Skip to main content
Log in

Near-infrared quantum dots for deep tissue imaging

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Developments in nanotechnology have paved the way for the early detection, treatment, and prevention of several tumors which affect mankind. In the past few years, near-infrared (NIR) fluorescence imaging techniques have emerged that enable the in vivo imaging of physiological, metabolic, and molecular function. The NIR window, also known as the diagnostic window (700–900 nm), can be explored for sensitive detection techniques. Nanoparticles, particularly semiconductor quantum dots (QDs), can be utilized for the purpose of optical imaging. These semiconductor QDs possess novel electronic, optical, magnetic, and structural properties which are quite different from those of bulk materials. NIR QDs with these unique properties can be utilized as contrast agents for optical imaging, particularly for deep tissue imaging. Deep tissue imaging provides more information about the pathological status of the disease, which makes the treatment more effective and efficient. In this review we highlight the importance of NIR QDs as probes for optical imaging. We describe the different types of NIR QDs, their synthesis, and their application for deep tissue imaging along with recently developed self-illuminating NIR QDs.

NIR QDs for deep tissue imaging

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Proc Natl Acad Sci USA 87:9868–9872

    CAS  Google Scholar 

  2. Howe FA, Robinson SP, Rodrigues LM, Griffiths JR (1999) Magn Reson Imaging 17:1307–1318

    CAS  Google Scholar 

  3. Krishna MC, English S, Yamada K, Yoo J, Murugasen R, Devasahayam N, Cook JA, Golman K, Ardenkjaer-Larsen JH, Subramanian S, Mitchell JB (2002) Proc Natl Acad Sci USA 99:2216–2221

    CAS  Google Scholar 

  4. Ilangovan G, Li HQ, Zweier JL, Krishna MC, Mitchell JB, Kuppusamy P (2002) Magn Reson Med 48:723–730

    CAS  Google Scholar 

  5. Subramanian S, Devasahayam N, Murugesan R, Yamada K, Cook JA, Taube A, Mitchell JB, Lohman JA, Krishna MC (2002) Magn Reson Med 48:370–379

    Google Scholar 

  6. Kaarstad K, Bender D, Bentzen L, Munk OL, Keiding S (2002) J Nucl Med 43:940–947

    CAS  Google Scholar 

  7. Zhuang HM, Pourdehnad M, Yamamoto LES, AJ LM, Li P, Mozley DP, Rossman MD, Albelda SM, Alavi A (2001) J Nucl Med 42:1412–1417

    CAS  Google Scholar 

  8. Seidel J, Vaquero JJ, Pascau J, Desco M, Johnson CA, Green MV (2002) In: Proceedings of IEEE international symposium on biomedical imaging, pp 545–548

  9. Zrazhevskiy P, Gao X (2009) Nano Today 4:414–428

    CAS  Google Scholar 

  10. Winnard P, Raman V (2007) J Cell Biochem 90:454–463

    Google Scholar 

  11. Kubo N, Zhao S, Fujiki Y, Kinda A, Motomura N, Katoh C, Shiga T, Kawashima H, Kuge Y, Tamaki N (2005) Ann Nucl Med 19:633–639

    Google Scholar 

  12. Bergström M, Swain P, Park PO (2007) Gastrointest Endosc 66:174–178

    Google Scholar 

  13. Hekmat H, Al-toma A, Mallant MP, Mulder CJ, Jacobs MA (2007) Scand J Gastroenterol 42:277–278

    Google Scholar 

  14. Furukawa T, Sato H, Shinzawa H, Noda I, Ochiai S (2007) Anal Sci 23:871–876

    CAS  Google Scholar 

  15. Wessels JT, Busse AC, Mahrt J, Dullin C, Grabbe E, Mueller GA (2007) Cytometry A 71:542–549

    CAS  Google Scholar 

  16. Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmann W, Grötzinger C (2001) Nat Biotechnol 19:327–331

