Skip to main content

Advertisement

Log in

A neural controller for online laser power adjustment during the heat therapy process in the presence of nanoparticles

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The present research evaluated the efficiency of a control approach to control the temperature of a breast tumor mass in the presence of nanoparticles exposed to laser radiation. However, if the radiation is carried out in open loop manner it may result in excessive temperature rise healthy cells that exist in the vicinity of tumor’s cells. This may lead to the death of healthy cells. So, using closed loop control methods is necessary to guarantee the preservation of healthy cells during the period of radiation. Therefore, in this study, an artificial neural network was trained as a controller. In other words, the trained neural network adjusted the laser power over a period of time in such a way that the temperature in the center of the tumor reached the desired level with an appropriate temporal behavior. The difference between the real temperature of the tumor and the desired temperature of it is the controller input, while the controller output determined the amount of laser power. The simulation studies were carried out using an appropriate physiological model in the presence of nanoparticles. First, Schrödinger equations were solved followed by the effective mass equation. Afterward the optimum number of nanoparticles to be used in the IR field was calculated. Next, the important electro-optical features related to the nanostructure, such as the absorption continuum and reflection continuum had been calculated. The neural network proposed controller was then evaluated through other simulation studies in the tumor mass model. The results showed a promising performance by the trained artificial neural network in adjusting radiated laser power for the desired temperature increase in the center of a tumor mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mattingly M, Roemer RB, Devasia S (2000) Exact temperature tracking for hyperthermia: a model-based approach. IEEE Trans Control Syst Technol 8(6):979–992

    Article  Google Scholar 

  2. Debeir O, Adanja I, Kiss R, Decaestecker C (2008) Models of cancer cell migration and cellular imaging and analysis. Motile Actin Syst Health Dis 123–156

  3. Pedersen C, Karamehmedović E, Dam JS, Tidemand-Lichtenberg P (2009) Enhanced 2D-image upconversion using solid-state lasers. Opt Express 17(23):20885–20890

    Article  CAS  PubMed  Google Scholar 

  4. Applegate RW, Marr DW, Squier J, Graves SW (2009) Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars. Opt Express 17(19):16731–16738

    Article  CAS  PubMed  Google Scholar 

  5. Hoy CL, Durr NJ, Chen P, Piyawattanametha W, Ra H, Solgaard O, Ben-Yakar A (2008) Miniaturized probe for femtosecond laser microsurgery and two-photon imaging. Opt Express 16(13):9996–10005

    Article  PubMed  PubMed Central  Google Scholar 

  6. Han M, Giese G, Zickler L, Sun H, Bille J (2004) Mini-invasive corneal surgery and imaging with femtosecond lasers. Opt Express 12(18):4275–4281

    Article  PubMed  Google Scholar 

  7. SalmanOgli A (2011) Nanobio applications of quantum dots in cancer: imaging, sensing, and targeting. Cancer Nanotechnol 2(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seidl S, Kroner M, Dalgarno P, Högele A, Smith J, Ediger M, Gerardot B, Garcia J, Petroff PM, Karrai K (2005) Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot. Phys Rev B 72(19):195339

    Article  Google Scholar 

  9. Zhang X, Xia J (2005) Effects of shape and magnetic field on the optical properties of wurtzite quantum rods. Phys Rev B 72(20):205314

    Article  Google Scholar 

  10. Räsänen E, Saarikoski H, Stavrou V, Harju A, Puska MJ, Nieminen RM (2003) Electronic structure of rectangular quantum dots. Phys Rev B 67(23):235307

    Article  Google Scholar 

  11. Aswathy RG, Yoshida Y, Maekawa T, Kumar DS (2010) Near-infrared quantum dots for deep tissue imaging. Anal Bioanal Chem 397(4):1417–1435

    Article  CAS  PubMed  Google Scholar 

  12. Kalele S, Gosavi S, Urban J, Kulkarni S (2006) Nanoshell particles: synthesis, properties and applications. Curr Sci 91(8):1038–1052

    CAS  Google Scholar 

  13. SalmanOgli A, Rostami A (2011) Investigation of electronic and optical properties of (CdSe/ZnS/CdSe/ZnS) quantum dot–quantum well heteronanocrystal. J Nanopart Res 13(3):1197–1205

    Article  CAS  Google Scholar 

  14. Nizamoglu S, Demir HV (2008) Onion-like (CdSe) ZnS/CdSe/ZnS quantum-dot-quantum-well heteronanocrystals for investigation of multi-color emission. Opt Express 16(6):3515–3526

