Skip to main content
Log in

Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of filler size and content in the thermal, mechanical, and electrical response of poly(vinylidene fluoride) (PVDF)/BaTiO3 nanocomposites has been investigated. Dielectric constant increases significantly with increasing filler content and decreasing filler size. Space charge effects at the interface between BaTiO3 and PVDF strongly influence the dielectric response. The electroactive β-phase of PVDF is nucleated by the presence of the ceramic filler, the effect being strongly dependent on filler size and independent on filler content. This filler/matrix interaction is also responsible for the variations observed in the activation energy of the thermal degradation of the polymer. Smaller particles lead to larger relative contact areas and are responsible for the main variations observed in the thermal, mechanical, and electrical properties of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nalwa HS (1991) J Macromol Sci C 31(4):341

    Article  Google Scholar 

  2. Gregorio R, Ueno EM (1999) J Mater Sci 34(18):4489. doi:10.1023/a:1004689205706

    Article  CAS  Google Scholar 

  3. Gregorio JR, Cestari M (1994) J Polym Sci B 32(5):859. doi:10.1002/polb.1994.090320509

    Article  CAS  Google Scholar 

  4. Lovinger AJ (1982) In: Basset DC (ed) Developments in crystalline polymers. Elsevier, London

  5. Sencadas V, Gregorio Filho R, Lanceros-Mendez S (2006) J Non Cryst Solids 352(21–22):2226. doi:10.1016/j.jnoncrysol.2006.02.052

    Article  CAS  Google Scholar 

  6. Galasso FS, Kestigan M (2007) In: Inorganic syntheses. Wiley, New York. doi:10.1002/9780470132456.ch28

  7. Carter CB, Grant Norton M (2007) Ceramic materials: science and engineering. Springer, New York

    Google Scholar 

  8. Jones M (1999) Mechanics of composite materials. Taylor & Francis, Philadelphia

    Google Scholar 

  9. de Mouro MFSFM, de Morais AB, Magalhães MG (2005) Materiais compósitos—materiais, fabrico e comportamento mecânico. Publindústria, Lisboa

    Google Scholar 

  10. Dias CJ, Das-Gupta DK (1996) IEEE Trans Dielectr Electr Insul 3(5):28

    Article  Google Scholar 

  11. Newnham RE, Skinner DP, Cross LE (1978) Mater Res Bull 13(5):525. doi:10.1016/0025-5408(78)90161-7

    Article  CAS  Google Scholar 

  12. Muralidhar C, Pillai PKC (1988) Mater Res Bull 23(3):323. doi:10.1016/0025-5408(88)90004-9

    Article  CAS  Google Scholar 

  13. Gregorio R, Cestari M, Bernardino FE (1996) J Mater Sci 31(11):2925. doi:10.1007/bf00356003

    Article  CAS  Google Scholar 

  14. Hsiang H-I, Lin K-Y, Yen F-S, Hwang C-Y (2001) J Mater Sci 36(15):3809. doi:10.1023/a:1017946405447

    Article  CAS  Google Scholar 

  15. Luo XC, Chen L, Chen X, Huang Q (2004) J Mater Sci Technol 20(4):4

    Google Scholar 

  16. Chanmal CV, Jog JP (2008) eXPRESS Polym Lett 2(4):8

    Article  Google Scholar 

  17. Firmino Mendes S, Costa C, Sencadas V, Serrado Nunes J, Costa P, Gregorio R, Gomez Ribelles J, Lanceros-Méndez S (2009) Appl Phys A 96(4):1037. doi:10.1007/s00339-009-5323-y

    Article  CAS  Google Scholar 

  18. Costa CM, Firmino Mendes S, Sencadas V, Ferreira A, Gregorio R Jr, Gómez Ribelles JL, Lanceros-Méndez S (2010) J Non Cryst Solids 356(41–42):2127. doi:10.1016/j.jnoncrysol.2010.07.037

    Article  CAS  Google Scholar 

  19. Sencadas V, Moreira VM, Lanceros-Méndez S, Pouzada AS, Gregório Filho R (2006) Mater Sci Forum 514–516:5

    Google Scholar 

  20. Sencadas V, Gregorio R, Lanceros-Méndez S (2009) J Macromol Sci B 48(3):514

    Article  CAS  Google Scholar 

  21. Salimi A, Yousefi AA (2004) J Polym Sci B 42(18):3487. doi:10.1002/polb.20223

    Article  CAS  Google Scholar 

  22. Silva MP, Sencadas V, Botelho G, Machado AV, Rolo AG, Rocha JG, Lanceros-Mendez S (2010) Mater Chem Phys 122(1):87. doi:10.1016/j.matchemphys.2010.02.067

