Skip to main content
Log in

Electroanalytical Performance of Non-Enzymatical Electrochemical Sensor Based on PtNPs-SeNPs-SnO2NPs@BFTO Nanocomposites for the Detection of Hydrogen Peroxide

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Electroanalytical performance of electrodeposited platinum nanoparticles (PtNPs), selenium nanoparticles (SeNPs), and tin oxide nanoparticles (SnO2NPs) on the surface of bare fluorine-doped tin oxide (BFTO) (PtNPs-SeNPs-SnO2NPs@BFTO) nanocomposite was used as an non-enzymatic electrochemical sensor towards detection of H2O2. The surface morphology and characterization of PtNPs-SeNPs-SnO2NPs@BFTO was studied by field emission scanning electron microscopy (FESEM) and EDS mapping. The Morphology of PtNPs-SeNPs-SnO2NPs@BFTO showed flower, spherical and irregular shapes by FESEM investigation. X-ray photoelectron spectroscopy was used to investigate the elemental composition of platinum, selenium, tin, oxygen, and fluorine on the PtNPs-SeNPs-SnO2NPs@BFTO surface. The synthesized PtNPs-SeNPs-SnO2NPs@BFTO electrochemical sensor was used for electro-catalytic detection of H2O2. The linear concentration range of the PtNPs-SeNPs-SnO2NPs@BFTO was 0.01 to 54 mM, with a high sensitivity of 104.8 mA mM−1 cm−2 and a low detection limit of 0.01 mM. The interference study of PtNPs-SeNPs-SnO2NPs@BFTO based sensors showed high selectivity towards H2O2 with interfering agents, including glucose (GU), ascorbic acid (AA), urea (UA), sucrose (SU), sodium chloride (SC), and sodium selenite (SS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. Y. Li, J. Zhang, J. Xuan, L. Jiang, J. Zhu, Electrochem Commun 12, 777 (2010)

    Article  CAS  Google Scholar 

  2. G. Korotcenkov, B.K. Cho, L. Gulina, V. Tolstoy, Sens Actuators B Chem 141, 610 (2009)

    Article  CAS  Google Scholar 

  3. C. Karuppiah, S. Palanisamy, S.M. Chen, Electrocatalysis 5, 177 (2014)

    Article  CAS  Google Scholar 

  4. N.S. Dumore, M. Mukhopadhyay, J Mol Struct 1205, 127637 (2020)

    Article  CAS  Google Scholar 

  5. N.S. Dumore, M. Mukhopadhyay, J Electroanal Chem 878, 114544 (2020)

    Article  CAS  Google Scholar 

  6. H. Chen, D.W. Shin, J.G. Nam, K.W. Kwon, J.B. Yoo, Mater Res Bull 45, 699 (2010)

    Article  CAS  Google Scholar 

  7. X. Cao, Y. Xie, S. Zhang, F. Li, Adv Mater 16, 649 (2004)

    Article  CAS  Google Scholar 

  8. H. Yin, Z. Xu, H. Bao, J. Bai, Y. Zheng, Chem Lett 34, 122 (2005)

    Article  CAS  Google Scholar 

  9. C. P. Shah, M. Kumar, P. N. Bajaj, Nanotechnology 18 (2007)

  10. C. Zhang, X. Zhai, G. Zhao, F. Ren, X. Leng, Carbohydr Polym 134, 158 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. X. Jia, Q. Liu, S. Zou, X. Xu, L. Zhang, Carbohydr Polym 117, 434 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. K. Kalishwaralal, S. Jeyabharathi, K. Sundar, A. Muthukumaran, Artif Cells Nanomed Biotechnol 44, 471 (2014)

    Article  PubMed  Google Scholar 

  13. E. Formo, Z. Peng, E. Lee, X. Lu, H. Yang, Y. Xia, J Phy Chem C 112, 9970 (2008)

    Article  CAS  Google Scholar 

  14. C. Xu, Y. Liu, F. Su, A. Liu, H. Qiu, Biosens Bioelectron 27, 160 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. N.S.K. Gowthaman, S.A. John, M. Tominaga, J Electroanal Chem 798, 24 (2017)

    Article  CAS  Google Scholar 

  16. H. Lu, S. Yu, Y. Fan, C. Yang, D. Xu, Colloids Surf B Biointerfaces 101, 106 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. H. Wang, X. Bo, J. Bai, L. Wang, L. Guo, J Electroanal Chem 662, 281 (2011)

