Skip to main content

Advertisement

Log in

Investigation of Silver-Doped Iron Oxide Nanostructures Functionalized with Ionic Liquid for Colorimetric Sensing of Hydrogen Peroxide

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) is a by-product of oxidase-catalyzed reactions that serves as a signaling molecule and can cause DNA and protein damage. This leads to an increase in our susceptibility toward various kinds of diseases including diabetes mellitus and hypertension, The novelty of this work lies in the synergistic effect of all three components of the Ag-Fe2O3-IL composite for the colorimetric detection of H2O2. Silver-doped iron oxide nanostructures (Ag-Fe2O3 NS) were synthesized and then coated with ionic liquid (IL) having peculiar characteristics of aromaticity and conductivity to enhance their properties. The prepared Ag-Fe2O3 nanoparticles were characterized through spectroscopic techniques namely FTIR, XRD, SEM and EDX. The characterized Ag-Fe2O3 NS and 3, 3', 5, 5' Tetramethylbenzidine (TMB) solutions were employed for the colorimetric sensing of H2O2. To optimize the proposed sensor different reaction conditions including (a) amount of Ag-Fe2O3NS/IL (b) TMB, (c) pH, (d) H2O2 concentration and (e) incubation time were optimized. At optimum conditions, the desired sensor showed a wide linear range 1 × 10−9–3.2 × 10−7 M, a lower limit of quantification 3.20 × 10−7 M, and a limit of detection 1.07 × 10−8 M with a 0.9996 R2 value. The selectivity of the proposed sensor was compared with the potential interfering species and the incubation time was just 5 min. Additionally, the sensor was effectively applied for detecting hydrogen peroxide in the urine samples of diabetes mellitus patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rhee, S.G.: H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006)

    Article  Google Scholar 

  2. Liu, Y.; Liu, X.; Guo, Z.; Hu, Z.; Xue, Z.; Lu, X.: Horseradish peroxidase supported on porous graphene as a novel sensing platform for detection of hydrogen peroxide in living cells sensitively. Biosens. Bioelectron. 87, 101–107 (2017)

    Article  Google Scholar 

  3. Lippert, A.R.; Van de Bittner, G.C.; Chang, C.J.: Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res. 44, 793–804 (2011)

    Article  Google Scholar 

  4. Wolfsdorf, J.; Craig, M.E.; Daneman, D.; Dunger, D.; Edge, J.; Lee, W., et al.: Diabetic ketoacidosis in children and adolescents with diabetes. Pediatr Diabetes 10, 118–133 (2009)

    Article  Google Scholar 

  5. Ali, Z.; Levine, B.; Ripple, M.; Fowler, D.R.: Diabetic ketoacidosis: a silent death. Am. J. Forensic Med. Pathol. 33, 189–193 (2012)

    Article  Google Scholar 

  6. Chen, W.; Cai, S.; Ren, Q.-Q.; Wen, W.; Zhao, Y.-D.: Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137, 49–58 (2012)

    Article  Google Scholar 

  7. Ivanova, A.S.; Merkuleva, A.D.; Andreev, S.V.; Sakharov, K.A.: Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography. Food Chem. 283, 431–436 (2019)

    Article  Google Scholar 

  8. Khorami, H.A.; Botero-Cadavid, J.F.; Wild, P.; Djilali, N.: Spectroscopic detection of Hydrogen peroxide with an optical fiber probe using chemically deposited Prussian blue. Electrochim. Acta 115, 416–424 (2014)

    Article  Google Scholar 

  9. Wang, Z.; Dong, B.; Feng, G.; Shan, H.; Huan, Y.; Fei, Q.: Water-soluble hemin-mPEG-enhanced luminol chemiluminescence for sensitive detection of hydrogen peroxide and glucose. Anal. Sci. 35(10), 1135–1140 (2019)

