Abdelfattah A, Li Destri Nicosia MG, Cacciola SO, Droby S, Schena L (2015) Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of Olive (Olea europaea). PLoS ONE 10(7):e0131069. https://doi.org/10.1371/journal.pone.0131069
CAS
Article
PubMed
PubMed Central
Google Scholar
Alves A, Crous PW, Correia A, Phillips AJL (2008) Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. v.28
Atanasova L, Druzhinina IS (2010) Review: global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi. J Zhejiang Univ Sci B 11(3):151–168. https://doi.org/10.1631/jzus.B1000007
CAS
Article
PubMed
PubMed Central
Google Scholar
Atanasova L, Jaklitsch WM, Komon-Zelazowska M, Kubicek CP, Druzhinina IS (2010) Clonal species Trichoderma parareesei sp. nov. likely resembles the ancestor of the cellulase producer Hypocrea jecorina/T. reesei. Appl Environ Microb 76(21):7259–7267. https://doi.org/10.1128/Aem.01184-10
CAS
Article
Google Scholar
Atanasova L, Druzhinina IS, Jaklitsch WM (2013) Two hundred Trichoderma species recognized on the basis of molecular phylogeny. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. CABI, Croydon, pp 10–42. https://doi.org/10.1079/9781780642475.0010
Chapter
Google Scholar
Bajpai A, Rawat S, Johri BN (2019) Fungal diversity: global perspective and ecosystem dynamics. In: Satyanarayana T, Johri BN, Das SK (eds) Microbial diversity in ecosystem sustainability and biotechnological applications: microbial diversity in normal & extreme environments, vol 1. Springer, Singapore, pp 83–113. https://doi.org/10.1007/978-981-13-8315-1_4
Chapter
Google Scholar
Baroncelli R, Piaggeschi G, Fiorini L, Bertolini E, Zapparata A, Pe ME, Sarrocco S, Vannacci G (2015) Draft whole-genome sequence of the biocontrol agent Trichoderma harzianum T6776. Genome Announc 3(3):e00647-15. https://doi.org/10.1128/genomeA.00647-15
Article
PubMed
PubMed Central
Google Scholar
Baroncelli R, Zapparata A, Piaggeschi G, Sarrocco S, Vannacci G (2016) Draft whole-genome sequence of Trichoderma gamsii T6085, a promising biocontrol agent of Fusarium head blight on wheat. Genome Announc 4(1):e01747-15. https://doi.org/10.1128/genomeA.01747-15
Article
PubMed
PubMed Central
Google Scholar
Bissett J, Gams W, Jaklitsch W, Samuels GJ (2015) Accepted Trichoderma names in the year 2015. IMA Fungus 6(2):263–295. https://doi.org/10.5598/imafungus.2015.06.02.02
Article
PubMed
PubMed Central
Google Scholar
Cai F, Gao R, Zhao Z, Ding M, Jiang S, Yagtu C, Zhu H, Zhang J, Ebner T, Mayrhofer-Reinhartshuber M, Kainz P, Chenthamara K, Akcapinar GB, Shen Q, Druzhinina IS (2020) Evolutionary compromises in fungal fitness: hydrophobins can hinder the adverse dispersal of conidiospores and challenge their survival. ISME J 14:2610–2624. https://doi.org/10.1038/s41396-020-0709-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3):553–556. https://doi.org/10.1080/00275514.1999.12061051
CAS
Article
Google Scholar
Castrillo ML, Bich GA, Modenutti C, Turjanski A, Zapata PD, Villalba LL (2017) First whole-genome shotgun sequence of a promising cellulase secretor, Trichoderma koningiopsis strain POS7. Genome Announc 5(37):e00823-17. https://doi.org/10.1128/genomeA.00823-17
Article
PubMed
PubMed Central
Google Scholar
Chaverri P, Samuels GJ (2003) Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores. Stud Mycol 48:1–116
Google Scholar
Chaverri P, Gazis RO, Samuels GJ (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia 103(1):139–151. https://doi.org/10.3852/10-078
Article
PubMed
Google Scholar
Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107(3):558–590. https://doi.org/10.3852/14-147
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen K, Zhuang W-Y (2016) Trichoderma shennongjianum and Trichoderma tibetense, two new soil-inhabiting species in the Strictipile clade. Mycoscience 57(5):311–319. https://doi.org/10.1016/j.myc.2016.04.005
Article
Google Scholar
Chen K, Zhuang W-Y (2017a) Seven new species of Trichoderma from soil in China. Mycosystema 36(11):1441–1462. https://doi.org/10.13346/j.mycosystema.170134
Article
Google Scholar
Chen K, Zhuang WY (2017b) Discovery from a large-scaled survey of Trichoderma in soil of China. Sci Rep 7(1):9090. https://doi.org/10.1038/s41598-017-07807-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen K, Zhuang WY (2017c) Three new soil-inhabiting species of Trichoderma in the Stromaticum clade with test of their antagonism to pathogens. Curr Microbiol 74(9):1049–1060. https://doi.org/10.1007/s00284-017-1282-2
CAS
Article
PubMed
Google Scholar
Chen K, Zhuang W-Y (2017d) Seven soil-inhabiting new species of the genus Trichoderma in the Viride clade. Phytotaxa 312(1):28–46. https://doi.org/10.11646/phytotaxa.312.1.2
Article
Google Scholar
Chenthamara K, Druzhinina IS, Rahimi MJ, Grujic M, Cai F (2020) Ecological genomics and evolution of Trichoderma reesei. In: Mach-Aigner A, Martzy R (eds) Trichoderma reesei—methods and protocols. Springer, Puducherry
Google Scholar
Choi J, Kim SH (2017) A genome tree of life for the Fungi kingdom. Proc Natl Acad Sci USA 114(35):9391–9396. https://doi.org/10.1073/pnas.1711939114
CAS
Article
PubMed
PubMed Central
Google Scholar
