Skip to main content
Log in

Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The intrinsic peroxidase-like activity of rhodium nanoparticles (RhNPs) and their use as catalytic labels for sensitive colorimetric assays is presented. RhNPs catalyze the oxidation of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue reaction product with a maximum absorbance at 652 nm. Kinetic studies show catalysis to follow Michaelis-Menten kinetics and a “ping-pong” mechanism. The calculated kinetic parameters indicate high affinity of RhNPs for both the substrate TMB and H2O2. In fact, they are better than other peroxidase mimicking nanomaterials and even the natural enzyme horseradish peroxidase. On the other hand, RhNPs exhibit no reactivity towards saccharides, thiols, amino acids and ascorbic acid. Based on these findings, a sensitive and selective colorimetric method was worked out for the determination of H2O2 in real samples with a linear response in the 1–100 μM concentration range. By employing glucose oxidase, the glucose assay has a linear range that covers the 5 to 125 μM glucose concentration range. The detection limits are <0.75 μM for both species. The methods were applied to the determination of H2O2 in spiked pharmaceutical formulations, and of glucose in soft drinks and blood plasma. Figures of merit include (a) good accuracy (with errors of <6%), (b) high recoveries (96.5–103.7%), and (c) satisfactory reproducibility (<6.3%).

Rhodium nanoparticles catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue reaction product. The effect is exploited in photometric assays for hydrogen peroxide and glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34:938–945

    Article  CAS  Google Scholar 

  2. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  Google Scholar 

  3. Garg B, Bisht T, Ling Y-C (2015) Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: an overview. Molecules 20:14155–14190

    Article  CAS  Google Scholar 

  4. Rauf S, Nawaz MAH, Badea M, Marty JL, Hayat A (2016) Nano-engineered biomimetic optical sensors for glucose monitoring in diabetes. Sensors 16:1931–1948

    Article  Google Scholar 

  5. Fiammengo R, Jaschke A (2005) Nucleic acid enzymes. Curr Opin Biotechnol 16(6):614–621

    CAS  Google Scholar 

  6. Breslow R (1995) Biomimetic chemistry and artificial enzymes: catalysis by design. Acc Chem Res 28:146–153

    Article  CAS  Google Scholar 

  7. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105

    Article  CAS  Google Scholar 

  8. Garg B, Bisht T (2016) Carbon nanodots as peroxidase nanozymes for biosensing. Molecules 21:1653–1669

    Article  CAS  Google Scholar 

  9. Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184:323–342

    Article  CAS  Google Scholar 

  10. Wang C-I, Chen W-T, Chang H-T (2012) Enzyme mimics of au/ag nanoparticles for fluorescent detection of acetylcholine. Anal Chem 84:9706–9712

    Article  CAS  Google Scholar 

  11. Pan N, Li-Ying W, LL W, Peng CF, Xie ZJ (2017) Colorimetric determination of cysteine by exploiting its inhibitory action on the peroxidase-like activity of au@Pt core-shell nanohybrids. Microchim Acta 184:65–72

    Article  CAS  Google Scholar 

  12. Lin XQ, Deng HH, GW W, Peng HP, Liu AL, Lin XH, Xia XH, Chen W (2015) Platinum nanoparticles/graphene-oxide hybrid with excellent peroxidase-like activity and its application for cysteine detection. Analyst 140:5251–5256

    Article  CAS  Google Scholar 

  13. He W, Han X, Jia H, Cai J, Zhou Y, Zheng Z (2017) AuPt alloy nanostructures with tunable composition and enzymelike activities for colorimetric detection of bisulfide. Sci Rep 7:40103

    Article  CAS  Google Scholar 

  14. Hsu K, Lien CW, Lin CH, Chang HT, Huang CC (2014) Immobilization of iron hydroxide/oxide on reduced graphene oxide: peroxidase-like activity and selective detection of sulfide ions. RSC Adv 4:37705–37713