    Article  CAS  PubMed  Google Scholar 

  15. Wagner MK, Li F, Li J, Li X-F, Le XC (2010) Use of quantum dots in the development of assays for cancer biomarkers. Anal Bioanal Chem 397(8):3213–3224

    Article  CAS  PubMed  Google Scholar 

  16. Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391(7):2469–2495

    Article  CAS  PubMed  Google Scholar 

  17. Zou Y (2009) Strained semiconductor quantum dots-electronic band structure and multilayer correlation. University of Akron, Akron

    Google Scholar 

  18. Booker R, Boysen E (2005) Nanotechnology. Wiley, India, 361 pp

    Google Scholar 

  19. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag P (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497

    Article  CAS  PubMed  Google Scholar 

  20. Huang X (2008) Plasmatic photo thermal therapy(PPTT) using gold Nanoparticles. Lasers Med Sci 23(3):217–228

    Article  PubMed  Google Scholar 

  21. Diederich CJ, Hynynen K (1999) Ultrasound technology for hyperthermia. Ultrasound Med Biol 25(6):871–887

    Article  CAS  PubMed  Google Scholar 

  22. Haskell CM(2001) Cancer treatment, 5 edition. Saunders, Philadelphia

    Google Scholar 

  23. Arora D, Skliar M, Roemer RB (2002) Model predictive control of ultrasound hyperthermia treatments of cancer. In: Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301). IEEE, p 2897–2902

  24. Rubinsky B, Minkowycz WJ, Sparrow EM, Murthy JY (eds) (2006) Numerical bio-heat transfer. In: Handbook of Numerical Heat Transfer. Wiley, 984 pp

  25. SalmanOgli A, Rostami A (2012) Modeling and improvement of breast cancer site temperature profile by implantation of onion-like quantum-dot quantum-well heteronanocrystal in tumor site. IEEE Trans Nanotechnol 11(6):1183–1191

    Article  Google Scholar 

  26. Absalan H, SalmanOgli A, Rostami R, Maghoul A (2012) Simulation and investigation of quantum dot effects as internal heat-generator source in breast tumor site. J Therm Biol 37(7):490–495

    Article  Google Scholar 

  27. Shen W, Zhang J (2005) Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue. Math Computer Model 41(11–12):1251–1265

    Article  Google Scholar 

  28. Kwok J, Krzyspiak J (2007) Thermal imaging and analysis for breast tumor detection. BEE 4530: Computer-Aided Engineering, Applications to Biomedical Processes, Cornell university. http://hdl.handle.net/1813/7913

  29. Ng EY, Sudharsan N (2004) Computer simulation in conjunction with medical thermography as an adjunct tool for early detection of breast cancer. BMC Cancer 4(1):1

    Article  Google Scholar 

  30. Corlu A, Choe R, Durduran T, Rosen MA, Schweiger M, Arridge SR, Schnall MD, Yodh AG (2007) Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans. Opt Express 15(11):6696–6716

    Article  PubMed  Google Scholar 

  31. Dillenseger J-L, Esneault S (2010) Fast FFT-based bioheat transfer equation computation. Comput Biol Med 40(2):119–123

    Article  PubMed  Google Scholar 

  32. Mital M, Scott EP (2007) Thermal detection of embedded tumors using infrared imaging. J Biomech Eng 129(1):33–39

    Article  PubMed  Google Scholar 

  33. Shamami DZ, Karimi A, Beigzadeh B, Haghpanahi M, Navidbakhsh M (2014) A 3D finite element study for stress analysis in bone tissue around single implants with different materials and various bone qualities. J Biomater Tissue Eng 4(8):632–637

    Article  Google Scholar 

  34. Shamami DZ, Karimi A, Beigzadeh B, Derakhshan S, Navidbakhsh M (2014) A three-dimensional finite element study to characterize the influence of load direction on stress distribution in bone around dental implant. J Biomater Tissue Eng 4(9):693–699

    Article  Google Scholar 

  35. Nies MH (2007) Laser-tissue interactions: fundamentals and applications, 3rd edn. Springer, Berlin

    Google Scholar 

  36. Mazumder S, Dey R, Mitra M, Mukherjee S, Das G (2009) Review: biofunctionalized quantum dots in biology and medicine. J Nanomater 2009:38

    Article  Google Scholar 

  37. Bharathi A, Anandakumar K (2014) Investigation on cancer classification using machine learning approaches. J Biomater Tissue Eng 4(6):492–500

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ehsan Razavi.

Ethics declarations

Conflicts of interest

The author declares that they have no conflict of interest.

