body-integrated self-powered system for wearable and implantable applications. ACS Nano 13(5), 6017–6024 (2019). https://doi.org/10.1021/acsnano.9b02233

    Article  CAS  Google Scholar 

  3. Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006). https://doi.org/10.1126/science.1124005

    Article  CAS  Google Scholar 

  4. He, J., et al.: A high-resolution flexible sensor array based on PZT nanofibers. Nanotechnology (2020). https://doi.org/10.1088/1361-6528/ab667a

    Article  Google Scholar 

  5. Renteria, A., et al.: Optimization of 3D printing parameters for BaTiO3 piezoelectric ceramics through design of experiments. Res. Express Mater. (2019). https://doi.org/10.1088/2053-1591/ab200e

    Article  Google Scholar 

  6. Bodkhe, S., Turcot, G., Gosselin, F.P., Therriault, D.: One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interfaces 9(24), 20833–20842 (2017)

    Article  CAS  Google Scholar 

  7. Jin, L., et al.: Polarization-free high-crystallization β-PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor. Nano Energy 50(May), 632–638 (2018). https://doi.org/10.1016/j.nanoen.2018.05.068

    Article  CAS  Google Scholar 

  8. Hwang, G.T., et al.: Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26(28), 4880–4887 (2014). https://doi.org/10.1002/adma.201400562

    Article  CAS  Google Scholar 

  9. Dagdeviren, C., Li, Z., Wang, Z.L.: Energy harvesting from the animal-human body for self-powered electronics. Annu. Rev. Biomed. Eng. 19, 85–108 (2017). https://doi.org/10.1146/annurev-bioeng-071516-044517

    Article  CAS  Google Scholar 

  10. Parvez Mahmud, M.A., Huda, N., Farjana, S.H., Asadnia, M., Lang, C.: Recent advances in nanogenerator-driven self-powered implantable biomedical devices. Adv. Energy Mater. 8(2), 1–25 (2018). https://doi.org/10.1002/aenm.201701210

    Article  CAS  Google Scholar 

  11. Mahmud, M.A.P., et al.: 3D-printed triboelectric nanogenerators: state of the art, applications, and challenges. Adv. Energy Sustain. Res. 2(3), 2000045 (2021). https://doi.org/10.1002/aesr.202000045

    Article  Google Scholar 

  12. Mahmud, M.A.P., Lee, J.J., Kim, G.H., Lim, H.J., Choi, K.B.: Improving the surface charge density of a contact-separation-based triboelectric nanogenerator by modifying the surface morphology. Microelectron. Eng. 159, 102–107 (2016). https://doi.org/10.1016/j.mee.2016.02.066

    Article  CAS  Google Scholar 

  13. Wu, N., et al.: In vivo delivery of Atoh1 gene to rat cochlea using a dendrimer-based nanocarrier. J. Biomed. Nanotechnol. 9(10), 1736–1745 (2013). https://doi.org/10.1166/jbn.2013.1684

    Article  CAS  Google Scholar 

  14. Choi, Y.S., Jing, Q., Datta, A., Boughey, C., Kar-Narayan, S.: A triboelectric generator based on self-poled Nylon-11 nanowires fabricated by gas-flow assisted template wetting. Energy Environ. Sci. 10(10), 2180–2189 (2017). https://doi.org/10.1039/c7ee01292f

    Article  CAS  Google Scholar 

  15. Li, J., Wang, X.: Research update: materials design of implantable nanogenerators for biomechanical energy harvesting. APL Mater. (2017). https://doi.org/10.1063/1.4978936

    Article  Google Scholar 

  16. He, X., et al.: A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 28(45), 1–8 (2018). https://doi.org/10.1002/adfm.201805540

    Article  CAS  Google Scholar 

  17. Zhang, S., Rhee, S., Randall, C.A., Shrout, T.R.: Shear-mode piezoelectric properties of Pb (Yb 1/2 Nb 1/2) O 3–PbTiO 3 single crystals. Appl. Phys. Lett. 81(5), 892–894 (2002)

    Article  CAS  Google Scholar 

  18. T. L. B. Tseng, A. Akundi, and H. Kim 2018 4-D printing of pressure sensors and energy harvesting devices for engineering education. In: ASEE Annu. Conf. Expo. Conf. Proc., vol. 2018 June. https://doi.org/10.18260/1-2--29654.