    Article  CAS  Google Scholar 

  23. Benz M, Euler WB, Gregory OJ (2000) Langmuir 17(1):239. doi:10.1021/la001206g

    Article  Google Scholar 

  24. Nangia A, Desiraju GR (1999) Chem Commun (7):605

  25. Garetz BA, Matic J, Myerson AS (2002) Phys Rev Lett 89(17):175501

    Article  Google Scholar 

  26. Sencadas V, Costa C, Gómez Ribelles J, Lanceros-Mendez S (2010) J Mater Sci 45(5):1328. doi:10.1007/s10853-009-4086-3

    Article  CAS  Google Scholar 

  27. Abraham FF (1970) Science 168(3933):833. doi:10.1126/science.168.3933.833

    Article  CAS  Google Scholar 

  28. Falkand M, Knop O (1973) In: Franks F (ed) Water: a comprehensive treatise, vol 2. Plenum, New York, p 55

  29. Sencadas V, Martins P, Pitães A, Benelmekki M, Gómez Ribelles JL, Lanceros-Mendez S (2011) Langmuir 27(11):7241. doi:10.1021/la2008864

    CAS  Google Scholar 

  30. Turi E (1997) Thermal characterization of polymeric materials. Academic Press, New York

    Google Scholar 

  31. Sencadas V, Lanceros-Méndez S, Mano JF (2004) Solid State Commun 129(1):5

    Article  CAS  Google Scholar 

  32. Flynn JH, Wall LA (1966) J Polym Sci B 4(5):323. doi:10.1002/pol.1966.110040504

    Article  CAS  Google Scholar 

  33. Ozawa T (1965) Bull Chem Soc Jpn 38(11):1881

    Article  CAS  Google Scholar 

  34. Flynn JH, Wall LA (1967) J Polym Sci B 5(2):191. doi:10.1002/pol.1967.110050211

    Article  CAS  Google Scholar 

  35. Mendes SF, Costa CM, Sencadas V, Pereira M, Wu A, Vilarinho PM, Gregorio R Jr, Lanceros-Méndez S (2011) Compos Sci Technol, submitted

  36. Botelho G, Lanceros-Mendez S, Gonçalves AM, Sencadas V, Rocha JG (2008) J Non Cryst Solids 354(1):72. doi:10.1016/j.jnoncrysol.2007.07.012

    Article  CAS  Google Scholar 

  37. Avilés M, Ginés J, del Rio J, Pascual J, Pérez-Rodríguez J, Sánchez-Soto P (2002) J Therm Anal Calorim 67(1):177. doi:10.1023/a:1013706501882

    Article  Google Scholar 

  38. Sencadas V, Costa CM, Moreira V, Monteiro J, Mendiratta SK, Mano JF, Lanceros-Mendez S (2005) e-Polymers, art. nº 002

  39. Kremer F, Schonhals A (2003) Broadband dielectric spectroscopy. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  40. Van Beek LKH (1960) Physica 26(1):66. doi:10.1016/0031-8914(60)90115-4

    Article  Google Scholar 

  41. Dyre JC (1988) J Appl Phys 64(5):2456

    Article  Google Scholar 

  42. Bhimasankaram T, Suryanarama SV, Prasad G (1998) Curr Sci 74:967

    CAS  Google Scholar 

  43. Furukawa T, Ishida K, Fukada E (1979) J Appl Phys 50(7):4904. doi:10.1063/1.325592

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by FEDER funds through the “Programa Operacional Factores de Competitividade—COMPETE” and by national funds by FCT-Fundação para a Ciência e a Tecnologia, project references PTDC/CTM/69316/2006, PTDC/CTM-NAN/112574/2009, and NANO/NMed-SD/0156/2007. The authors also thank support from the COST Action MP1003, 2010 ‘European Scientific Network for Artificial Muscles’. V.S., S. F. M., and C. M. C. thank the FCT for the SFRH/BPD/63148/2009, SFRH/BD/22506/2005, and SFRH/BD/68499/2010 grants, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lanceros-Méndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendes, S.F., Costa, C.M., Caparros, C. et al. Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J Mater Sci 47, 1378–1388 (2012). https://doi.org/10.1007/s10853-011-5916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5916-7

Keywords

Navigation