Ethical Approval

This Research does not contain any studies with human participants or animals performed by any of the author that this research is based on a virtual model of a breast tumor and all studies have performed based on computer simulations.

Appendix

Appendix

For Eigen-value FEM problem solving, the Gälerkin method was applied. The case of torsional vibrations of a uniform circular cross-section was also considered. The differential equations and boundary conditions required for determining shape modes and natural frequencies are shown in further equations. To apply the Gälerkin method:

$$\mathop \int \limits_0^L \left\{\left({r^2}.\frac{{{d^2}R\left( r \right)}}{{d{r^2}}} + 2r.\frac{{dR\left( r \right)}}{{dr}} + \left[ {\left( {E\left( {n,l} \right) - V\left( r \right)} \right).{r^2} + \left( {2.\frac{{r{e^2}}}{{\varepsilon \left( r \right)}}} \right) - l\left( {l + 1} \right)} \right]\right).R\left( r \right) \right\}\varphi dr = 0$$
(7)

In the above equation, L is the length of the FEM element. The continuity condition at all boundaries of heteronanocrystal layers must be satisfied based on the associated wave function solution. In this manner, we have:

$$\psi \left( {R = L} \right) = 0,\frac{{d\psi }}{{dr\left( {R = 0} \right)}} = 0 ,\frac{{d\psi }}{{dr\left( {R = L} \right)}} = 0$$
(8)

Considering the initial and boundary conditions, leads to modified forms of the Gälerkin approach are obtained:

$$- \mathop \int \limits_0^L {r^2}.\left( {\frac{{{{{{\text{d}}\varphi }}}}}{{{\text{d}}\left( {\text{r}} \right)}}} \right).\left( {\frac{{dR}}{{dr}}} \right)dr - \mathop \int \limits_0^L \left( {\frac{{2rd\varphi }}{{dr}}} \right) + {\mathop \int \limits_0^L ([E\left( {n,l} \right) - V\left( r \right).{r^2} + \left( {2.\frac{{r{e^2}}}{{\varepsilon \left( r \right)}}} \right) - l\left( {l + 1} \right)} ].R\left( r \right))\varphi dr = 0 $$
(9)

The above equations should be solved using the FEM method (L is the length of the FEM element). Therefore, in next step FEM approximation should be implement using a set of basic functions Ni:

$$\psi \,\, = \,\,\,\,\sum\limits_{i = 1}^{} {{\psi _i}{N_i}} = \,\,\,\overline \psi N{\text{ and }}\phi \,\, = \,\,\,\,\sum\limits_{i = 1}^{} {{\phi _i}{N_i}} = \,\,\overline \phi N$$
(10)

where the basis operator, N, in one dimension is given as:

$$N = [{{N_1},{N_2}} ]\to {N_1} = {{1 - \xi/2 }},\quad {N_2} = {{1 + \xi/2 }}$$
(11)

The coordinate transformation can be given as:

$$x = \sum\limits_{i = 1}{{x_i}{N_i}}$$
(12)

Moreover, we can write the derivative transformations:

$${{dx} \mathord{\left/ {\vphantom {{dx} {d\xi }}} \right. \kern-\nulldelimiterspace} {d\xi }} = {{{x_2} - {x_1}} \mathord{\left/ {\vphantom {{{x_2} - {x_1}} 2}} \right. \kern-\nulldelimiterspace} 2} \to {{{l_e}} \mathord{\left/ {\vphantom {{{l_e}} 2}} \right. \kern-\nulldelimiterspace} 2}$$
(13)
$${{d\psi } \mathord{\left/ {\vphantom {{d\psi } {d\xi }}} \right. \kern-\nulldelimiterspace} {d\xi }} = \,{{d\psi } \mathord{\left/ {\vphantom {{d\psi } {dx}}} \right. \kern-\nulldelimiterspace} {dx}}.{{dx} \mathord{\left/ {\vphantom {{dx} {d\xi }}} \right. \kern-\nulldelimiterspace} {d\xi }}\to{{d\psi } \mathord{\left/ {\vphantom {{d\psi } {d\xi }}} \right. \kern-\nulldelimiterspace} {d\xi }} = {2 \mathord{\left/ {\vphantom {2 {{l_e}}}} \right. \kern-\nulldelimiterspace} {{l_e}}}\,.\,{{d\xi } \mathord{\left/ {\vphantom {{d\xi } {dx}}} \right. \kern-\nulldelimiterspace} {dx}}$$
(14)
$${d \mathord{\left/ {\vphantom {d {dx}}} \right. \kern-\nulldelimiterspace} {dx}} = {2 \mathord{\left/ {\vphantom {2 {{l_e}}}} \right. \kern-\nulldelimiterspace} {{l_e}}}.\,{d \mathord{\left/ {\vphantom {d {d\xi }}} \right. \kern-\nulldelimiterspace} {d\xi }}$$
(15)