    Article  CAS  Google Scholar 

  15. Liu J, Hu X, Hou S, Wen T, Liu W, Zhu X, Yin J-J, Wu X (2012) Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose. Sensors Actuators B Chem 166-167:708–714

    Article  CAS  Google Scholar 

  16. Kotov NA (2010) Inorganic nanoparticles as protein mimics. Science 330:188–189

    Article  CAS  Google Scholar 

  17. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

  18. Ponlakhet K, Amatatongchai M, Sroysee W, Jarujamrus P, Chairam S (2016) Development of sensitive and selective glucose colorimetric assay using glucose oxidase immobilized on magnetite-gold-folate nanoparticles. Anal Methods 8:8288–8298

    Article  CAS  Google Scholar 

  19. Dominguez-Medina S, McDonough S, Swanglap P, Landes CF, Link S (2012) In situ measurement of bovine serum albumin interaction with gold Nanospheres. Langmuir 28:9131–9139

    Article  CAS  Google Scholar 

  20. Drozd M, Pietrzak M, Parzuchowski P, Mazurkiewicz-Pawlicka M, Malinowska E (2015) Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range. Nanotechnology 26:495101

    Article  Google Scholar 

  21. Zhang W, Zhang Y, Chen Y, Li S, Gu N, Hu S, Sun Y, Chen X, Li Q (2012) Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection. J Nanosci Nanotechnol 12:1–8

    Article  Google Scholar 

  22. Muench F, Neetzel C, Kaserer S, Brötz J, Jaud J-C, Zhao-Karger Z, Lauterbach S, Kleebe H-J, Rotha C, Ensinger W (2012) Fabrication of porous rhodium nanotube catalysts by electroless plating. J Mater Chem 22:12784–12791

    Article  CAS  Google Scholar 

  23. Yuan Y, Yan N, Dyson PJ (2012) Advances in the rational design of rhodium nanoparticle catalysts: control via manipulation of the nanoparticle core and stabilizer. ACS Catal 2:1057–1069

    Article  CAS  Google Scholar 

  24. Gatselou VA, Giokas DL, Vlessidis AG, Prodromidis MI (2015) Rhodium nanoparticle-modified screen-printed graphite electrodes for the determination of hydrogen peroxide in tea extracts in the presence of oxygen. Talanta 134:482–487

    Article  CAS  Google Scholar 

  25. Gatselou V, Christodouleas DC, Kouloumpis A, Gournis D, Giokas DL (2016) Determination of phenolic compounds using spectral and color transitions of rhodium nanoparticles. Anal Chim Acta 932:80–87

    Article  CAS  Google Scholar 

  26. Jin L, Meng Z, Zhang Y, Cai S, Zhang Z, Li C, Shang L, Shen Y (2017) Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl Mater Interfaces 9(11):10027–10033

    Article  CAS  Google Scholar 

  27. Kappi FA, Papadopoulos GA, Tsogas GZ, Giokas DL (2017) Low-cost colorimetric assay of biothiols based on the photochemical reduction of silver halides and consumer electronic imaging devices. Talanta 172(1):15–22

    Article  CAS  Google Scholar 

  28. Xu X-HN, Huang S, Brownlow W, Salaita K, Jeffers RB (2004) Size and temperature dependence of surface Plasmon absorption of gold nanoparticles induced by Tris(2,2¢-bipyridine)ruthenium(II). J Phys Chem B 108(40):15543–15551

    Article  CAS  Google Scholar 

  29. Liu Y, Zhu G, Yang J, Yuan A, Shen X (2014) Peroxidase-like catalytic activity of Ag3PO4 nanocrystals prepared by a colloidal route. PLoS One 9(10):e109158

    Article  Google Scholar 

  30. Josephy PD, Eling TE, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,39,59-Tetramethylbenzidine: free radical and charge-transfer complex intermediates. J Biol Chem 257:3669–3675