    Article  Google Scholar 

  10. Jin, G.H.; Ko, E.; Kim, M.K.; Tran, V.-K.; Son, S.E.; Geng, Y., et al.: Graphene oxide-gold nanozyme for highly sensitive electrochemical detection of hydrogen peroxide. Sens. Actuators B Chem. 274, 201–209 (2018)

    Article  Google Scholar 

  11. Rismetov, B.; Ivandini, T.A.; Saepudin, E.; Einaga, Y.: Electrochemical detection of hydrogen peroxide at platinum-modified diamond electrodes for an application in melamine strip tests. Diam. Relat. Mater. 48, 88–95 (2014)

    Article  Google Scholar 

  12. Wang, Y.; Sun, Y.; Dai, H.; Ni, P.; Jiang, S.; Lu, W., et al.: A colorimetric biosensor using Fe3O4 nanoparticles for highly sensitive and selective detection of tetracyclines. Sens. Actuators B Chem. 236, 621–626 (2016)

    Article  Google Scholar 

  13. Syedmoradi, L.; Daneshpour, M.; Alvandipour, M.; Gomez, F.A.; Hajghassem, H.; Omidfar, K.: Point of care testing: the impact of nanotechnology. Biosens. Bioelectron. 87, 373–387 (2017)

    Article  Google Scholar 

  14. Qu, X.; Brame, J.; Li, Q.; Alvarez, P.J.: Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc. Chem. Res. 46, 834–843 (2013)

    Article  Google Scholar 

  15. Zarif, F.; Rauf, S.; Khurshid, S.; Muhammad, N.; Hayat, A.; Rahim, A., et al.: Effect of pyridinium based ionic liquid on the sensing property of NiO nanoparticle for the colorimetric detection of hydrogen peroxide. J. Mol. Struct. 1219, 128620 (2020)

    Article  Google Scholar 

  16. Yin, G.; Xing, L.; Ma, X.-J.; Wan, J.: Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles. Chem. Pap. 68, 435–441 (2014)

    Article  Google Scholar 

  17. Liu, Z.; Zhao, B.; Shi, Y.; Guo, C.; Yang, H.; Li, Z.: Novel nonenzymatic hydrogen peroxide sensor based on iron oxide–silver hybrid submicrospheres. Talanta 81, 1650–1654 (2010)

    Article  Google Scholar 

  18. Gao, P.; Liu, D.: Facile synthesis of copper oxide nanostructures and their application in non-enzymatic hydrogen peroxide sensing. Sens. Actuators B Chem. 208, 346–354 (2015)

    Article  Google Scholar 

  19. Li, X.; Liu, Y.; Zheng, L.; Dong, M.; Xue, Z.; Lu, X., et al.: A novel nonenzymatic hydrogen peroxide sensor based on silver nanoparticles and ionic liquid functionalized multiwalled carbon nanotube composite modified electrode. Electrochim. Acta 113, 170–175 (2013)

    Article  Google Scholar 

  20. Nishan, U.; Niaz, A.; Muhammad, N.; Asad, M.; Khan, N.; Khan, M., et al.: Non-enzymatic colorimetric biosensor for hydrogen peroxide using lignin-based silver nanoparticles tuned with ionic liquid as a peroxidase mimic. Arab. J. Chem. 14, 103164 (2021)

    Article  Google Scholar 

  21. Gupta, A. K.; Naregalkar, R. R.; Vaidya, V. D.; and Gupta, M.: Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. (2007)

  22. Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V., et al.: Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials 7, 243 (2017)

    Article  Google Scholar 

  23. Zarif, F.; Rauf, S.; Qureshi, M.Z.; Shah, N.S.; Hayat, A.; Muhammad, N., et al.: Ionic liquid coated iron nanoparticles are promising peroxidase mimics for optical determination of H2O2. Microchim. Acta 185, 1–9 (2018)

    Article  Google Scholar 

  24. Dash, P.; Miller, S.M.; Scott, R.W.: Stabilizing nanoparticle catalysts in imidazolium-based ionic liquids: a comparative study. J. Mol. Catal. A: Chem. 329, 86–95 (2010)