    Article  CAS  Google Scholar 

  18. J.M. You, D. Kim, S. Jeon, Electrochim Acta 65, 288 (2012)

    Article  CAS  Google Scholar 

  19. S. Berbeć, S. Żołądek, P. Wasilewski, A. Jabłońska, P. Kulesza, B. Pałys, Electrocatalysis 11, 215 (2020)

    Article  Google Scholar 

  20. Z. Lin, N. Li, Z. Chen, P. Fu, Sens Actuators B Chem 239, 501 (2017)

    Article  CAS  Google Scholar 

  21. A.A. Ensafi, A. Mahmoodi, B. Rezaei, Sens Actuators B Chem 296 (2019)

  22. D.R. Kumar, S. Kesavan, M.L. Baynosa, V.Q. Nguyen, J.J. Shim, J Colloid Interface Sci 530, 361 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. G.P.J. Rani, J. Saravanan, S. Sheet, M.A.J. Rajan, Y.S. Lee, A. Balasubramani, G.G. kumar, Electrocatalysis 9, 102 (2018)

  24. C.M. Welch, C.E. Banks, A.O. Simm, R.G. Compton, Anal Bioanal Chem 382, 12 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. M. Darder, K. Takada, F. Pariente, H.D. Abruña, Anal Chem 71, 5530 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. M. López-Serrano, A. Ros Barceló, J Agric Food Chem 50, 1218 (2002)

  27. N.V. Kiassen, D. Marchington, H.C.E. Mcgowant, A.O. Allen, T.W. Davis, G. Elmore, Ghormley, Haines, Anal. Chem. 66, 2921–2925 (1994)

  28. M.C.Y. Chang, A. Pralle, E.Y. Isacoff, C.J. Chang, J Am Chem Soc 126, 15392 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Q. Chang, K. Deng, L. Zhu, G. Jiang, C. Yu, H. Tang, Microchim Acta 165, 299 (2009)

    Article  CAS  Google Scholar 

  30. A. Tahirović, A. Čopra, E. Omanović-Mikličanin, K. Kalcher, Talanta 72, 1378 (2007)

    Article  PubMed  Google Scholar 

  31. P. Chakraborty, S. Dhar, K. Debnath, S.P. Mondal, J Electroanal Chem 833, 213 (2019)

    Article  CAS  Google Scholar 

  32. J. Cai, S. Ding, G. Chen, Y. Sun, Q. Xie, Appl Surf Sci 456, 302 (2018)

    Article  CAS  Google Scholar 

  33. N.S. Dumore, M. Mukhopadhyay, J Environ Chem Eng 10, 107058 (2022)

    Article  CAS  Google Scholar 

  34. M.M. Nilesh, S. Dumore, Pat Off J 32, 34555 (2021)

  35. H. Liu, A. Wang, Q. Sun, T. Wang, H. Zeng, Catalysts 7 (2017)

  36. J. Zhang, J. Han, Z. Shi, Y. Ju, Z. Zhang, M. Gu, Appl Surf Sci 465, 357 (2019)

    Article  CAS  Google Scholar 

  37. A.A. Aal, F. Voigts, D. Chakarov, F. Endres, Electrochim Acta 59, 228 (2012)

    Article  Google Scholar 

  38. Y. Ko, Y.R. Kim, H. Jang, C. Lee, M.G. Kang, Y. Jun, Nanoscale Res. Lett. 12, 498 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  39. K.S.S. Prasad, J.V. Vaghasiya, S.S. Soni, J. Patel, R. Patel, M. Kumari, F. Jasmani, Appl Biochem Biotechnol 177, 1386 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. T. Wang, L. Yang, B. Zhang, J. Liu, Colloids Surf B Biointerfaces 80, 94 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Y.E. Miao, S. He, Y. Zhong, Z. Yang, W.W. Tjiu, T. Liu, Electrochim Acta 99, 117 (2013)

    Article  CAS  Google Scholar 

  42. D. Lu, Y. Zhang, S. Lin, L. Wang, C. Wang, Talanta 112, 111 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. G. Yu, W. Wu, X. Pan, Q. Zhao, X. Wei, Q. Lu, Sensors 15, 2709 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the Materials Research Centre, MNIT Jaipur, for providing the research facility for the characterization of samples. We are also thankful to the Ministry of Education (MoE), Government of India for providing fellowship and Chemical Engineering Department, SVNIT, Surat, for providing research facilities.

Author information

Authors and Affiliations

Authors

Contributions

Nilesh S. Dumore: Formal analysis, Data curation, Investigation, Methodology, Writing- original draft. Mausumi Mukhopadhyay: Data curation, Conceptualization, Writing—review & editing, Supervision.

Corresponding author

Correspondence to Nilesh S. Dumore.

Ethics declarations

Ethics Approval

The paper contains unpublished results.

Consent to Participate

The authors consent to participate.

Consent for Publication

The authors agree that the paper should be published.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 667 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumore, N.S., Mukhopadhyay, M. Electroanalytical Performance of Non-Enzymatical Electrochemical Sensor Based on PtNPs-SeNPs-SnO2NPs@BFTO Nanocomposites for the Detection of Hydrogen Peroxide. Electrocatalysis 14, 708–719 (2023). https://doi.org/10.1007/s12678-023-00828-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00828-9

Keywords

Navigation