  19. Rayate, A., Jain, P.K.: A review on 4d printing material composites and their applications. Mater. Today Proc. 5(9), 20474–20484 (2018). https://doi.org/10.1016/j.matpr.2018.06.424

    Article  CAS  Google Scholar 

  20. Zhou, X., et al.: All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy 72, 104676 (2020). https://doi.org/10.1016/j.nanoen.2020.104676

    Article  CAS  Google Scholar 

  21. Yoon, H.J., et al.: 3D-printed biomimetic-villus structure with maximized surface area for triboelectric nanogenerator and dust filter. Nano Energy 63, 103857 (2019). https://doi.org/10.1016/j.nanoen.2019.103857

    Article  CAS  Google Scholar 

  22. Yang, Y., et al.: Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 22, 414–421 (2016). https://doi.org/10.1016/j.nanoen.2016.02.045

    Article  CAS  Google Scholar 

  23. Mitchell, A., Lafont, U., Hołyńska, M., Semprimoschnig, C.: Additive manufacturing—A review of 4D printing and future applications. Addit. Manuf. 24, 606–626 (2018). https://doi.org/10.1016/j.addma.2018.10.038

    Article  CAS  Google Scholar 

  24. Chandrashekar, B.N., et al.: Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 27(35), 5210–5216 (2015). https://doi.org/10.1002/adma.201502560

    Article  CAS  Google Scholar 

  25. Zheng, Q., Shi, B., Li, Z., Wang, Z.L.: Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv. Sci. 4(7), 1–23 (2017). https://doi.org/10.1002/advs.201700029

    Article  CAS  Google Scholar 

  26. Jiang, D., et al.: A 25-year bibliometric study of implantable energy harvesters and self-powered implantable medical electronics researches. Mater. Today Energy 16, 100386 (2020). https://doi.org/10.1016/j.mtener.2020.100386

    Article  Google Scholar 

  27. Seol, M.L., et al.: All 3D printed energy harvester for autonomous and sustainable resource utilization. Nano Energy 52(July), 271–278 (2018). https://doi.org/10.1016/j.nanoen.2018.07.061

    Article  CAS  Google Scholar 

  28. Tan, P., et al.: A battery-like self-charge universal module for motional energy harvest. Adv. Energy Mater. 9(36), 1–9 (2019). https://doi.org/10.1002/aenm.201901875

    Article  CAS  Google Scholar 

  29. Tcho, I.W., Kim, W.G., Choi, Y.K.: A self-powered character recognition device based on a triboelectric nanogenerator. Nano Energy 70, 104534 (2020). https://doi.org/10.1016/j.nanoen.2020.104534

    Article  CAS  Google Scholar 

  30. Lee, A.Y., An, J., Chua, C.K.: Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering 3(5), 663–674 (2017). https://doi.org/10.1016/J.ENG.2017.05.014

    Article  CAS  Google Scholar 

  31. Li, X., Shang, J., Wang, Z.: Intelligent materials: a review of applications in 4D printing. Assem. Autom. 37(2), 170–185 (2017). https://doi.org/10.1108/AA-11-2015-093

    Article  Google Scholar 

  32. J. Lee, H. C. Kim, J. W. Choi, and I. H. Lee 2017 A review on 3D printed smart devices for 4D printing. Int. J. Precis. Eng. Manuf. Green Technol. 4(3):373–383. https://doi.org/10.1007/s40684-017-0042-x

  33. Khoo, Z.X., et al.: 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys. Prototyp. 10(3), 103–122 (2015). https://doi.org/10.1080/17452759.2015.1097054

    Article  Google Scholar 

  34. Chen, C., et al.: Additive manufacturing of piezoelectric materials. Adv. Funct. Mater. 30(52), 1–29 (2020). https://doi.org/10.1002/adfm.202005141