    CAS  Google Scholar 

  17. Sato A, Klaunberg B, Tolwani R (2004) Comp Med 54:631–634

    CAS  Google Scholar 

  18. Alivisatos AP (2004) Nat Biotechnol 22:47–52

    CAS  Google Scholar 

  19. Ferrari M (2005) Nat Rev Cancer 5:161–171

    CAS  Google Scholar 

  20. Niemeyer CM (2001) Angew Chem Int Ed 40:4128–4158

    CAS  Google Scholar 

  21. Cao YWC, Jin RC, Mirkin CA (2002) Science 297:1536–1540

    CAS  Google Scholar 

  22. Gao XH, Yang LL, Petros JA, Marshal FF, Simons JW, Nie SM (2005) Curr Opin Biotechnol 16:63–72

    CAS  Google Scholar 

  23. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544

    CAS  Google Scholar 

  24. Nie SM, Xing Y, Kim GJ, Simons JW (2007) Annu Rev Biomed Eng 9:257–288

    CAS  Google Scholar 

  25. Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562

    CAS  Google Scholar 

  26. Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie SM, O’Regan RM (2006) Lancet Oncol 7:657–667

    CAS  Google Scholar 

  27. Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW (2004) J Neurophys 91:1908–1912

    Google Scholar 

  28. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Science 300:1434–1437

    CAS  Google Scholar 

  29. Hilderbrand SA, Weissleder R (2009) Curr Opin Chem Biol 14:1–9

    Google Scholar 

  30. Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R (2002) Bioconjug Chem 13:554–560

    CAS  Google Scholar 

  31. Jin T, Yoshioka Y, Fujii F, Komai Y, Seki J, Seiyama A (2008) Chem Commun 5764–5766

  32. Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN (2007) Bioconjug Chem 18:1391–1396

    CAS  Google Scholar 

  33. Licha K (2002) In: Krause W (ed) Contrast agents II. Topics in current chemistry, vol 222. Springer, Heidelberg, pp 1–29

    Google Scholar 

  34. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Mol Imaging 2:50–64

    CAS  Google Scholar 

  35. Frangioni JV (2003) Curr Opin Chem Biol 7:626–634

    CAS  Google Scholar 

  36. Zhong XH, Feng YY, Knoll W, Han MY (2003) J Am Chem Soc 125:13559–13563

    CAS  Google Scholar 

  37. Bailey RE, Nie SM (2003) J Am Chem Soc 125:7100–7106

    CAS  Google Scholar 

  38. Hines MA, Scholes GD (2003) Adv Mater 15:1844–1849

    CAS  Google Scholar 

  39. Kim S, Fisher B, Eisler HJ, Bawendi MG (2003) J Am Chem Soc 125:11466–11467

    CAS  Google Scholar 

  40. Qu LH, Peng XG (2002) J Am Chem Soc 124:2049–2055

    CAS  Google Scholar 

  41. Pietryga JM, Schaller RD, Werder D, Stewart MH, Klimov VI, Hollingsworth JA (2004) J Am Chem Soc 126:11752–11753

    CAS  Google Scholar 

  42. Smith AM, Duan H, Mohs AM, Nie S (2008) Adv Drug Deliv Rev 60:1226–1240

    CAS  Google Scholar 

  43. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker J, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Nat Biotechnol 22:93–98

    CAS  Google Scholar 

  44. Kim SW, Zimmer JP, Ohnishi S, Tracy JB, Frangioni JV, Bawendi MG (2005) J Am Chem Soc 127:10526–10532

    CAS  Google Scholar 

  45. Zimmer JP, Kim SW, Onishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) J Am Chem Soc 128:2526–2527

    CAS  Google Scholar 

  46. Liu WH, Choi HS, Zimmer JP, Tanaka E, Frangioni JV, Bawendi MG (2007) J Am Chem Soc 129:14530–14531

    CAS  Google Scholar 

  47. Kim S, Fisher B, Eisler HJ, Bewandi (2003) J Am Chem Soc 125:11466–11467

    CAS  Google Scholar 

  48. Sima PD, Kanofsky JR (2000) Photochem Photobiol 71:413–421

    CAS  Google Scholar 

  49. Alivisatos AP (1996) J Phys Chem 100:13226–13239

    CAS  Google Scholar 

  50. Alivisatos AP (1996) Science 271:933–937

    CAS  Google Scholar 

  51. Smith AM, Gao X, Nie SM (2004) Photochem Photobiol 80:377

    CAS  Google Scholar 

  52. Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, Iyer, Weiss GS (2006) Biomaterials 27:1679–1687

    CAS  Google Scholar 

  53. Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) Nat Biotechnol 22:969–976