Compant S, Gerbore J, Antonielli L, Brutel A, Schmoll M (2017) Draft genome sequence of the root-colonizing fungus Trichoderma harzianum B97. Genome Announc 5(13):e00137-17. https://doi.org/10.1128/genomeA.00137-17
Article
PubMed
PubMed Central
Google Scholar
De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56(6):879–886. https://doi.org/10.1080/10635150701701083
Article
PubMed
Google Scholar
Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chaverri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ (2008) The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog 7(3):177–219. https://doi.org/10.1007/s11557-008-0563-3
Article
Google Scholar
Derntl C, Kluger B, Bueschl C, Schuhmacher R, Mach RL, Mach-Aigner AR (2017) Transcription factor Xpp1 is a switch between primary and secondary fungal metabolism. Proc Natl Acad Sci USA 114(4):E560. https://doi.org/10.1073/pnas.1609348114
CAS
Article
PubMed
PubMed Central
Google Scholar
Ding MY, Chen W, Ma XC, Lv BW, Jiang SQ, Yu YN, Rahimi MJ, Gao RW, Zhao Z, Cai F, Druzhinina IS (2020) Emerging salt marshes as a source of Trichoderma arenarium sp. nov. and other fungal bioeffectors for biosaline agriculture. J Appl Microbiol. https://doi.org/10.1111/jam.14751
Article
PubMed
Google Scholar
Dou K, Lu Z, Wu Q, Ni M, Yu C, Wang M, Li Y, Wang X, Xie H, Chen J, Zhang C (2020) MIST: a multiloci identification system for Trichoderma. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01532-20
Article
PubMed
PubMed Central
Google Scholar
Druzhinina I, Kubicek CP (2005) Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J Zhejiang Univ Sci B 6(2):100–112. https://doi.org/10.1631/jzus.2005.B0100
Article
PubMed
PubMed Central
Google Scholar
Druzhinina IS, Kubicek CP (2016) Chapter two—familiar stranger: ecological genomics of the model saprotroph and industrial enzyme producer Trichoderma reesei breaks the stereotypes. In: Sariaslani S, Michael Gadd G (eds) Advances in applied microbiology, vol 95. Academic Press, New York, pp 69–147. https://doi.org/10.1016/bs.aambs.2016.02.001
Chapter
Google Scholar
Druzhinina IS, Kopchinskiy AG, Komon M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42(10):813–828. https://doi.org/10.1016/j.fgb.2005.06.007
CAS
Article
PubMed
Google Scholar
Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47(2):55–64. https://doi.org/10.1007/S10267-006-0279-7
CAS
Article
Google Scholar
Druzhinina IS, Komoń-Zelazowska M, Kredics L, Hatvani L, Antal Z, Belayneh T, Kubicek CP (2008) Alternative reproductive strategies of Hypocrea orientalis and genetically close but clonal Trichoderma longibrachiatum, both capable of causing invasive mycoses of humans. Microbiology 154(11):3447–3459. https://doi.org/10.1099/mic.0.2008/021196-0
CAS
Article
PubMed
Google Scholar
Druzhinina IS, Komon-Zelazowska M, Atanasova L, Seidl V, Kubicek CP (2010a) Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLoS ONE 5(2):e0009191. https://doi.org/10.1371/journal.pone.0009191
CAS
Article
Google Scholar
Druzhinina IS, Kubicek CP, Komon-Zelazowska M, Mulaw TB, Bissett J (2010b) The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evolut Biol. https://doi.org/10.1186/1471-2148-10-94
Article
Google Scholar
Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749–759. https://doi.org/10.1038/nrmicro2637
CAS
Article
PubMed
Google Scholar
Druzhinina IS, Komoń-Zelazowska M, Ismaiel A, Jaklitsch W, Mullaw T, Samuels GJ, Kubicek CP (2012) Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genet Biol 49(5):358–368. https://doi.org/10.1016/j.fgb.2012.02.004
CAS
Article
PubMed
PubMed Central
Google Scholar
Druzhinina IS, Kopchinskiy AG, Kubicek EM, Kubicek CP (2016) A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness. Biotechnol Biofuels 9:75. https://doi.org/10.1186/s13068-016-0488-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Druzhinina IS, Chenthamara K, Zhang J, Atanasova L, Yang DQ, Miao YZ, Rahimi MJ, Grujic M, Cai F, Pourmehdi S, Abu Salim K, Pretzer C, Kopchinskiy AG, Henrissat B, Kuo A, Hundley H, Wang M, Aerts A, Salamov A, Lipzen A, LaButti K, Barry K, Grigoriev IV, Shen QR, Kubicek CP (2018) Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet 14(4):e1007322. https://doi.org/10.1371/journal.pgen.1007322
CAS
Article
PubMed
PubMed Central
Google Scholar
du Plessis IL, Druzhinina IS, Atanasova L, Yarden O, Jacobs K (2018) The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia 110(3):559–583. https://doi.org/10.1080/00275514.2018.1463059
Article
PubMed
Google Scholar
Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113. https://doi.org/10.1186/1471-2105-5-113
CAS
Article
Google Scholar
Fanelli F, Liuzzi VC, Logrieco AF, Altomare C (2018) Genomic characterization of Trichoderma atrobrunneum (T. harzianum species complex) ITEM 908: insight into the genetic endowment of a multi-target biocontrol strain. BMC Genomics 19(1):662. https://doi.org/10.1186/s12864-018-5049-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Angiuoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4(4):e1000046. https://doi.org/10.1371/journal.pgen.1000046
CAS
Article
PubMed
PubMed Central
Google Scholar
