Skip to main content
Log in

Hollow and porous nickel sulfide nanocubes prepared from a metal-organic framework as an efficient enzyme mimic for colorimetric detection of hydrogen peroxide

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hollow, porous NiS nanocubes were prepared by a hydrothermal method starting from Ni–Co Prussian blue analogue nanocubes as the template. The morphology and structure of the NiS nanocubes were tuned by adjustment of the ion-exchange rate and the degree of chemical etching, and they were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and nitrogen sorption measurements. The NiS nanocubes are shown to act as a peroxidase mimic that can catalyze the oxidization of 3,3′,5,5′-tetramethylbenzidine by hydrogen peroxide (H2O2), producing a visible color change, for which the absorbance is best measured at 652 nm. The outstanding activity may result from the unique structure of the NiS nanocubes. The catalytic oxidation follows Michaelis–Menten kinetics and shows a ping-pong mechanism of enzyme action. The findings were used to develop a rapid, sensitive, and selective colorimetric H2O2 assay with a response that is linear in the 4–40 μM range with a detection limit of 1.72 μM (signal-to-noise ratio of 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ju J, Chen W. In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem. 2015;87:1903–10.

    Article  CAS  Google Scholar 

  2. Kogularasu S, Govindasamy M, Chen S, Akilarasan M, Mani V. 3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide. Sens Actuators B. 2017;253:773–83.

    Article  CAS  Google Scholar 

  3. Sun Y, He K, Zhang Z, Zhou A, Duan H. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode. Biosens Bioelectron. 2015;68:358–64.

    Article  CAS  Google Scholar 

  4. Liu Q, Yang Y, Lv X, Ding Y, Zhang Y, Jing J, et al. One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sens Actuators B. 2017;240:726–34.

    Article  CAS  Google Scholar 

  5. Azizi SN, Ghasemi S, Samadi-Maybodi A, Ranjbar-Azad M. A new modified electrode based on Ag-doped mesoporous SBA-16 nanoparticles as non-enzymatic sensor for hydrogen peroxide. Sens Actuators B. 2015;216:271–8.

    Article  CAS  Google Scholar 

  6. Mahmoudian MR, Alias Y, Basirun WJ, Woi PM, Sookhakian M. Facile preparation of MnO2 nanotubes/reduced graphene oxide nanocomposite for electrochemical sensing of hydrogen peroxide. Sens Actuators B. 2014;201:526–34.

    Article  CAS  Google Scholar 

  7. Liu J, Yang C, Shang Y, Zhang P, Liu J, Zheng J. Preparation of a nanocomposite material consisting of cuprous oxide, polyaniline and reduced graphene oxide, and its application to the electrochemical determination of hydrogen peroxide. Microchim Acta. 2018;185:172–9.

    Article  Google Scholar 

  8. Wang L, Xu M, Xie Y, Song Y, Wang L. A nonenzymatic electrochemical H2O2 sensor based on macroporous carbon/polymer foam/PtNPs electrode. J Mater Sci. 2018;53:10946–54.

    Article  CAS  Google Scholar 

  9. Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F. A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta. 2017;184:4629–35.

    Article  CAS  Google Scholar 

  10. Walekar LS, Hu P, Liao F, Guo X, Long M. Turn-on fluorometric and colorimetric probe for hydrogen peroxide based on the in-situ formation of silver ions from a composite made from N-doped carbon quantum dots and silver nanoparticles. Microchim Acta. 2018;185:31–9.

    Article  Google Scholar 

  11. Wiesufer S, Boddenberg A, Ligon AP, Dallmann G, Turner WV, Gab S. An automated instrument for determining atmospheric H2O2 and organic hydroperoxides by stripping and HPLC. Environ Sci Pollut Res. 2002;4:41–7.

    Google Scholar 

  12. Lin T, Zhong L, Song Z, Guo L, Wu H, Guo Q, et al. Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets. Biosens Bioelectron. 2014;62:302–7.