    CAS  Google Scholar 

  54. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Nat Biotechnol 21:41–46

    CAS  Google Scholar 

  55. Gao X, Nie S (2003) Trends Biotechnol 21:371–373

    CAS  Google Scholar 

  56. Morgan NY, English S, Chen W, Chernomordik V, Russo A, Smith P, Gandjbakhche A (2005) Acad Radiol 12:313–323

    Google Scholar 

  57. Chen H, Wang Y, Xu J, Ji J, Zhang J, Hu Y, Gu Y (2008) J Fluoresc 18:801–811

    CAS  Google Scholar 

  58. Zhao D, He Z, Chan WH, Choi MMF (2009) J Phys Chem C 113:1293–1300

    CAS  Google Scholar 

  59. Harrison MT, Kershaw SV, Burt MG, Eychmuller A, Weller H, Rogach AL (2000) Mater Sci Eng B 69:355–360

    Google Scholar 

  60. Xia SY, Zhu CQ (2008) Analyst 133:928–932

    CAS  Google Scholar 

  61. Kim S, Shim W, Seo H, Bae JH, Sung J, Choi SH, Moon WK, Lee G, Lee B, Kim SW (2009) Chem Commun 1267–1269

  62. Zhang Y, Li Y, Yan XP (2009) Small 5:185–189

    CAS  Google Scholar 

  63. Yu K, Zaman B, Romanova S, Wang D (2005) Small 1:332–338

    CAS  Google Scholar 

  64. Blackman B, Battaglia D, Peng X (2008) Chem Mater 20:4847–4853

    CAS  Google Scholar 

  65. Aharoni A, Mokari T, Popov I, Banin U (2006) J Am Chem Soc 128:257–264

    CAS  Google Scholar 

  66. Bailey RE, Strausburg JB, Nie SM (2004) J Nanosci Nanotechnol 4:569–574

    CAS  Google Scholar 

  67. Rogach AL, Eychm üller A, Hickey SG, Kershaw SV (2007) Small 3:536–557

    CAS  Google Scholar 

  68. Mao W, Guo J, Yang W, Wang C, He J, Chen J (2007) Nanotechnology 18:48561

    Google Scholar 

  69. Liang GX, Gu MM, Zhang JR, Zhu JJ (2009) Nanotechnology 20:415103

    Google Scholar 

  70. Pradhan N, Goorskey D, Thessing J, Peng X (2005) J Am Chem Soc 127:17586–17587

    CAS  Google Scholar 

  71. Xie R, Chen K, Chen X, Peng (2008) Nano Res 1:457–464

    CAS  Google Scholar 

  72. Gao J, Chen K, Xie R, Xie J, Lee S, Cheng Z, Peng X, Chen X (2010) Small 6:256–261

    CAS  Google Scholar 

  73. Li L, Daou TJ, Texier I, Chi TTK, Liem NQ, Reiss P (2009) Chem Mater 21:2422–2429

    CAS  Google Scholar 

  74. Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q (2010) J Am Chem Soc 132:1470–1471

    CAS  Google Scholar 

  75. Allen PM, Bawendi MG (2008) J Am Chem Soc 130:9240–9241

    CAS  Google Scholar 

  76. Pan D, Wang X, Zhou ZH, Chen W, Xu C, Lu Y (2009) Chem Mater 21:2489–2493

    CAS  Google Scholar 

  77. Mikulec FV, Kuno M, Bennati M, Hall DA, Griffin RG, Bawendi MG (2000) J Am Chem Soc 122:2532–2540

    CAS  Google Scholar 

  78. Sahoo Y, Poddar P, Srikanth H, Lucey DW, Prasad PN (2005) J Phys Chem B 109:15221–15225

    CAS  Google Scholar 

  79. Yong KT (2009) Nanotechnology 20:015102

    Google Scholar 

  80. Jiang W, Singhal A, Kim BYS, Zheng J, Rutka JT, Wang C, Chan WCW (2008) J Assoc Lab Automat 13:6–12

    CAS  Google Scholar 

  81. Jin T, Fujii F, Komai Y, Seki J, Seiyama A, Yoshioka Y (2008) Int J Mol Sci 9:2044–2061

    CAS  Google Scholar 

  82. Zhang W, Chen G, Wang J, Ye B, Zhong X (2009) Inorg Chem 48:9723–9731

    CAS  Google Scholar 

  83. Susumu K, Uyeda HT, Medintz IL, Pons T, Delehanty JB, Mattoussi H (2007) J Am Chem Soc 129:13987–13996

    CAS  Google Scholar 

  84. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Proc Natl Acad Sci USA 99:12617–12621

