Skip to main content
Log in

Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical detection of hydrogen peroxide using an edge-plane pyrolytic-graphite electrode (EPPG), a glassy carbon (GC) electrode, and a silver nanoparticle-modified GC electrode is reported. It is shown, in phosphate buffer (0.05 mol L−1, pH 7.4), that hydrogen peroxide cannot be detected directly on either the EPPG or GC electrodes. However, reduction can be facilitated by modification of the glassy-carbon surface with nanosized silver assemblies. The optimum conditions for modification of the GC electrode with silver nanoparticles were found to be deposition for 1 min at −0.5 V vs. Ag from 5 mmol L−1 AgNO3/0.1 mol L−1 TBAP/MeCN, followed by stripping for 2 min at +0.5 V vs. Ag in the same solution. A wave, due to the reduction of hydrogen peroxide on the silver nanoparticles is observed at −0.68 V vs. SCE. The limit of detection for this modified nanosilver electrode was 2.0×10−6 mol L−1 for hydrogen peroxide in phosphate buffer (0.05 mol L−1, pH 7.4) with a sensitivity which is five times higher than that observed at a silver macro-electrode. Also observed is a shoulder on the voltammetric wave corresponding to the reduction of oxygen, which is produced by silver-catalysed chemical decomposition of hydrogen peroxide to water and oxygen then oxygen reduction at the surface of the glassy-carbon electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schliefer K, Heidemann G (1989) Melliand textilberichte 70:E398–E402, 933–937

    Google Scholar 

  2. Schliefer K, Heidemann G (1989) Melliand textilberichte 70:E369–E371, 856–864

    Google Scholar 

  3. Solvay Chemicals I (2004) Hydrogen peroxide. http://www.solvaychemicals.us/HydrogenPeroxide.htm

  4. Usui Y, Sato K, Tanaka M (2003) Angew Chem, Int Edn 42:5623–5625

    Google Scholar 

  5. Perkemija B (2005) Hydrogen peroxide. http://www.belinka.si/eng/perkemija/3.2.4.1.php

  6. Hasebe Y, Eguchi M (2003) Chemical pollutant treatment by hydrogen peroxide with high reaction efficiency. Jpn Kokai Tokkyo Koho An 2003:360884

    Google Scholar 

  7. Guilbault GG (1976) Handbook of enzymic methods of analysis. Dekker, New York

    Google Scholar 

  8. Darder M, Takada K, Pariente F, Lorenzo E, Abruna HD (1999) Anal Chem 71:5530–5537

    Google Scholar 

  9. Masullo M, Raimo G, Dello Russo A, Bocchini V, Bannister JV (1996) Biotechnol Appl Biochem 23(Pt 1):47–54

    Google Scholar 

  10. Jiang Y Miles PW (1993) Phytochemistry 33:29–34

    Google Scholar 

  11. Wen Liu DZ (2004) In situ detection of Hydrogen peroxide in PEM fuel cells. In: Fourth international symposium on proton conducting membrane fuel cells. The Electrochemical Society Inc

  12. Hurdis EC, Romeyn H Jr (1954) Anal Chem 26:320–325

    Google Scholar 

  13. Clapp PA, Evans DF, Sheriff TSS (1989) Anal Chim Acta 218:331–334

    Google Scholar 

  14. Matsubara C, Kawamoto N, Takamura K (1992) Analyst (Camb, UK) 117:1781–1784

    Google Scholar 

  15. Shiga M, Saito M, Kina K (1983) Anal Chim Acta 153:191–197

    Google Scholar 

  16. Yamashiro N, Uchida S, SatohY, Morishima Y, Yokoyama H, Satoh T, Sugama J, Yamada R (2004) JNucl Sci Technol (Tokyo, Jpn) 41:890–897