    Article  CAS  Google Scholar 

  13. Khataee A, Haddad Irani-Nezhad M, Hassanzadeh J, Woo Joo S. Superior peroxidase mimetic activity of tungsten disulfide nanosheets/silver nanoclusters composite: colorimetric, fluorometric and electrochemical studies. J Colloid Interface Sci. 2018;515:39–49.

    Article  CAS  Google Scholar 

  14. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42:6060–93.

    Article  CAS  Google Scholar 

  15. Yang B, Li J, Deng H, Zhang L. Progress of mimetic enzymes and their applications in chemical sensors. Crit Rev Anal Chem. 2016;46:469–81.

    Article  CAS  Google Scholar 

  16. Pumera M, Sofer Z, Ambrosi A. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J Mater Chem A. 2014;2:8981–7.

    Article  CAS  Google Scholar 

  17. Li Z, Yang X, Yang Y, Tan Y, He Y, Liu M, et al. Peroxidase-mimicking nanozyme with enhanced activity and high stability based on metal-support interactions. Chem Eur J. 2018;24:409–15.

    Article  CAS  Google Scholar 

  18. Gu Y, Cheng K, Wu Y, Wang Y, Morlay C, Li F. Metal organic framework-templated synthesis of bifunctional N-doped TiO2 carbon nanotablets via solid-state thermolysis. ACS Sustain Chem Eng. 2016;4:6744–53.

    Article  CAS  Google Scholar 

  19. Zhang L, Deng H, Lin F, Xu X, Weng S, Liu A, et al. In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal Chem. 2014;86:2711–8.

    Article  CAS  Google Scholar 

  20. Peng H, Lin D, Liu P, Wu Y, Li S, Lei Y, et al. Highly sensitive and rapid colorimetric sensing platform based on water-soluble WOx quantum dots with intrinsic peroxidase-like activity. Anal Chim Acta. 2017;992:128–34.

    Article  CAS  Google Scholar 

  21. Wang S, Deng W, Yang L, Tan Y, Xie Q, Yao S. Copper-based metal organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of staphylococcus aureus. ACS Appl Mater Inter. 2017;9:24440–5.

    Article  CAS  Google Scholar 

  22. Li Y, Li T, Chen W, Song Y. Co4N Nanowires: noble-metal-free peroxidase mimetic with excellent salt- and temperature-resistant abilities. ACS Appl Mater Inter. 2017;9:29881–8.

    Article  CAS  Google Scholar 

  23. Maria-Hormigos R, Jurado-Sanchez B, Escarpa A. Self-propelled micromotors for naked-eye detection of phenylenediamines isomers. Anal Chem. 2018;90:9830–7.

    Article  CAS  Google Scholar 

  24. Avila E, Zhao M, Campuzano S, Ricci F, Pingrron J, Mascini M, et al. Rapid micromotor-based naked-eye immunoassay. Talanta. 2017;167:651–7.

    Article  Google Scholar 

  25. Cinti S, Gao W, Li J, Palleschi G, Wang J. Microengine-assisted electrochemical measurements at printable sensor strips. Chem Commun. 2015;51:8668–71.

    Article  CAS  Google Scholar 

  26. Yang Q, Xu Q, Jiang H. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev. 2017;46:4774–808.

    Article  CAS  Google Scholar 

  27. Liu J, Fan F, Feng Z, Zhang L, Bai S, Yang Q, et al. From hollow nanosphere to Hollow microsphere: mild buffer provides easy access to tunable silica structure. J Phys Chem C. 2008;112:16445–51.

    Article  CAS  Google Scholar 

  28. Joo JB, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, et al. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energ Environ Sci. 2012;5:6321–7.