    CAS  Google Scholar 

  31. Chang Q, Deng K, Zhu L, Jiang G, Yu C, Tang H (2009) Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim Acta 165:299–305

    Article  CAS  Google Scholar 

  32. Ding C, Yan Y, Xiang D, Zhang C, Xian Y (2016) Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim Acta 183:625–631

    Article  CAS  Google Scholar 

  33. Ju Y, Kim J (2013) Dendrimer-encapsulated Pt nanoparticles with peroxidase-mimetic activity as biocatalytic labels for sensitive colorimetric analyses. Chem Commun 51:13752–13755

    Article  Google Scholar 

  34. Jiao X, Song H, Zhao H, Bai W, Zhang L, Lv Y (2012) Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Anal Methods 4:3261–3267

    Article  CAS  Google Scholar 

  35. Drozd M, Pietrzak M, Parzuchowski PG, Malinowska E (2016) Pitfalls and capabilities of various hydrogen donors in evaluation of peroxidase-like activity of gold nanoparticles. Anal Bioanal Chem 408:8505–8513

    Article  CAS  Google Scholar 

  36. Zhao K, Gu W, Zheng S, Zhang C, Xian Y (2015) SDS–MoS2 nanoparticles as highly-efficient peroxidise mimetics for colorimetric detection of H2O2 and glucose. Talanta 141:47–52

    Article  CAS  Google Scholar 

  37. Chau LY, He Q, Qin A, Yip SP, Lee TMH (2016) Platinum nanoparticles on reduced grapheme oxide as peroxidase mimetics for the colorimetric detection of specific DNA sequence. J Mater Chem B 4:4076–4083

    Article  CAS  Google Scholar 

  38. Dong Y-L, Zhang H-G, Rahman ZU, Su L, Chen X-J, Hu J, Chen X-G (2012) Graphene oxide–Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nano 4:3969–3976

    CAS  Google Scholar 

  39. Song S, Liu Y, Song A, Zhao Z, Lu H, Hao J (2017) Peroxidase mimetic activity of Fe3O4 nanoparticle prepared based on magnetic hydrogels for hydrogen peroxide and glucose detection. J Colloid Interface Sci 506:46–57

    Article  CAS  Google Scholar 

  40. Su L, Feng J, Zhou X, Ren C, Li H, Chen X (2012) Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal Chem 84:5753–5758

    Article  CAS  Google Scholar 

  41. Deng H, Shen W, Peng Y, Chen X, Yi G, Gao Z (2012) Nanoparticulate peroxidase/catalase mimetic and its application. Chem Eur J 18:8906–8911

    Article  CAS  Google Scholar 

  42. Shin HY, Kim B-G, Cho S, Lee J, Na HB, Kim MI (2017) Visual determination of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of magnetic nanoparticles functionalized with a poly(ethylene glycol)derivative. Microchim Acta 184:2115–2122

    Article  CAS  Google Scholar 

  43. Zhang W, Ma D, Du J (2014) Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta 120:362–367

    Article  CAS  Google Scholar 

  44. Gao Z, Xu M, Hou L, Chen G, Tang D (2013) Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Anal Chim Acta 776:79–86

    Article  CAS  Google Scholar 

  45. He W, Liu Y, Yuan J, Yin J-J, Wu X, Hu X, Zhang K, Liu J, Chen C, Ji Y, Guo Y (2011) Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32:1139–1147

    Article  CAS  Google Scholar 

  46. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210

    Article  CAS  Google Scholar 

  47. Wang N, Sun J, Chen L, Fan H, Ai S (2015) ACu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity,and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182:1733–1738

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimosthenis L. Giokas.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choleva, T.G., Gatselou, V.A., Tsogas, G.Z. et al. Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchim Acta 185, 22 (2018). https://doi.org/10.1007/s00604-017-2582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2582-8

Keywords

Navigation