    Article  CAS  Google Scholar 

  35. Smirnov, A., Chugunov, S., Kholodkova, A., Isachenkov, M., Vasin, A., Shishkovsky, I.: Progress and challenges of 3D-printing technologies in the manufacturing of piezoceramics. Ceram. Int. 47(8), 10478–10511 (2021). https://doi.org/10.1016/j.ceramint.2020.12.243

    Article  CAS  Google Scholar 

  36. E. R. Cholleti and I. Gibson 2018 ABS Nano Composite Materials in Additive Manufacturing. In: IOP Conf. Ser. Mater. Sci. Eng. https://doi.org/10.1088/1757-899X/455/1/012038.

  37. Li, H., et al.: 3D printed flexible triboelectric nanogenerator with viscoelastic inks for mechanical energy harvesting. Nano Energy 58, 447–454 (2019)

    Article  CAS  Google Scholar 

  38. Schaffner, M., Faber, J.A., Pianegonda, L., Rühs, P.A., Coulter, F., Studart, A.R.: 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat. Commun. 9(1), 1–9 (2018)

    Article  CAS  Google Scholar 

  39. Li, Y., Cheng, G., Lin, Z.-H., Yang, J., Lin, L., Wang, Z.L.: Single-electrode-based rotationary triboelectric nanogenerator and its applications as self-powered contact area and eccentric angle sensors. Nano Energy 11, 323–332 (2015)

    Article  CAS  Google Scholar 

  40. Zolfagharian, A., Kaynak, A., Kouzani, A.: Closed-loop 4D-printed soft robots. Mater. Des. 188, 108411 (2020)

    Article  Google Scholar 

  41. Kim, H., Torres, F., Wu, Y., Villagran, D., Lin, Y., Tseng, T.-L.: Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater. Struct. 26(8), 085027 (2017). https://doi.org/10.1088/1361-665x/aa738e

    Article  CAS  Google Scholar 

  42. Cheng, J., Chen, Y., Wu, J.W., Ji, X.R., Wu, S.H.: 3d printing of BaTiO3 piezoelectric ceramics for a focused ultrasonic array. Sensors (Switzerland) (2019). https://doi.org/10.3390/s19194078

    Article  Google Scholar 

  43. Kim, H., et al.: Fabrication of bulk piezoelectric and dielectric BaTiO 3 ceramics using paste extrusion 3D printing technique. J. Am. Ceram. Soc. 102(6), 3685–3694 (2019). https://doi.org/10.1111/jace.16242

    Article  CAS  Google Scholar 

  44. Goat, C.A., Whatmore, R.W.: The effect of grinding conditions on lead zirconate titanate machinability. J. Eur. Ceram. Soc. 19(6), 1311–1313 (1999). https://doi.org/10.1016/S0955-2219(98)00426-9

    Article  CAS  Google Scholar 

  45. Yao, G., et al.: Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9(1), 1–10 (2018)

    Article  Google Scholar 

  46. J. B. Lando, H. G. Olf, and A. Peterlin 1966 Nuclear magnetic resonance and x-ray determination of the structure of poly vinylidene fluoride. J. Polym. Sci. Part A 1 Polym. Chem. 4(4): 941–951

  47. Pavlović, V.P., et al.: Structural properties of composites of polyvinylidene fluoride and mechanically activated BaTiO3 particles. Phys. Scr. 2013(T157), 14006 (2013)

    Article  Google Scholar 

  48. Pavlović, V.P., Popović, D., Krstić, J., Dojčilović, J., Babić, B., Pavlović, V.B.: Influence of mechanical activation on the structure of ultrafine BaTiO3 powders. J. Alloys Compd. 486(1–2), 633–639 (2009)

    Article  Google Scholar 

  49. Mendes, S.F., Costa, C.M., Caparrós, C., Sencadas, V., Lanceros-Méndez, S.: Effect of filler size and concentration on the structure and properties of poly (vinylidene fluoride)/BaTiO 3 nanocomposites. J. Mater. Sci. 47(3), 1378–1388 (2012)