Feng Y, Zhang Y, Ying C, Wang D, Du C (2015) Nanopore-based fourth-generation DNA sequencing technology. Genomics Proteomics Bioinform 13(1):4–16. https://doi.org/10.1016/j.gpb.2015.01.009
CAS
Article
Google Scholar
Fontaine B, van Achterberg K, Alonso-Zarazaga MA, Araujo R, Asche M, Aspock H, Aspock U, Audisio P, Aukema B, Bailly N, Balsamo M, Bank RA, Belfiore C, Bogdanowicz W, Boxshall G, Burckhardt D, Chylarecki P, Deharveng L, Dubois A, Enghoff H, Fochetti R, Fontaine C, Gargominy O, Gomez Lopez MS, Goujet D, Harvey MS, Heller KG, van Helsdingen P, Hoch H, De Jong Y, Karsholt O, Los W, Magowski W, Massard JA, McInnes SJ, Mendes LF, Mey E, Michelsen V, Minelli A, Nieto Nafria JM, van Nieukerken EJ, Pape T, De Prins W, Ramos M, Ricci C, Roselaar C, Rota E, Segers H, Timm T, van Tol J, Bouchet P (2012) New species in the Old World: Europe as a frontier in biodiversity exploration, a test bed for 21st century taxonomy. PLoS ONE 7(5):e36881. https://doi.org/10.1371/journal.pone.0036881
CAS
Article
PubMed
PubMed Central
Google Scholar
Friedl MA, Druzhinina IS (2012) Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other’s development. Microbiology 158(Pt 1):69–83. https://doi.org/10.1099/mic.0.052555-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Friedl MA, Schmoll M, Kubicek CP, Druzhinina IS (2008) Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. Microbiology 154(Pt 4):1229–1241. https://doi.org/10.1099/mic.0.2007/014175-0
CAS
Article
PubMed
Google Scholar
Galagan JE, Henn MR, Ma L-J, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15(12):1620–1631. https://doi.org/10.1101/gr.3767105
CAS
Article
PubMed
Google Scholar
Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O (2011) Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol 77(15):5100–5109. https://doi.org/10.1128/AEM.00541-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Galtier N, Daubin V (2008) Dealing with incongruence in phylogenomic analyses. Philos Trans R Soc B 363(1512):4023–4029. https://doi.org/10.1098/rstb.2008.0144
Article
Google Scholar
Garnett ST, Christidis L, Conix S, Costello MJ, Zachos FE, Bánki OS, Bao Y, Barik SK, Buckeridge JS, Hobern D, Lien A, Montgomery N, Nikolaeva S, Pyle RL, Thomson SA, van Dijk PP, Whalen A, Zhang Z-Q, Thiele KR (2020) Principles for creating a single authoritative list of the world’s species. PLoS Biol 18(7):e3000736. https://doi.org/10.1371/journal.pbio.3000736
CAS
Article
PubMed
PubMed Central
Google Scholar
Grafenhan T, Schroers HJ, Nirenberg HI, Seifert KA (2011) An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud Mycol 68:79–113. https://doi.org/10.3114/sim.2011.68.04
CAS
Article
PubMed
PubMed Central
Google Scholar
Grujic M, Dojnov B, Potocnik I, Atanasova L, Duduk B, Srebotnik E, Druzhinina IS, Kubicek CP, Vujcic Z (2019) Superior cellulolytic activity of Trichoderma guizhouense on raw wheat straw. World J Microbiol Biotechnol 35(12):194. https://doi.org/10.1007/s11274-019-2774-y
CAS
Article
PubMed
Google Scholar
Hagn A, Wallisch S, Radl V, Charles Munch J, Schloter M (2007) A new cultivation independent approach to detect and monitor common Trichoderma species in soils. J Microbiol Methods 69(1):86–92. https://doi.org/10.1016/j.mimet.2006.12.004
CAS
Article
PubMed
Google Scholar
Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56. https://doi.org/10.1038/nrmicro797
CAS
Article
PubMed
Google Scholar
Hatvani L, Homa M, Chenthamara K, Cai F, Kocsubé S, Atanasova L, Mlinaric-Missoni E, Manikandan P, Revathi R, Dóczi I, Bogáts G, Narendran V, Büchner R, Vágvölgyi C, Druzhinina IS, Kredics L (2019) Agricultural systems as potential sources of emerging human mycoses caused by Trichoderma: a successful, common phylotype of Trichoderma longibrachiatum in the frontline. FEMS Microbiol Lett 366(21):fnz246. https://doi.org/10.1093/femsle/fnz246
CAS
Article
PubMed
Google Scholar
Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5(4):79–95. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016
Article
Google Scholar
Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70(1):1–51. https://doi.org/10.3114/sim.2011.70.01
CAS
Article
PubMed
PubMed Central
Google Scholar
Houbraken J, Kocsube S, Visagie CM, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Bensch K, Samson RA, Frisvad JC (2020) Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol 95:5–169. https://doi.org/10.1016/j.simyco.2020.05.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Hoyos-Carvajal L, Orduz S, Bissett J (2009) Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol 46(9):615–631. https://doi.org/10.1016/j.fgb.2009.04.006
CAS
Article
PubMed
Google Scholar
Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT, Abeywickrama PD, Aluthmuhandiram JVS, Brahamanage RS, Brooks S, Chaiyasen A, Chethana KWT, Chomnunti P, Chepkirui C, Chuankid B, de Silva NI, Doilom M, Faulds C, Gentekaki E, Gopalan V, Kakumyan P, Harishchandra D, Hemachandran H, Hongsanan S, Karunarathna A, Karunarathna SC, Khan S, Kumla J, Jayawardena RS, Liu J-K, Liu N, Luangharn T, Macabeo APG, Marasinghe DS, Meeks D, Mortimer PE, Mueller P, Nadir S, Nataraja KN, Nontachaiyapoom S, O’Brien M, Penkhrue W, Phukhamsakda C, Ramanan US, Rathnayaka AR, Sadaba RB, Sandargo B, Samarakoon BC, Tennakoon DS, Siva R, Sriprom W, Suryanarayanan TS, Sujarit K, Suwannarach N, Suwunwong T, Thongbai B, Thongklang N, Wei D, Wijesinghe SN, Winiski J, Yan J, Yasanthika E, Stadler M (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97(1):1–136. https://doi.org/10.1007/s13225-019-00430-9