    Article  CAS  Google Scholar 

  29. Hu J, Chen M, Fang X, Wu L. Fabrication and application of inorganic hollow spheres. Chem Soc Rev. 2011;40:5472–91.

    Article  CAS  Google Scholar 

  30. Buchmaier C, Glaenzer M, Torvisco A, Peter P, Karin W, Birgit K, et al. Nickel sulfide thin films and nanocrystals synthesized from nickel xanthate precursors. J Mater Sci. 2017;52:10898–914.

    Article  CAS  Google Scholar 

  31. Yu X, Yu L, Wu HB, Lou XWD. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem Int Ed. 2015;54:5331–5.

    Article  CAS  Google Scholar 

  32. Guo Y, Deng L, Li J, Guo S, Wang E, Dong S. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano. 2011;5:1282–90.

    Article  CAS  Google Scholar 

  33. Lin Y, Chang Y, Chen G, Chang Y, Chang Y. Effects of Ag-doped NiTiO3 on photoreduction of methylene blue under UV and visible light irradiation. J Alloy Compd. 2009;479:785–90.

    Article  CAS  Google Scholar 

  34. Wirtz M, Martin CR. Template fabricated gold nanowires and nanotubes. Adv Mater. 2010;15:455–8.

    Article  Google Scholar 

  35. Li Y, Wang H, Zhang H, Liu P, Wang Y, Fang W, et al. A {0001} faceted single crystal NiS nanosheet electrocatalyst for dye-sensitised solar cells: sulfur-vacancy induced electrocatalytic activity. Chem Commun. 2014;50:5569–71.

    Article  CAS  Google Scholar 

  36. Chen Z, Sun P, Fan B, Zhang Z, Fang X. In situ template-free ion-exchange process to prepare visible-light-active g-C3N4/NiS hybrid photocatalysts with enhanced hydrogen evolution activity. J Phys Chem C. 2014;118:7801–7.

    Article  CAS  Google Scholar 

  37. Sui N, Liu F, Wang K, Xie F, Wang L, Tang J, et al. Nano Au-Hg amalgam for Hg2+ and H2O2 detection. Sens Actuators B. 2017;252:1010–5.

    Article  CAS  Google Scholar 

  38. An Q, Sun C, Li D, Xu K, Guo J, Wang C. Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl Mater Inter. 2013;5:13248–57.

    Article  CAS  Google Scholar 

  39. Reanpang P, Themsirimongkon S, Saipanya S, Chailapakul O, Jakmunee J. Cost-effective flow injection amperometric system with metal nanoparticle loaded carbon nanotube modified screen printed carbon electrode for sensitive determination of hydrogen peroxide. Talanta. 2015;144:868–74.

    Article  CAS  Google Scholar 

  40. Wannajuk K, Jamkatoke M, Tuntulani T, Tomapatanaget B. Highly specific-glucose fluorescence sensing based on boronic anthraquinone derivatives via the GOx enzymatic reaction. Tetrahedron. 2012;68:8899–904.

    Article  CAS  Google Scholar 

  41. Silva RAB, Montes RHO, Richter EM, Munoz RAA. Rapid and selective determination of hydrogen peroxide residues in milk by batch injection analysis with amperometric detection. Food Chem. 2012;133:200–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed by the Science and Technology Program of Zhejiang Province of China (LGF18H200005), the National Natural Science Foundation of China (21405029), the Young Talent Development Project of Zhejiang Science and Technology Association (2016YCGC007), the Social Development Project of Hangzhou (20160533B70), the Medical and Health Technology Development Program of Zhejiang province (2017KY533) and Natural Science Foundation of Zhejiang Province (LQ16C200007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunchuan Gu.

Ethics declarations

Conflict of interest

There authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Ma, H., Xu, H. et al. Hollow and porous nickel sulfide nanocubes prepared from a metal-organic framework as an efficient enzyme mimic for colorimetric detection of hydrogen peroxide. Anal Bioanal Chem 411, 129–137 (2019). https://doi.org/10.1007/s00216-018-1423-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1423-x

Keywords

Navigation