Using the matrix notation, the following can be written:

$${{d\psi } \mathord{\left/ {\vphantom {{d\psi } {d\xi }}} \right. \kern-\nulldelimiterspace} {d\xi }} = \frac{1}{2} \times \left[ { - 1\,\,\,1} \right] \times \left[ \begin{array}{l} {\psi _1}\\ {\psi _2} \end{array} \right]$$
(16)
$${d \mathord{\left/ {\vphantom {d {d\xi }}} \right. \kern-\nulldelimiterspace} {d\xi }} = \frac{1}{2} \times \left[ { - 1\,\,\,1} \right]$$
(17)

When combining Eqs. (15), (16) and (17):

$${d \mathord{\left/ {\vphantom {d {dx}}} \right. \kern-\nulldelimiterspace} {dx}} = \frac{1}{{{l_e}}} \times \left[ { - 1\,\,\,1} \right] = {B}$$
(18)

where B gives the FEM approximation of the function derivative.

$${{d\psi } \mathord{\left/ {\vphantom {{d\psi } {dx}}} \right. \kern-\nulldelimiterspace} {dx}} = \frac{1}{{{l_e}}} \times \left[ { - 1\,\,\,1} \right]\overline \psi = B\overline \psi$$
(19)

where \(\overline \psi\) is the FE approximation vector of the continuous function \(\psi\). Then using Eqs. (11) and (19) into Eq. (9) the below equations will be obtained:

$$\begin{gathered} - \int\limits_0^L {{r^2}.({{\overline \varphi }^T}{B^T}B\overline R )({{{l_e}} \mathord{\left/ {\vphantom {{{l_e}} 2}} \right. \kern-\nulldelimiterspace} 2})d\xi } - \int\limits_0^L {2r.({{\overline \varphi }^T}{B^T}N\overline R )({{{l_e}} \mathord{\left/ {\vphantom {{{l_e}} 2}} \right. \kern-\nulldelimiterspace} 2})d\xi } \hfill \\ + \int\limits_0^L {(\,\,({{2r.{m^*}.{e^2}} \mathord{\left/ {\vphantom {{2r.{m^*}.{e^2}} {{\hbar ^2}.{\varepsilon _r}}}} \right. \kern-\nulldelimiterspace} {{\hbar ^2}.{\varepsilon _r}}}) - V(r)\,\, - \,\,l(l + 1)\,\,).({{2.{m^*}} \mathord{\left/ {\vphantom {{2.{m^*}} {{\hbar ^2}}}} \right. \kern-\nulldelimiterspace} {{\hbar ^2}}}).(E{{\overline \varphi }^T}{N^T}N\overline R )({{{l_e}} \mathord{\left/ {\vphantom {{{l_e}} 2}} \right. \kern-\nulldelimiterspace} 2})d\xi = 0} \hfill \\ \end{gathered}$$
(20)

With the use of Eqs. (8), (9), and (18) for one element of the approximation mesh:

$$- \int\limits_{ - 1}^1 {({{\overline {\phi (r)} }^T})} \left\{ \begin{array}{l} \,\left[ {({{{l_e}} \mathord{\left/ {\vphantom {{{l_e}} 8}} \right. \kern-\nulldelimiterspace} 8})\,\left( {\begin{array}{*{20}{c}} {{\xi ^2}}&{ - {\xi ^2}}\\ { - {\xi ^2}}&{{\xi ^2}} \end{array}} \right) + ({{{l_e}} \mathord{\left/ {\vphantom {{{l_e}} 2}} \right. \kern-\nulldelimiterspace} 2})\,\left( {\begin{array}{*{20}{c}} { - {N_1}\xi }&{ - {N_2}\xi }\\ {{N_1}\xi }&{{N_2}\xi } \end{array}} \right) - ({{{l_e}^2.2{m^*} \times ({{{e^2}} \mathord{\left/ {\vphantom {{{e^2}} {{\hbar ^2}{\varepsilon _r}}}} \right. \kern-\nulldelimiterspace} {{\hbar ^2}{\varepsilon _r}}})} \mathord{\left/ {\vphantom {{{l_e}^2.2{m^*} \times ({{{e^2}} \mathord{\left/ {\vphantom {{{e^2}} {{\hbar ^2}{\varepsilon _r}}}} \right. \kern-\nulldelimiterspace} {{\hbar ^2}{\varepsilon _r}}})} 4}} \right. \kern-\nulldelimiterspace} 4})\,\left( {\begin{array}{*{20}{c}} {{N_1}^2\xi }&{{N_2}{N_1}\xi }\\ {{N_2}{N_1}\xi }&{{N_2}^2\xi } \end{array}} \right)} \right] \to \,\,\\ \\ + \left[ {\,( - l(l + 1)) \times {{({l_e}} \mathord{\left/ {\vphantom {{({l_e}} 2}} \right. \kern-\nulldelimiterspace} 2})\left( {\begin{array}{*{20}{c}} {{N_1}^2}&{{N_2}{N_1}}\\ {{N_2}{N_1}}&{{N_2}^2} \end{array}} \right) + ({{{l_e}^3.{m^*}} \mathord{\left/ {\vphantom {{{l_e}^3.{m^*}} {4{\hbar ^2}}}} \right. \kern-\nulldelimiterspace} {4{\hbar ^2}}})\,\left( {\begin{array}{*{20}{c}} {{\xi ^2}{N_1}^2V(\xi )}&{{\xi ^2}{N_2}{N_1}V(\xi )}\\ {{\xi ^2}{N_2}{N_1}V(\xi )}&{{\xi ^2}{N_2}^2V(\xi )} \end{array}} \right)\,} \right] \to - \left[ {({{{l_e}^3 \times {E_{nl}}.{m^*}} \mathord{\left/ {\vphantom {{{l_e}^3 \times {E_{nl}}.{m^*}} {4{\hbar ^2}}}} \right. \kern-\nulldelimiterspace} {4{\hbar ^2}}})\left( {\begin{array}{*{20}{c}} {{\xi ^2}{N_1}^2}&{{\xi ^2}{N_2}{N_1}}\\ {{\xi ^2}{N_2}{N_1}}&{{\xi ^2}{N_2}^2} \end{array}} \right)\,} \right] \end{array} \right\}\, \times ({2 \mathord{\left/ {\vphantom {2 {{l_e}\xi }}} \right. \kern-\nulldelimiterspace} {{l_e}\xi }})\,\overline {R(r)} d\xi = 0$$
(21)

Equation (21) is presented in the form of FEM for solving numerically:

$$\int\limits_{ - 1}^1 \left\{{\overline{\phi(r)}}^T\times \left(\sum{A_i}+B.{E_{nl}}\right) \times {\overline{R(r)}}\right\} d\xi = 0$$
(22)

In Eq. (22), “Ai” and “Bi” are the definition matrix.

The Schrodinger equation using FEM approximation can be obtained as below:

$$\sum\limits_i^{{N_{element}}} {\left\{ {\left[ A \right] - \lambda \left[ B \right]} \right\}} \overline \psi = 0$$
(23)

Using the boundary conditions of a defined potential, the nodal approximations at the edges can be found by considering: \({\left. {{\Psi _1} = r \times {\psi _1}\,} \right|_{r = 0}} = \,\,0\) and \({\Psi _{n + 1}}\, = r \times {\psi _{n + 1}}\,\, = \,\,0\) where N is the number of elements. Therefore, to assemble N elements:

$$\left\{ {\left( {\begin{array}{*{20}{l}} {{a_{11}}} &\ldots& {{a_{1n}}} \\ \vdots &\ddots& \vdots \\ {{a_{n1}}}& \cdots& {{a_{nn}}} \end{array}} \right) -\lambda \left( {\begin{array}{*{20}{l}} {{b_{11}}} &\ldots& {{b_{1n}}} \\ \vdots& \ddots& \vdots \\ {{b_{n1}}} &\cdots& {{b_{nn}}} \end{array}} \right)} \right\}\left[ {\begin{array}{*{20}{l}} {{\Psi _2}} \\ \vdots\\ \vdots \\ {{\Psi _N}} \end{array}} \right] = 0$$
(24)

where λ is the FEM approximation Eigen-value. Therefore, using Eqs. (23) and (24) for “N” elements of mesh, Eigen-value and Eigen-state can be attained by solving Eq. (24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi, S.E. A neural controller for online laser power adjustment during the heat therapy process in the presence of nanoparticles. Australas Phys Eng Sci Med 40, 401–411 (2017). https://doi.org/10.1007/s13246-017-0541-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-017-0541-7

Keywords

Navigation