    Article  Google Scholar 

  25. Zhou, Y.: Recent advances in ionic liquids for synthesis of inorganic nanomaterials. Curr. Nanosci. 1, 35–42 (2005)

    Article  Google Scholar 

  26. Barzinjy, A.A.: Ionic liquids: sustainable media for nanoparticles. Jordan J. Phys. 12(1), 45–62 (2019)

    Google Scholar 

  27. Nishan, U.; Sabba, U.; Rahim, A.; Asad, M.; Shah, M.; Iqbal, A., et al.: Ionic liquid tuned titanium dioxide nanostructures as an efficient colorimetric sensing platform for dopamine detection. Mater. Chem. Phys. 262, 124289 (2021)

    Article  Google Scholar 

  28. Khan, A.U.; Wei, Y.; Ahmad, A.; Khan, Z.U.H.; Tahir, K.; Khan, S.U., et al.: Enzymatic browning reduction in white cabbage, potent antibacterial and antioxidant activities of biogenic silver nanoparticles. J. Mol. Liq. 215, 39–46 (2016)

    Article  Google Scholar 

  29. Nishan, U.; Gul, R.; Muhammad, N.; Asad, M.; Rahim, A.; Shah, M., et al.: Colorimetric based sensing of dopamine using ionic liquid functionalized drug mediated silver nanostructures. Microchem. J. 159, 105382 (2020)

    Article  Google Scholar 

  30. Nishan, U.; Bashir, F.; Muhammad, N.; Khan, N.; Rahim, A.; Shah, M., et al.: Ionic liquid as a moderator for improved sensing properties of TiO2 nanostructures for the detection of acetone biomarker in diabetes mellitus. J. Mol. Liq. 294, 111681 (2019)

    Article  Google Scholar 

  31. Farahmandjou, M.; Soflaee, F.: Synthesis and characterization of α-Fe2O3 nanoparticles by simple co-precipitation method. Phys. Chem. Res. 3, 191–196 (2015)

    Google Scholar 

  32. Sobhanardakani, S.; Jafari, A.; Zandipak, R.; Meidanchi, A.: Removal of heavy metal (Hg (II) and Cr (VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent. Process Saf. Environ. Prot. 120, 348–357 (2018)

    Article  Google Scholar 

  33. Kulkarni, S.; Jadhav, M.; Raikar, P.; Barretto, D.A.; Vootla, S.K.; Raikar, U.: Green synthesized multifunctional Ag@Fe2O3 nanocomposites for effective antibacterial, antifungal and anticancer properties. New J. Chem. 41, 9513–9520 (2017)

    Article  Google Scholar 

  34. Biabani-Ravandi, A.; Rezaei, M.; Fattah, Z.: Catalytic performance of Ag/Fe2O3 for the low temperature oxidation of carbon monoxide. Chem. Eng. J. 219, 124–130 (2013)

    Article  Google Scholar 

  35. Mirzaei, A.; Janghorban, K.; Hashemi, B.; Bonyani, M.; Leonardi, S.G.; Neri, G.: A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites. Ceram. Int. 42, 18974–18982 (2016)

    Article  Google Scholar 

  36. Jia, X.; Yu, X.; Xia, L.; Sun, Y.; Song, H.: Synthesis and characterization of Ag/α-Fe2O3 microspheres and their application to highly sensitive and selective detection of ethanol. Appl. Surf. Sci. 462, 29–37 (2018)

    Article  Google Scholar 

  37. Demarchi, C.A.; Cruz, A.B.; Ślawska-Waniewska, A.; Nedelko, N.; Dłużewski, P.; Kaleta, A., et al.: Synthesis of Ag@Fe2O3 nanocomposite based on O-carboxymethylchitosan with antimicrobial activity. Int. J. Biol. Macromol. 107, 42–51 (2018)

    Article  Google Scholar 

  38. Achilleos, A.; Hapeshi, E.; Xekoukoulotakis, N.P.; Mantzavinos, D.; Fatta-Kassinos, D.: Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem. Eng. J. 161, 53–59 (2010)