    Article  CAS  Google Scholar 

  50. Yao, J., Bastiaansen, C.W.M., Peijs, T.: High strength and high modulus electrospun nanofibers. Fibers 2(2), 158–186 (2014)

    Article  Google Scholar 

  51. Roy, M., Nelson, J.K., MacCrone, R.K., Schadler, L.S., Reed, C.W., Keefe, R.: Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 12(4), 629–643 (2005)

    Article  CAS  Google Scholar 

  52. Chen, Z., et al.: 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy 27, 78–86 (2016)

    Article  Google Scholar 

  53. Kim, K., et al.: 3D optical printing of piezoelectric nanoparticle-polymer composite materials. ACS Nano 8(10), 9799–9806 (2014). https://doi.org/10.1021/nn503268f

    Article  CAS  Google Scholar 

  54. Han, L.-H., Suri, S., Schmidt, C.E., Chen, S.: Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering. Biomed. Microdevices 12(4), 721–725 (2010)

    Article  CAS  Google Scholar 

  55. G. Mapili, Y. Lu, S. Chen, and K. Roy 2005 Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J. Biomed. Mater. Res. Part B Appl. Biomater. An Off. J. Soc. Biomater. Japanese Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., vol. 75, no. 2, pp. 414–424, 2005.

  56. Chen, D., Jiao, X.: Solvothermal synthesis and characterization of barium titanate powders. J. Am. Ceram. Soc. 83(10), 2637–2639 (2000)

    Article  CAS  Google Scholar 

  57. Xu, S., Yeh, Y., Poirier, G., McAlpine, M.C., Register, R.A., Yao, N.: Flexible piezoelectric PMN–PT nanowire-based nanocomposite and device. Nano Lett. 13(6), 2393–2398 (2013)

    Article  CAS  Google Scholar 

  58. Yao, D., et al.: Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites. Adv. Funct. Mater. 29(42), 1–11 (2019). https://doi.org/10.1002/adfm.201903866

    Article  CAS  Google Scholar 

  59. Maillard, F., Savinova, E.R., Stimming, U.: CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J. Electroanal. Chem. 599(2), 221–232 (2007)

    Article  CAS  Google Scholar 

  60. Griffith, M.L., Halloran, J.W.: Freeform fabrication of ceramics via stereolithography. J. Am. Ceram. Soc. 79(10), 2601–2608 (1996)

    Article  CAS  Google Scholar 

  61. Sundstrom, D.W.: Viscosity of suspensions in polymeric solutions. Rheol. acta 22(4), 420–423 (1983)

    Article  CAS  Google Scholar 

  62. Cui, H., et al.: Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 18(3), 234–241 (2019)

    Article  CAS  Google Scholar 

  63. Colombo, M., et al.: Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41(11), 4306–4334 (2012)

    Article  CAS  Google Scholar 

  64. Jabbari, M., Hattel, J.: Bingham plastic fluid flow model in tape casting of ceramics using two doctor blades–analytical approach. Mater. Sci. Technol. 30(3), 283–288 (2014)

    Article  CAS  Google Scholar 

  65. Lin, L., et al.: An elastic-spring-substrated nanogenerator as an active sensor for self-powered balance. Energy Environ. Sci. 6(4), 1164–1169 (2013)

    Article  CAS  Google Scholar 

  66. Fan, F.-R., Tian, Z.-Q., Wang, Z.L.: Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012)

    Article  CAS  Google Scholar 

  67. Xie, Y., et al.: High-efficiency ballistic electrostatic generator using microdroplets. Nat. Commun. 5(1), 1–5 (2014)

    Article  CAS  Google Scholar 

  68. Fuh, Y.K., Wang, B.S., Tsai, C.Y.: Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci. Rep. 7(1), 1–7 (2017). https://doi.org/10.1038/s41598-017-07360-z

    Article  CAS  Google Scholar 

  69. Marandi, M., Tarbutton, J.: Additive manufacturing of single- and double-layer piezoelectric PVDF-TrFE copolymer sensors. Procedia Manuf. 34, 666–671 (2019). https://doi.org/10.1016/j.promfg.2019.06.194