    Google Scholar 

  17. Nakashima K, Maki K, Kawaguchi S, Akiyama S, Tsukamoto Y, Imai K (1991) Anal Sci 7:709–713

    Google Scholar 

  18. Aizawa M, Ikariyama Y, Kuno H (1984) Anal Lett 17:555–564

    Google Scholar 

  19. Harrar JE (1963) Anal Chem 35:893–896

    Google Scholar 

  20. Hickling A, Wilson WH (1951) J Electrochem Soc 98:425–433

    Google Scholar 

  21. Anson FC, Lingane JJ (1957) J Am Chem Soc 79:4901–4904

    Google Scholar 

  22. Lingane JJ (1961) J Electroanal Chem (1959–1966) 2:296–309

    Google Scholar 

  23. Lingane JJ, Lingane PJ (1963) J Electroanal Chem (1959–1966) 5:411–419

    Google Scholar 

  24. Sandler YL, Pantier EA (1965) J Electrochem Soc 112:928–931

    Google Scholar 

  25. Zhang Y, Wilson GS (1993) JElectroanal Chem 345:253–271

    Google Scholar 

  26. Aschauer E, Fasching R, Urban G, Nicolussi G Husinsky W (1995) J Electroanal Chem 381:143–150

    Google Scholar 

  27. Hall SB, Khudaish EA, Hart AL (2000) Electrochim Acta 45:3573–3579

    Google Scholar 

  28. Hall SB, Khudaish EA, Hart AL (1999) Electrochim Acta 44:4573–4582

    Google Scholar 

  29. Hall SB, Khudaish EA, Hart AL (1999) Electrochim Acta 44:2455–2462

    Google Scholar 

  30. Hall SB, Khudaish EA, Hart AL (1998) Electrochim Acta 43:2015–2024

    Google Scholar 

  31. Hall SB, Khudaish EA, Hart AL (1997) Electrochim Acta 43:579–588

    Google Scholar 

  32. Gorton L (1985) Anal Chim Acta 178:247–253

    Google Scholar 

  33. Johnston DA, Cardosi MF, Vaughan DH (1995) Electroanalysis 7:520–526

    Google Scholar 

  34. Mizutani F, Yabuki S, Iijima S (1995) Electroanalysis 7:706–709

    Google Scholar 

  35. Zelic M, Branica M (1990) Anal Chim Acta 238:393–398

    Google Scholar 

  36. Zelic M (1993) Anal Chim Acta 271:275–285

    Google Scholar 

  37. Zelic M (1993) Anal Chim Acta 281:435–442

    Google Scholar 

  38. Wang J, Naser N, Angnes L, Wu H, Chen L (1992) Anal Chem 64:1285–1288

    Google Scholar 

  39. Cox JA, Gadd SE, Das BK (1988) J Electroanal Chem Interfacial Electrochem 256:199–205

    Google Scholar 

  40. Matos RC, Pedrotti JJ, Angnes L (2001) Anal Chim Acta 441:73–79

    Google Scholar 

  41. Kosminsky L, Matos RC, Tabacniks MH, Bertotti M (2003) Electroanalysis 15:733–738

    Google Scholar 

  42. Elzanowska H, Abu-Irhayem E, Skrzynecka B, Birss VI (2004) Electroanalysis 16:478–490

    Google Scholar 

  43. Turkusic E, Kalcher K, Schachl K, Komersova A, Bartos M, Moderegger H, Svancara I, Vytras K (2001) Anal Lett 34:2633–2647