Article
Google Scholar
Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63:1–91. https://doi.org/10.3114/sim.2009.63.01
Article
PubMed
PubMed Central
Google Scholar
Jaklitsch WM (2011) European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers 48(1):1–250. https://doi.org/10.1007/s13225-011-0088-y
Article
PubMed
PubMed Central
Google Scholar
Jaklitsch WM, Voglmayr H (2012) Hypocrea britdaniae and H. foliicola: two remarkable new European species. Mycologia 104(5):1213–1221. https://doi.org/10.3852/11-429
Article
PubMed
PubMed Central
Google Scholar
Jaklitsch WM, Voglmayr H (2013) New combinations in Trichoderma (Hypocreaceae, Hypocreales). Mycotaxon 126:143–156. https://doi.org/10.5248/126.143
Article
PubMed
PubMed Central
Google Scholar
Jaklitsch WM, Voglmayr H (2015) Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud Mycol 80:1–87. https://doi.org/10.1016/j.simyco.2014.11.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS (2005) Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia 97(6):1365–1378. https://doi.org/10.3852/mycologia.97.6.1365
CAS
Article
PubMed
Google Scholar
Jaklitsch WM, Samuels GJ, Dodd SL, Lu B-S, Druzhinina IS (2006) Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Stud Mycol 56:135–177. https://doi.org/10.3114/sim.2006.56.04
Article
PubMed
PubMed Central
Google Scholar
Jaklitsch WM, Gruber S, Voglmayr H (2008a) Hypocrea seppoi, a new stipitate species from Finland. Karstenia 48(1):1–11. https://doi.org/10.29203/ka.2008.423
Article
PubMed
PubMed Central
Google Scholar
Jaklitsch WM, Kubicek CP, Druzhinina IS (2008b) Three European species of Hypocrea with reddish brown stromata and green ascospores. Mycologia 100(5):796–815. https://doi.org/10.3852/08-039
CAS
Article
PubMed
PubMed Central
Google Scholar
Jaklitsch WM, Stadler M, Voglmayr H (2012) Blue pigment in Hypocrea caerulescens sp. nov. and two additional new species in sect. Trichoderma. Mycologia 104(4):925–941. https://doi.org/10.3852/11-327
Article
PubMed
PubMed Central
Google Scholar
Jaklitsch WM, Samuels GJ, Ismaiel A, Voglmayr H (2013) Disentangling the Trichoderma viridescens complex. Persoonia 31:112–146. https://doi.org/10.3767/003158513X672234
CAS
Article
PubMed
PubMed Central
Google Scholar
Jaklitsch WM, Lechat C, Voglmayr H (2014) The rise and fall of Sarawakus (Hypocreaceae, Ascomycota). Mycologia 106(1):133–144. https://doi.org/10.3852/13-117
Article
PubMed
PubMed Central
Google Scholar
Joubert A, Calmes B, Berruyer R, Pihet M, Bouchara J-P, Simoneau P, Guillemette T (2010) Laser nephelometry applied in an automated microplate system to study filamentous fungus growth. Biotechniques 48(5):399–404. https://doi.org/10.2144/000113399
CAS
Article
PubMed
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14(6):587–589. https://doi.org/10.1038/nmeth.4285
CAS
Article
PubMed
PubMed Central
Google Scholar
Kohli J (1987) Genetic nomenclature and gene list of the fission yeast Schizosaccharomyces pombe. Curr Genet 11(8):575–589. https://doi.org/10.1007/BF00393919
CAS
Article
PubMed
Google Scholar
Komoń-Zelazowska M, Bissett J, Zafari D, Hatvani L, Manczinger L, Woo S, Lorito M, Kredics L, Kubicek CP, Druzhinina IS (2007) Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl Environ Microbiol 73(22):7415–7426. https://doi.org/10.1128/AEM.01059-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Kopchinskiy A, Komon M, Kubicek CP, Druzhinina IS (2005) TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol Res 109(Pt 6):658–660. https://doi.org/10.1017/s0953756205233397
Article
PubMed
Google Scholar
Kubicek CP, Bissett J, Druzhinina I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol 38(3):310–319. https://doi.org/10.1016/s1087-1845(02)00583-2
CAS
Article
PubMed
Google Scholar
Kubicek CP, Komon-Zelazowska M, Druzhinina IS (2008) Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sci B 9(10):753–763. https://doi.org/10.1631/jzus.B0860015
Article
PubMed
PubMed Central
Google Scholar
Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Dohren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gomez-Rodriguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernandez-Onate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lubeck M, Lubeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12(4):R40. https://doi.org/10.1186/gb-2011-12-4-r40
CAS
Article
PubMed
PubMed Central
Google Scholar
Kubicek CP, Steindorff AS, Chenthamara K, Manganiello G, Henrissat B, Zhang J, Cai F, Kopchinskiy AG, Kubicek EM, Kuo A, Baroncelli R, Sarrocco S, Noronha EF, Vannacci G, Shen Q, Grigoriev IV, Druzhinina IS (2019) Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 20(1):485. https://doi.org/10.1186/s12864-019-5680-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Kuhls K, Lieckfeldt E, Samuels GJ, Kovacs W, Meyer W, Petrini O, Gams W, Börner T, Kubicek CP (1996) Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci USA 93(15):7755–7760. https://doi.org/10.1073/pnas.93.15.7755