    Article  Google Scholar 

  70. Lovinger, A.J.: Recent developments in the structure, properties, and applications of ferroelectric polymers. Jpn. J. Appl. Phys. 24(S2), 18 (1985)

    Article  CAS  Google Scholar 

  71. Martins, P., Lopes, A.C., Lanceros-Mendez, S.: Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014)

    Article  CAS  Google Scholar 

  72. Yoon, J.-Y., Kim, G.-W.: Harnessing the bilinear nonlinearity of a 3D printed biomimetic diaphragm for acoustic sensor applications. Mech. Syst. Signal Process. 116, 710–724 (2019). https://doi.org/10.1016/j.ymssp.2018.07.020

    Article  Google Scholar 

  73. Haque, R.I., Ogam, E., Loussert, C., Benaben, P., Boddaert, X.: Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques. Sensors 15(10), 26018–26038 (2015)

    Article  Google Scholar 

  74. Tiller, B., et al.: Piezoelectric microphone via a digital light processing 3D printing process. Mater. Des. 165, 107593 (2019). https://doi.org/10.1016/j.matdes.2019.107593

    Article  CAS  Google Scholar 

  75. Chen, Y., Zhou, D., Lam, K.H., Cheung, K.F., Dai, J., Chan, H.L.W.: Endoscopic ultrasound radial array transducers fabricated with PZT tube by a rotate-and-dice method. Sensors Actuators A Phys. 201, 357–362 (2013). https://doi.org/10.1016/j.sna.2013.07.015

    Article  CAS  Google Scholar 

  76. Yang, J.-M., et al.: Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 18(8), 1297–1302 (2012)

    Article  CAS  Google Scholar 

  77. Park, K., et al.: Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26(16), 2514–2520 (2014)

    Article  CAS  Google Scholar 

  78. Kawai, H.: The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8(7), 975–976 (1969). https://doi.org/10.1143/jjap.8.975

    Article  CAS  Google Scholar 

  79. A. J. Lovinger, “Poly (vinylidene fluoride),” In: Developments in crystalline polymers—1, Springer, 1982, pp. 195–273.

  80. Fukada, E.: History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1277–1290 (2000)

    Article  CAS  Google Scholar 

  81. Salimi, A., Yousefi, A.A.: Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 22(6), 699–704 (2003). https://doi.org/10.1016/S0142-9418(03)00003-5

    Article  CAS  Google Scholar 

  82. Ramadan, K.S., Sameoto, D., Evoy, S.: A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23(3), 33001 (2014)

    Article  CAS  Google Scholar 

  83. Li, H., Tian, C., Denga, Z.D.: Applied physics reviews. Appl. Phys. Lett 113904, 104 (2014). https://doi.org/10.1063/1.4869130

    Article  CAS  Google Scholar 

  84. Jin, H., Abu-Raya, Y.S., Haick, H.: Advanced materials for health monitoring with skin-based wearable devices. Adv. Healthc. Mater. 6(11), 1700024 (2017)

    Article  Google Scholar 

  85. Chorsi, M.T., et al.: Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31(1), 1802084 (2019)

    Article  Google Scholar 

  86. Dong, L., Closson, A.B., Jin, C., Trase, I., Chen, Z., Zhang, J.X.J.: Vibration-energy-harvesting system: transduction mechanisms, frequency tuning techniques, and biomechanical applications. Adv. Mater. Technol. 4(10), 1900177 (2019)

    Article  Google Scholar 

  87. Wei, C., Jing, X.: A comprehensive review on vibration energy harvesting: modelling and realization. Renew. Sustain. Energy Rev. 74, 1–18 (2017)

    Article  Google Scholar 

  88. Shi, B., Li, Z., Fan, Y.: Implantable energy-harvesting devices. Adv. Mater. 30(44), 1801511 (2018)

    Article  Google Scholar 

  89. Liu, H., Zhong, J., Lee, C., Lee, S.-W., Lin, L.: A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev. 5(4), 41306 (2018)