    CAS  Google Scholar 

  85. Gussin HA, Tomlinson ID, Little DM, Warnement MR, Qian H, Rosenthal SJ, Pepperberg DR (2006) J Am Chem Soc 128:15701–15713

    CAS  Google Scholar 

  86. Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stölzle S, Fertig N, Parak WJ (2005) Nano Lett 5:2331–2338

    Google Scholar 

  87. Lewis RJ (2004) Sax’s dangerous properties of industrial materials, 11th edn. Wiley, New York

    Google Scholar 

  88. Neerman MF, Bootheb DM (2003) Pharmacol Res 6:523–526

    Google Scholar 

  89. Papagiannaros A, Levchenko T, Hartner W, Mongayt D, Torchilin V (2009) Nanomed Nanotechnol Biol Med 5:216–224

    CAS  Google Scholar 

  90. Liu Z, Cai WB, He LN, Nakayama N, Chen K, Sun XM, Chen XY, Dai HJ (2007) Nat Nanotechnol 2:47–52

    CAS  Google Scholar 

  91. Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Nat Biotechnol 23:1418–1423

    CAS  Google Scholar 

  92. Lee ES, Na K, Bae YH (2003) J Control Release 91:103–113

    CAS  Google Scholar 

  93. Ntziachristos V, Bremer C, Weissleder R (2003) Eur Radiol 13:195–208

    Google Scholar 

  94. Sevick-Muraca EM, Houston JP, Gurfinkel M (2002) Curr Opin Chem Biol 6:642–650

    CAS  Google Scholar 

  95. Eidsath A, Chernomordik V, Gandjbakhche A, Smith P, Russo A (2002) Phys Med Biol 47:4079–4092

    CAS  Google Scholar 

  96. Weissleder R, Mahmood U (2001) Radiology 219:316–333

    CAS  Google Scholar 

  97. O’Leary MA, Boas DA, Li XD, Chance B, Yodh AG (1996) Opt Lett 21:158–160

    Google Scholar 

  98. Paithankar DY, Chen AU, Pogue BW, Patterson MS, Sevick-Muraca EM (1997) Appl Opt 36:2260–2272

    CAS  Google Scholar 

  99. Medintz IL H, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446

    Google Scholar 

  100. Medintz IL, Mattoussi H, Clapp AR (2008) Int J Nanomed 3:151–167

    CAS  Google Scholar 

  101. Sen D, Deerinck TJ, Ellisman MH, Parker I, Cahalan MD (2008) PLoS ONE 3:e3290

    Google Scholar 

  102. Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JAJ, Waggoner AS, Bruchez MP (2007) Bioconjug Chem 18:389–396

    CAS  Google Scholar 

  103. Youn J, Won N, Kim S, Choi JH (2008) Biomedical optics, OSA technical digest (CD) (Optical Society of America, 2008), paper BSuE2. http://www.opticsinfobase.org/abstract.cfm?URI=BIOMED-2008-BSuE2

  104. Soltesz EG, Kim S, Laurence RG, DeGrand AM, Parungo CP, Dor DM, Cohn LH, Bawendi MG, Frangioni JV, Mihaljevic T (2005) Ann Thorac Surg 79:269–277

    Google Scholar 

  105. Parungo CP, Colson YL, Kim SW, Kim S, Cohn LH, Bawendi MG, Frangioni JV (2005) Chest 127:1799–1804

    Google Scholar 

  106. Parungo CP, Ohnishi S, Kim SW, Kim S, Laurence RG, Soltesz EG, Chen FY, Colson YL, Cohn LH, Bawendi MG, Frangioni JV (2005) J Thorac Cardiovasc Surg 129:844–850

    Google Scholar 

  107. Soltesz EG, Kim S, Kim SW, Laurence RG, DeGrand AM, Parungo CP, Cohn LH, Bawendi MG, Frangioni JV (2006) Ann Surg Oncol 13:386–396

    Google Scholar 

  108. Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Nano Lett 6:669–676

    CAS  Google Scholar 

  109. Diagaradjane P, Orenstein-Cardona JM, Colόn Casasnovas NE, Deorukhkar A, Shentu S, Kuno N, Schwartz DL, Gelovani JG, Krishnan S (2008) Clin Cancer Res 14:731–741

    CAS  Google Scholar 

  110. Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CAS, Urano Y, Choyke PL (2007) Nano Lett 7:1711–1716