CAS
Article
PubMed
PubMed Central
Google Scholar
Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30(22):3276–3278. https://doi.org/10.1093/bioinformatics/btu531
CAS
Article
PubMed
PubMed Central
Google Scholar
Li QR, Tan P, Jiang YL, Hyde KD, Mckenzie EHC, Bahkali AH, Kang JC, Wang Y (2013) A novel Trichoderma species isolated from soil in Guizhou, T. guizhouense. Mycol Prog 12(2):167–172. https://doi.org/10.1007/s11557-012-0821-2
Article
Google Scholar
Li J, Wu Y, Chen K, Wang Y, Hu J, Wei Y, Yang H (2018) Trichoderma cyanodichotomus sp. nov., a new soil-inhabiting species with a potential for biological control. Can J Microbiol 64(12):1020–1029. https://doi.org/10.1139/cjm-2018-0224
CAS
Article
PubMed
Google Scholar
Lieckfeldt E, Cavignac Y, Fekete C, Borner T (2000) Endochitinase gene-based phylogenetic analysis of Trichoderma. Microbiol Res 155(1):7–15. https://doi.org/10.1016/S0944-5013(00)80016-6
CAS
Article
PubMed
Google Scholar
Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16(12):1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
CAS
Article
PubMed
Google Scholar
López-Quintero CA, Atanasova L, Franco-Molano AE, Gams W, Komon-Zelazowska M, Theelen B, Muller WH, Boekhout T, Druzhinina I (2013) DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species. Antonie Van Leeuwenhoek 104(5):657–674. https://doi.org/10.1007/s10482-013-9975-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Lu B, Druzhinina IS, Fallah P, Chaverri P, Gradinger C, Kubicek CP, Samuels GJ (2004) Hypocrea/Trichoderma species with pachybasium-like conidiophores: teleomorphs for T. minutisporum and T. polysporum and their newly discovered relatives. Mycologia 96(2):310–342
Article
PubMed
Google Scholar
Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Opik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL (2020) Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? Ima Fungus 11:14. https://doi.org/10.1186/s43008-020-00033-z
Article
PubMed
PubMed Central
Google Scholar
Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M (2004) Where are we in assembling the fungal tree of life, classifying the fungi, and understanding the evolution of their subcellular traits? Am J Bot 91:1446–1480
Article
PubMed
Google Scholar
Ma J, Tsegaye E, Li M, Wu B, Jiang X (2020) Biodiversity of Trichoderma from grassland and forest ecosystems in Northern Xinjiang, China. 3 Biotech 10(8):362. https://doi.org/10.1007/s13205-020-02301-6
Article
PubMed
PubMed Central
Google Scholar
Mach RL, Peterbauer CK, Payer K, Jaksits S, Woo SL, Zeilinger S, Kullnig CM, Lorito M, Kubicek CP (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microb 65(5):1858–1863. https://doi.org/10.1128/AEM.65.5.1858-1863.1999
CAS
Article
Google Scholar
Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560. https://doi.org/10.1038/nbt1403
CAS
Article
PubMed
Google Scholar
May TW, Redhead SA, Bensch K, Hawksworth DL, Lendemer J, Lombard L, Turland NJ (2019) Chapter F of the International Code of Nomenclature for algae, fungi, and plants as approved by the 11th International Mycological Congress, San Juan, Puerto Rico, July 2018. Ima Fungus 10:21. https://doi.org/10.1186/s43008-019-0019-1
Article
PubMed
PubMed Central
Google Scholar
Meincke R, Weinert N, Radl V, Schloter M, Smalla K, Berg G (2010) Development of a molecular approach to describe the composition of Trichoderma communities. J Microbiol Methods 80(1):63–69. https://doi.org/10.1016/j.mimet.2009.11.001
CAS
Article
PubMed
Google Scholar
Migheli Q, Balmas V, Komon-Zelazowska M, Scherm B, Fiori S, Kopchinskiy AG, Kubicek CP, Druzhinina IS (2009) Soils of a Mediterranean hot spot of biodiversity and endemism (Sardinia, Tyrrhenian Islands) are inhabited by pan-European, invasive species of Hypocrea/Trichoderma. Environ Microbiol 11(1):35–46. https://doi.org/10.1111/j.1462-2920.2008.01736.x
CAS
Article
PubMed
Google Scholar
Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci USA 81(3):814–818. https://doi.org/10.1073/pnas.81.3.814
CAS
Article
PubMed
PubMed Central
Google Scholar
Nguyen HDT, Jančič S, Meijer M, Tanney JB, Zalar P, Gunde-Cimerman N, Seifert KA (2015a) Application of the phylogenetic species concept to Wallemia sebi from house dust and indoor air revealed by multi-locus genealogical concordance. PLoS ONE 10(3):e0120894. https://doi.org/10.1371/journal.pone.0120894
CAS
Article
PubMed
PubMed Central
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015b) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274. https://doi.org/10.1093/molbev/msu300
CAS
Article
PubMed
Google Scholar
Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glockner FO, Tedersoo L, Saar I, Koljalg U, Abarenkov K (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47(D1):D259–D264. https://doi.org/10.1093/nar/gky1022
CAS
Article
PubMed
Google Scholar
O’Donnell K, Ward TJ, Robert VARG, Crous PW, Geiser DM, Kang S (2015) DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica 43(5):583–595. https://doi.org/10.1007/s12600-015-0484-z
Article
Google Scholar