    Article  Google Scholar 

  39. Nishan, U.; Haq, S.U.; Rahim, A.; Asad, M.; Badshah, A.; Ali Shah, A.U.; Iqbal, A.; Muhammad, N.: Ionic-liquid-stabilized TiO2 nanostructures: a platform for detection of hydrogen peroxide. ACS Omega 6(48), 32754–32762 (2021)

    Article  Google Scholar 

  40. Zhang, Q.; Li, M.; Guo, C.; Jia, Z.; Wan, G.; Wang, S., et al.: Fe3O4 nanoparticles loaded on Lignin nanoparticles applied as a peroxidase mimic for the sensitively colorimetric detection of H2O2. Nanomaterials 9, 210 (2019)

    Article  Google Scholar 

  41. Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y.Y., et al.: Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4, 669–673 (2009)

    Article  Google Scholar 

  42. Choleva, T.G.; Gatselou, V.A.; Tsogas, G.Z.; Giokas, D.L.: Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchim. Acta 185, 1–9 (2018)

    Article  Google Scholar 

  43. Wang, B.; Ju, P.; Zhang, D.; Han, X.; Zheng, L.; Yin, X., et al.: Colorimetric detection of H 2 O 2 using flower-like Fe2(MoO4)3 microparticles as a peroxidase mimic. Microchim. Acta 183, 3025–3033 (2016)

    Article  Google Scholar 

  44. Nguyen, N.D.; Van Nguyen, T.; Chu, A.D.; Tran, H.V.; Tran, L.T.; Huynh, C.D.: A label-free colorimetric sensor based on silver nanoparticles directed to hydrogen peroxide and glucose. Arab. J. Chem. 11, 1134–1143 (2018)

    Article  Google Scholar 

  45. Huang, L.; Zhu, W.; Zhang, W.; Chen, K.; Wang, J.; Wang, R., et al.: Layered vanadium (IV) disulfide nanosheets as a peroxidase-like nanozyme for colorimetric detection of glucose. Microchim. Acta 185, 1–8 (2018)

    Article  Google Scholar 

  46. Ding, C.; Yan, Y.; Xiang, D.; Zhang, C.; Xian, Y.: Magnetic Fe 3 S 4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim. Acta 183, 625–631 (2016)

    Article  Google Scholar 

  47. Liu, H.; Ma, H.; Xu, H.; Wen, J.; Huang, Z.; Qiu, Y., et al.: Hollow and porous nickel sulfide nanocubes prepared from a metal-organic framework as an efficient enzyme mimic for colorimetric detection of hydrogen peroxide. Anal. Bioanal. Chem. 411, 129–137 (2019)

    Article  Google Scholar 

  48. Basiri, S.; Mehdinia, A.; Jabbari, A.: A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe2+, hydrogen peroxide, and glucose. Colloids Surf., A 545, 138–146 (2018)

    Article  Google Scholar 

  49. Xiang, Z.; Wang, Y.; Ju, P.; Zhang, D.: Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim. Acta 183, 457–463 (2016)

    Article  Google Scholar 

  50. Zhang, T.; Lu, Y.; Luo, G.: Synthesis of hierarchical iron hydrogen phosphate crystal as a robust peroxidase mimic for stable H2O2 detection. ACS Appl. Mater. Interfaces. 6, 14433–14438 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Chemistry, Kohat University of Science and Technology (Grant No. General research support), Kohat, for providing necessary funding and infrastructure for the project. UN is grateful to TWAS and CNPq for providing support to researchers in the developing world.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Umar Nishan or Saifullah Afridi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishan, U., Ullah, I., Muhammad, N. et al. Investigation of Silver-Doped Iron Oxide Nanostructures Functionalized with Ionic Liquid for Colorimetric Sensing of Hydrogen Peroxide. Arab J Sci Eng 48, 7703–7712 (2023). https://doi.org/10.1007/s13369-023-07791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07791-z

Keywords

Navigation