    CAS  Google Scholar 

  111. So MK, Xu C, Loening AM, Gambhir SS, Rao J (2006) Nat Biotechnol 24:339–343

    CAS  Google Scholar 

  112. Xia Z, Xing Y, So MK, Koh AL, Sinclair R, Rao J (2008) Anal Chem 80:8649–8655

    CAS  Google Scholar 

  113. Xia Z, Rao J (2009) Curr Opin Biotechnol 20:1–8

    Google Scholar 

  114. Yao H, Zhang Y, Xiao F, Xia Z, Rao J (2007) Angew Chem Int Ed 46:4346–4349

    CAS  Google Scholar 

  115. Park J, Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Angew Chem Int Ed 47:7284–7288

    CAS  Google Scholar 

  116. Zintchenko A, Susha AS, Concia M, Feldmann J, Wagner E, Rogach AL, Ogris M (2009) Mol Ther 17:1849–1856

    CAS  Google Scholar 

  117. Nel A, Xia T, Mädler L, Li N (2006) Science 311:622–627

    CAS  Google Scholar 

  118. Derfus AM, Chan WCW, Bhatia SN (2004) Nano Lett 4:11–18

    CAS  Google Scholar 

  119. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Adv Drug Deliv Rev 61:457–466

    CAS  Google Scholar 

  120. Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, Gray JW, Alivisatos AP, Chen FF (2006) Nano Lett 6:800–808

    CAS  Google Scholar 

  121. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH (2002) Albert Libchaber A. Science 298:1759–1762

    CAS  Google Scholar 

  122. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick V, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Part Fibre Toxicol 2:1–5

    Google Scholar 

  123. Oberdörster G, Oberdörster E, Oberdörster J (2005) Environ Health Perspect 113:823–839

    Article  CAS  Google Scholar 

  124. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Toxicol Sci 91:159–165

    CAS  Google Scholar 

  125. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Nat Biotechnol 21:47–51

    CAS  Google Scholar 

  126. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki T, Ohta M, Yasuhara K, Suzuki K, Yamamoto K (2004) Nano Lett 4:2163–2188

    CAS  Google Scholar 

  127. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Nat Med 10:993–998

    CAS  Google Scholar 

  128. Chan WC, Nie S (1998) Science 281:2016–2018

    CAS  Google Scholar 

  129. Chen F, Gerion D (2004) NanoLett 4:1827–1832

    CAS  Google Scholar 

  130. Kloepfer JA, Mielke RE, Nadeau JL (2005) Appl Environ Microbiol 71:2548–2557

    CAS  Google Scholar 

  131. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Bioconjug Chem 15:79–86

    CAS  Google Scholar 

  132. Hardman R (2006) Environ Health Perspect 114:165–172

    Google Scholar 

  133. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Proc Natl Acad Sci USA 104:2050–2055

    CAS  Google Scholar 

  134. Kim HR, Andrieux K, Delomenie C, Chacun H, Appel M, Desmaele D, Taran F, Georgin D, Couvreur P, Taverna M (2007) Electrophoresis 28:2252–2261

    CAS  Google Scholar 

  135. Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV (2009) Nano Lett 9:2354–2359

    CAS  Google Scholar 

  136. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Nat Biotechnol 25:1165–1170

    CAS  Google Scholar 

  137. Lee HA, Leavens TL, Mason SE, Monteiro-Riviere NA, Riviere JE (2009) Nano Lett 9:794–799

    CAS  Google Scholar 

  138. Weng J, Ren J (2006) Curr Med Chem 13:897–909

    CAS  Google Scholar 

  139. Smith AM, Mohs AM, Nie S (2009) Nat Nanotechnol 4:56–63

    CAS  Google Scholar 

  140. Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Nature 383:802–806

    CAS  Google Scholar 

  141. Efros AL, Rosen M (1997) Phys Rev Lett 78:1110–1113

    CAS  Google Scholar 

Download references

Acknowledgement

R.G.A. would like to acknowledge MEXT, Japan, for providing fellowship to conduct her doctoral course.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sakthi Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aswathy, R.G., Yoshida, Y., Maekawa, T. et al. Near-infrared quantum dots for deep tissue imaging. Anal Bioanal Chem 397, 1417–1435 (2010). https://doi.org/10.1007/s00216-010-3643-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3643-6

Keywords

Navigation