O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339(6120):662. https://doi.org/10.1126/science.1229237
CAS
Article
PubMed
Google Scholar
Overton BE, Stewart EL, Geiser DM (2006) Taxonomy and phylogenetic relationships of nine species of Hypocrea with anamorphs assignable to Trichoderma section Hypocreanum. Stud Mycol 56:39–65. https://doi.org/10.3114/sim.2006.56.02
Article
PubMed
PubMed Central
Google Scholar
Perkins DD (1999) Neurospora genetic nomenclature. Fungal Genet Newslett 46:34–41
Google Scholar
Persoon CH (1794) Neurospora genetic nomenclature. Romers Neues Mag Bot 1:81–128
Google Scholar
Proctor RH, McCormick SP, Kim H-S, Cardoza RE, Stanley AM, Lindo L, Kelly A, Brown DW, Lee T, Vaughan MM, Alexander NJ, Busman M, Gutiérrez S (2018) Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathog 14(4):e1006946. https://doi.org/10.1371/journal.ppat.1006946
CAS
Article
PubMed
PubMed Central
Google Scholar
Qiao M, Du X, Zhang Z, Xu J, Yu Z (2018) Three new species of soil-inhabiting Trichoderma from southwest China. MycoKeys 44:63–80
Article
Google Scholar
Qin W-T, Zhuang W-Y (2016a) Four new species of Trichoderma with hyaline ascospores from central China. Mycol Prog 15(8):811–825. https://doi.org/10.1007/s11557-016-1211-y
Article
Google Scholar
Qin W-T, Zhuang W-Y (2016b) Four new species of Trichoderma with hyaline ascospores in the Brevicompactum and Longibrachiatum clades. Mycosystema 35(11):e160158. https://doi.org/10.13346/j.mycosystema.160158
Article
Google Scholar
Qin WT, Zhuang WY (2016c) Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade. Sci Rep 6:27074. https://doi.org/10.1038/srep27074
CAS
Article
PubMed
PubMed Central
Google Scholar
Qin W-T, Zhuang W-Y (2017) Seven new species of Trichoderma (Hypocreales) in the Harzianum and Strictipile clades. Phytotaxa 305(3):121–139. https://doi.org/10.11646/phytotaxa.305.3.1
Article
Google Scholar
Rahimi MJ, Cai F, Grujic M, Chenthamara K, Druzhinina IS (2020) Molecular identification of Trichoderma reesei. In: Mach-Aigner A, Martzy R (eds) Trichoderma reesei—methods and protocols. Springer, Puducherry
Google Scholar
Redhead SA, Norvell LL (2012) News. IMA Fungus 3(2):44–47. https://doi.org/10.1007/BF03449512
Article
Google Scholar
Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinform 13(5):278–289. https://doi.org/10.1016/j.gpb.2015.08.002
Article
Google Scholar
Rifai MA (1969) A revision of the genus Trichoderma. Mycol Pap 116:1–54
Google Scholar
Rivera-Méndez W, Obregón M, Morán-Diez ME, Hermosa R, Monte E (2020) Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biol Control 141:104145. https://doi.org/10.1016/j.biocontrol.2019.104145
CAS
Article
Google Scholar
Robbertse B, Strope PK, Chaverri P, Gazis R, Ciufo S, Domrachev M, Schoch CL (2017) Improving taxonomic accuracy for fungi in public sequence databases: applying ‘one name one species’ in well-defined genera with Trichoderma/Hypocrea as a test case. Database. https://doi.org/10.1093/database/bax072
Article
PubMed
PubMed Central
Google Scholar
Röhrich CR, Jaklitsch WM, Voglmayr H, Iversen A, Vilcinskas A, Nielsen KF, Thrane U, von Dohren H, Bruckner H, Degenkolb T (2014) Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. Fungal Divers 69(1):117–146. https://doi.org/10.1007/s13225-013-0276-z
Article
PubMed
PubMed Central
Google Scholar
Rossman AY, Seifert KA, Samuels GJ, Minnis AM, Schroers HJ, Lombard L, Crous PW, Poldmaa K, Cannon PF, Summerbell RC, Geiser DM, Zhuang WY, Hirooka Y, Herrera C, Salgado-Salazar C, Chaverri P (2013) Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection. IMA Fungus 4(1):41–51. https://doi.org/10.5598/imafungus.2013.04.01.05
Article
PubMed
PubMed Central
Google Scholar
Rossman AY, Allen WC, Braun U, Castlebury LA, Chaverri P, Crous PW, Hawksworth DL, Hyde KD, Johnston P, Lombard L, Romberg M, Samson RA, Seifert KA, Stone JK, Udayanga D, White JF (2016) Overlooked competing asexual and sexually typified generic names of Ascomycota with recommendations for their use or protection. IMA Fungus 7(2):289–308. https://doi.org/10.5598/imafungus.2016.07.02.09
Article
PubMed
PubMed Central
Google Scholar
Samuels GJ, Pardo-Schultheiss R, Hebbar KP, Lumsden RD, Bastos CN, Costa JC, Bezerra JL (2000) Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol Res 104(6):760–764. https://doi.org/10.1017/S0953756299001938
Article
Google Scholar
Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94(1):146–170. https://doi.org/10.1080/15572536.2003.11833257
Article
PubMed
Google Scholar
Samuels GJ, Dodd SL, Lu BS, Petrini O, Schroers HJ, Druzhinina IS (2006) The Trichoderma koningii aggregate species. Stud Mycol 56:67–133. https://doi.org/10.3114/sim.2006.56.03
Article
PubMed
PubMed Central
Google Scholar
Samuels GJ, Ismaiel A, Bon M-C, De Respinis S, Petrini O (2010) Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 102(4):944–966. https://doi.org/10.3852/09-243
CAS
Article
PubMed
Google Scholar
Samuels GJ, Ismaiel A, Mulaw TB, Szakacs G, Druzhinina IS, Kubicek CP, Jaklitsch WM (2012) The Longibrachiatum Clade of Trichoderma: a revision with new species. Fungal Divers 55(1):77–108. https://doi.org/10.1007/s13225-012-0152-2
Article
PubMed