    Article  Google Scholar 

  90. Dagdeviren, C., et al.: Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extrem. Mech. Lett. 9, 269–281 (2016)

    Article  Google Scholar 

  91. Tandon, B., Blaker, J.J., Cartmell, S.H.: Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater. 73, 1–20 (2018)

    Article  CAS  Google Scholar 

  92. Shuai, C., et al.: Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold”. Colloids Surf. B Biointerfaces 185, 110587 (2020)

    Article  CAS  Google Scholar 

  93. Tariverdian, T., Behnamghader, A., Brouki Milan, P., Barzegar-Bafrooei, H., Mozafari, M.: 3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering. Ceram. Int. 45(11), 14029–14038 (2019). https://doi.org/10.1016/j.ceramint.2019.04.102

    Article  CAS  Google Scholar 

  94. Polley, C., et al.: 3D printing of piezoelectric barium titanate-hydroxyapatite scaffolds with interconnected porosity for bone tissue engineering. Materials (Basel) 13(7), 1773 (2020)

    Article  CAS  Google Scholar 

  95. H. Kim, K. Lee, G. Jo, J.-S. Kim, M. Lim, and Y. Cha, Tendon-Inspired Piezoelectric Sensor for Biometric Application. IEEE/ASME Trans. Mechatronics, 2020.

  96. Zhang, S., Yu, F.: Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94(10), 3153–3170 (2011)

    Article  CAS  Google Scholar 

  97. Zhang, S., Randall, C.A., Shrout, T.R.: High Curie temperature piezocrystals in the BiScO 3-PbTiO 3 perovskite system. Appl. Phys. Lett. 83(15), 3150–3152 (2003)

    Article  CAS  Google Scholar 

  98. Zhang, S., Luo, J., Hackenberger, W., Shrout, T.R.: Characterization of Pb (InNb) O-Pb (MgNb) O-PbTiO ferroelectric crystal with enhanced phase transition temperatures. J. Appl. Phys. 104, 1–5 (2008)

    Article  Google Scholar 

  99. Zhang, S., Lee, S., Kim, D., Lee, H., Shrout, T.R.: Electromechanical properties of PMN–PZT piezoelectric single crystals near morphotropic phase boundary compositions. J. Am. Ceram. Soc. 90(12), 3859–3862 (2007)

    CAS  Google Scholar 

  100. Li, F., Zhang, S., Xu, Z., Wei, X., Luo, J., Shrout, T.R.: Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1–x) Pb (Mg 1/3 Nb 2/3) O 3–x PbTiO 3 crystals. J. Appl. Phys. 108(3), 34106 (2010)

    Article  Google Scholar 

  101. Tian, J., Han, P., Huang, X., Pan, H., Carroll, J.F., III., Payne, D.A.: Improved stability for piezoelectric crystals grown in the lead indium niobate–lead magnesium niobate–lead titanate system. Appl. Phys. Lett. 91(22), 222903 (2007)

    Article  Google Scholar 

  102. N. Mohamad Nor, H. H. Hamzah, and K. Abdul Razak, “Chapter 9 - Recent advancement in sustainable energy harvesting using piezoelectric materials,” K. Y. Cheong and L.-C. B. T.-S. M. for N. G. E. D. Chen, Eds. Elsevier, 2021, pp. 221–248.

  103. Kim, H., et al.: Increased piezoelectric response in functional nanocomposites through multiwall carbon nanotube interface and fused-deposition modeling three-dimensional printing. MRS Commun. 7(4), 960–966 (2017). https://doi.org/10.1557/mrc.2017.126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Parvez Mahmud.

Ethics declarations

Conflict of interest

Authors declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, M.A.P., Adhikary, P., Zolfagharian, A. et al. Advanced Design, Fabrication, and Applications of 3D-Printable Piezoelectric Nanogenerators. Electron. Mater. Lett. 18, 129–144 (2022). https://doi.org/10.1007/s13391-021-00327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00327-3

Keywords

Navigation