PubMed Central
Google Scholar
Sandoval-Denis M, Sutton DA, Cano-Lira JF, Gene J, Fothergill AW, Wiederhold NP, Guarro J (2014) Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities. J Clin Microbiol 52(6):2112–2125. https://doi.org/10.1128/JCM.00429-14
CAS
Article
PubMed
PubMed Central
Google Scholar
Schoch CL, Sung GH, Lopez-Giraldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh SO, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman AY, Lumbsch HT, Lucking R, Budel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Mostert L, O’Donnell K, Sipman H, Rogers JD, Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe JM, Yahr R, Lutzoni F, Spatafora JW (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58(2):224–239. https://doi.org/10.1093/sysbio/syp020
CAS
Article
PubMed
Google Scholar
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding C, Fungal Barcoding Consortium Author L (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109(16):6241–6246. https://doi.org/10.1073/pnas.1117018109
Article
PubMed
PubMed Central
Google Scholar
Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, Leipe D, McVeigh R, O’Neill K, Robbertse B, Sharma S, Soussov V, Sullivan JP, Sun L, Turner S, Karsch-Mizrachi I (2020) NCBI taxonomy: a comprehensive update on curation, resources and tools. Database. https://doi.org/10.1093/database/baaa062
Article
PubMed
PubMed Central
Google Scholar
Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799. https://doi.org/10.1007/s00253-010-2632-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Seidl V, Druzhinina IS, Kubicek CP (2006) A screening system for carbon sources enhancing β-N-acetylglucosaminidase formation in Hypocrea atroviridis (Trichoderma atroviride). Microbiology 152(7):2003–2012. https://doi.org/10.1099/mic.0.28897-0
CAS
Article
PubMed
Google Scholar
Seidl V, Gamauf C, Druzhinina IS, Seiboth B, Hartl L, Kubicek CP (2008) The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics 9(1):327. https://doi.org/10.1186/1471-2164-9-327
CAS
Article
PubMed
PubMed Central
Google Scholar
Seidl V, Seibel C, Kubicek CP, Schmoll M (2009) Sexual development in the industrial workhorse Trichoderma reesei. Proc Natl Acad Sci USA 106(33):13909. https://doi.org/10.1073/pnas.0904936106
Article
PubMed
PubMed Central
Google Scholar
Seifert KA, Rossman AY (2010) How to describe a new fungal species. IMA Fungus 1(2):109–116. https://doi.org/10.5598/imafungus.2010.01.02.02
Article
PubMed
PubMed Central
Google Scholar
Sherkhane PD, Bansal R, Banerjee K, Chatterjee S, Oulkar D, Jain P, Rosenfelder L, Elgavish S, Horwitz BA, Mukherjee PK (2017) Genomics-driven discovery of the gliovirin biosynthesis gene cluster in the plant beneficial fungus Trichoderma virens. ChemistrySelect 2(11):3347–3352. https://doi.org/10.1002/slct.201700262
CAS
Article
Google Scholar
Shi-Kunne X, Seidl MF, Faino L, Thomma BP (2015) Draft genome sequence of a strain of cosmopolitan fungus Trichoderma atroviride. Genome Announc 3(3):e00287-15. https://doi.org/10.1128/genomeA.00287-15
Article
PubMed
PubMed Central
Google Scholar
Sklenar F, Jurjevic Z, Zalar P, Frisvad JC, Visagie CM, Kolarik M, Houbraken J, Chen AJ, Yilmaz N, Seifert KA, Coton M, Deniel F, Gunde-Cimerman N, Samson RA, Peterson SW, Hubka V (2017) Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section Restricti. Stud Mycol 88:161–236. https://doi.org/10.1016/j.simyco.2017.09.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Stasz TE, Harman GE, Weeden NF (1988) Protoplast preparation and fusion in two biocontrol strains of Trichoderma Harzianum. Mycologia 80(2):141–150. https://doi.org/10.1080/00275514.1988.12025515
Article
Google Scholar
Steenwyk JL, Shen XX, Lind AL, Goldman GH, Rokas A (2019) A robust phylogenomic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium. mBio 10(4):e00925. https://doi.org/10.1128/mBio.00925-19
CAS
Article
PubMed
PubMed Central
Google Scholar
Stielow JB, Levesque CA, Seifert KA, Meyer W, Iriny L, Smits D, Renfurm R, Verkley GJ, Groenewald M, Chaduli D, Lomascolo A, Welti S, Lesage-Meessen L, Favel A, Al-Hatmi AM, Damm U, Yilmaz N, Houbraken J, Lombard L, Quaedvlieg W, Binder M, Vaas LA, Vu D, Yurkov A, Begerow D, Roehl O, Guerreiro M, Fonseca A, Samerpitak K, van Diepeningen AD, Dolatabadi S, Moreno LF, Casaregola S, Mallet S, Jacques N, Roscini L, Egidi E, Bizet C, Garcia-Hermoso D, Martin MP, Deng S, Groenewald JZ, Boekhout T, de Beer ZW, Barnes I, Duong TA, Wingfield MJ, de Hoog GS, Crous PW, Lewis CT, Hambleton S, Moussa TA, Al-Zahrani HS, Almaghrabi OA, Louis-Seize G, Assabgui R, McCormick W, Omer G, Dukik K, Cardinali G, Eberhardt U, de Vries M, Robert V (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35:242–263. https://doi.org/10.3767/003158515X689135
CAS
Article
PubMed
PubMed Central
Google Scholar
Struck TH, Feder JL, Bendiksby M, Birkeland S, Cerca J, Gusarov VI, Kistenich S, Larsson KH, Liow LH, Nowak MD, Stedje B, Bachmann L, Dimitrov D (2018) Finding evolutionary processes hidden in cryptic species. Trends Ecol Evol 33(3):153–163. https://doi.org/10.1016/j.tree.2017.11.007
Article
PubMed
Google Scholar
Studholme DJ, Harris B, Le Cocq K, Winsbury R, Perera V, Ryder L, Ward JL, Beale MH, Thornton CR, Grant M (2013) Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture-insights from genomics. Front Plant Sci 4:258. https://doi.org/10.3389/fpls.2013.00258
Article
PubMed
PubMed Central
Google Scholar
Taylor JW (2011) One Fungus = One Name: DNA and fungal nomenclature twenty years after PCR. Ima Fungus 2(2):113–120. https://doi.org/10.5598/imafungus.2011.02.02.01
Article
PubMed
PubMed Central
Google Scholar
Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31(1):21–32. https://doi.org/10.1006/fgbi.2000.1228
CAS
Article
PubMed
Google Scholar
Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Villarreal Ruiz L, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Poldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Partel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Fungal biogeography. Global diversity and geography of soil fungi. Science 346(6213):1256688. https://doi.org/10.1126/science.1256688
CAS
Article
PubMed
Google Scholar
Tisch D, Pomraning KR, Collett JR, Freitag M, Baker SE, Chen CL, Hsu PW, Chuang YC, Schuster A, Dattenbock C, Stappler E, Sulyok M, Bohmdorfer S, Oberlerchner J, Wang TF, Schmoll M (2017) Omics analyses of Trichoderma reesei CBS999.97 and QM6a indicate the relevance of female fertility to carbohydrate-active enzyme and transporter levels. Appl Environ Microbiol 83(22):e01578. https://doi.org/10.1128/AEM.01578-17
CAS
Article
PubMed
PubMed Central
Google Scholar
Tomah AA, Abd Alamer IS, Li B, Zhang J-Z (2020) A new species of Trichoderma and gliotoxin role: a new observation in enhancing biocontrol potential of T. virens against Phytophthora capsici on chili pepper. Biol Control 145:104261. https://doi.org/10.1016/j.biocontrol.2020.104261
CAS
Article
Google Scholar
Tronsmo AM (1991) Biological and integrated controls of Botrytis cinerea on apple with Trichoderma harzianum. Biol Control 1(1):59–62. https://doi.org/10.1016/1049-9644(91)90102-6
Article
Google Scholar
Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24(2):110–117. https://doi.org/10.1016/j.tree.2008.09.011
Article
PubMed
Google Scholar
Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:135–154. https://doi.org/10.1016/j.simyco.2018.05.001
CAS
Article
PubMed
Google Scholar
Wain HM, Bruford EA, Lovering RC, Lush MJ, Wright MW, Povey S (2002) Guidelines for human gene nomenclature. Genomics 79(4):464–470. https://doi.org/10.1006/geno.2002.6748
CAS
Article
PubMed
Google Scholar
Wang C, Zhuang WY (2020) Carbon metabolic profiling of Trichoderma strains provides insight into potential ecological niches. Mycologia 112(2):213–223. https://doi.org/10.1080/00275514.2019.1698246
CAS
Article
PubMed
Google Scholar
White TJ, Bruns T, Lee S, Taylor J (1990) 38—amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic Press, San Diego, pp 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Chapter
Google Scholar
Xie BB, Qin QL, Shi M, Chen LL, Shu YL, Luo Y, Wang XW, Rong JC, Gong ZT, Li D, Sun CY, Liu GM, Dong XW, Pang XH, Huang F, Liu W, Chen XL, Zhou BC, Zhang YZ, Song XY (2014) Comparative genomics provide insights into evolution of Trichoderma nutrition style. Genome Biol Evol 6(2):379–390. https://doi.org/10.1093/gbe/evu018
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang D, Pomraning K, Kopchinskiy A, Karimi Aghcheh R, Atanasova L, Chenthamara K, Baker SE, Zhang R, Shen Q, Freitag M, Kubicek CP, Druzhinina IS (2015) Genome sequence and annotation of Trichoderma parareesei, the ancestor of the cellulase producer Trichoderma reesei. Genome Announc 3(4):e00885-15. https://doi.org/10.1128/genomeA.00885-15
Article
PubMed
PubMed Central
Google Scholar
Ye J, McGinnis S, Madden TL (2006) BLAST: improvements for better sequence analysis. Nucleic Acids Res 34(2):W6–W9. https://doi.org/10.1093/nar/gkl164
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoder OC, Valent B, Chumley F (1986) Genetic nomenclature and practice for plant pathogenic fungi. Phypotaphology 76:383–385
Article
Google Scholar
Yu Z-F, Qiao M, Zhang Y, Zhang K-Q (2007) Two new species of Trichoderma from Yunnan, China. Antonie Van Leeuwenhoek 92(1):101–108. https://doi.org/10.1007/s10482-006-9140-4
CAS
Article
PubMed
Google Scholar
Yu Z, Armant O, Yu Z, Armant O, Fischer R (2016) Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nat Microbiol 1:16019. https://doi.org/10.1038/nmicrobiol.2016.19
CAS
Article
PubMed
Google Scholar
Zhang C-L, Liu S-P, Lin F-C, Kubicek CP, Druzhinina IS (2007) Trichoderma taxi sp nov, an endophytic fungus from Chinese yew Taxus mairei. FEMS Microbiol Lett 270(1):90–96. https://doi.org/10.1111/j.1574-6968.2007.00659.x
CAS
Article
PubMed
Google Scholar
Zhou Y, Wang Y, Chen K, Wu Y, Hu J, Wei Y, Li J, Yang H, Ryder M, Denton MD (2020) Near-complete genomes of two Trichoderma species: a resource for biological control of plant pathogens. Mol Plant-Microbe Interact 33(8):1036–1039. https://doi.org/10.1094/MPMI-03-20-0076-A
CAS
Article
PubMed
Google Scholar
Zhu Z-X, Zhuang W-Y (2014) Two new species of Trichoderma (Hypocreaceae) from China. Mycosystema 33(6):1168–1174. https://doi.org/10.13346/j.mycosystema.140049
Article
Google Scholar