    Google Scholar 

  44. Tatsuma T, Tani K, Oyama N, Yeoh H-H (1996) JElectroanal Chem 407:155–159

    Google Scholar 

  45. Cai X, Ogorevc B, Tavcar G, Wang J (1995) Analyst (Camb, UK) 120:2579–2583

    Google Scholar 

  46. Gao Z, Ivaska A, Li P, Lui K, Yang J (1992) Anal Chim Acta 259:211–218

    Google Scholar 

  47. Anh DTV, Olthuis W, Bergveld P (2003) Sens Actuators, B: Chem B 91:1–4

    Google Scholar 

  48. Li J, Xiao L-T, Liu X-M, Zeng G-M, Huang G-H, Shen G-L, Yu R-Q (2003) Anal Bioanal Chem 376:902–907

    Google Scholar 

  49. Delvaux M, Walcarius A, Demoustier-Champagne S (2004) Anal Chim Acta 525:221–230

    Google Scholar 

  50. Ferapontova E, Gorton L (2003) Electroanalysis 15:484–491

    Google Scholar 

  51. Bartlett PN, Birkin PR, Wang JH, Palmisano F, De Benedetto G (1998) Anal Chem 70:3685–3694

    Google Scholar 

  52. Karyakin AA, Karyakina EE (1999) Sens Actuators, B: Chem B 57:268–273

    Google Scholar 

  53. Luiz de Mattos I, Gorton L, Ruzgas T (2003) Biosens Bioelectron 18:193–200

    Google Scholar 

  54. O’Halloran MP, Pravda M, Guilbault GG (2001) Talanta 55:605–611

    Google Scholar 

  55. Valentini F, Amine A, Orlanducci S, Terranova ML, Palleschi G (2003) Anal Chem 75:5413–5421

    Google Scholar 

  56. Valentini F, Orlanducci S, Terranova ML, Amine A, Palleschi G (2004) Sens Actuators, B: Chem B s100:117–125

    Google Scholar 

  57. Wang J, Musameh M, Lin Y (2003) J Amer Chem Soc 125:2408–2409

    Google Scholar 

  58. Wang J, Musameh M (2003) Anal Chem 75:2075–2079

    Google Scholar 

  59. Lawrence NS, Deo RP, Wang J (2004) Electroanal 17:65–72

    Google Scholar 

  60. Moore RR, Banks CE, Compton RG (2004) Anal Chem 76:2677–2682

    Google Scholar 

  61. Banks CE, Moore RR, Davies TJ, Compton RG (2004) Chem Commun (Camb, UK) 16:1804–1805

    Google Scholar 

  62. Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Chem Commun 7:829–841

    Google Scholar 

  63. Banks CE, Goodwin A, Heald CGR, Compton RG (2005) Analyst (Camb, UK) 130:280–282

    Google Scholar 

  64. Sherigara BS, Kutner W, D’Souza F (2003) Electroanalysis 15:753–772

    Google Scholar 

  65. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Microchem J 73:325–333

    Google Scholar 

  66. Caudill WL, Howell JO, Wightman RM (1982) Anal Chem 54:2532

    Google Scholar 

  67. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  68. Ng KH, Liu H, Penner RM (2000) Langmuir 16:4016–4023

    Google Scholar 

  69. Flatgen G, Wasle S, Lubke M, Eickes C, Radhakrishnan G, Doblhofer K, Ertl G (1999) Electrochim Acta 44:4499–4506

    Google Scholar 

  70. Eickes C, Weil KG, Doblhofer K (2000) Phys Chem Chem Phys 2:5691–5697

    Google Scholar 

  71. Colodette JL, Rothenberg S, Dence CW (1988) J Pulp Pap Sci 14:J126–J132

    Google Scholar 

  72. Pirault-Roy L, Kappenstein C, Guerin M, Eloirdi R, Pillet N (2002) J Propulsion Power 18:1235–1241

    Google Scholar 

  73. Kim YJ, Alice MMLW, Sogoian GC, Cowan RL II (2001) Catalytic hydrogen peroxide decomposer in water-cooled reactors. US An 2001:502486

    Google Scholar 

  74. Knotter DM, De Gendt S, Baeyens M, Mertens PW, Heyns MM (1999) Diffusion and defect data–solid state data. Solid State Phenomena 65—66(Pt B):15–18

    Google Scholar 

  75. Becker A, Schilm J, Sell M (1996) Catalytic decomposition of hydrogen peroxide. Ger Offen An 1996:664569

    Google Scholar 

  76. Coupeau S, Trinh T, Voillot C, D’Aveni A (1995) Revue ATIP 49:223–30

    Google Scholar 

  77. Sakai M, Honda S, Uemura H, Yamamoto Y, Sei M (1992) Decomposition of wastewater pollutants. Jpn Kokai Tokkyo Koho An 1992:413892

    Google Scholar 

  78. Tapia Huanambal N, Ale Borja N, Torres DF (1988) Boletin de la sociedad quimica del Peru 54:20–27

    Google Scholar 

  79. Kirillov VA, Slin’ko MG, Patskov VP (1976) Kinetika i Kataliz 17:813

    Google Scholar 

  80. Simm AO, Ward-Jones S, Banks CE, Compton RG (2005) Anal Sci (in press)

  81. Honda M, Kodera T, Kita H (1986) Electrochim Acta 31:377–83

    Google Scholar 

  82. Hurlen T, Sandler YL, Pantier EA (1966) Electrochim Acta 11:1463–73

    Google Scholar 

  83. Merkulova ND, Zhutaeva GV, Shumilova NA, Bagotskii VS (1973) Electrochim Acta 18:169–74

    Google Scholar 

  84. Honda M, Kodera T, Kita H (1983) Electrochim Acta 28:727–33

    Google Scholar 

  85. Iwakura C, Matsuda Y, Tamura H (1971) Electrochim Acta 16:471–7

    Google Scholar 

  86. Plieth WJ (1982) J Phys Chem 86:3166–70

    Google Scholar 

  87. Plieth WJ (1985) Surf Sci 156:530–5

    Google Scholar 

  88. Maillard F, Eikerling M, Cherstiouk OV, Schreier S, SE (2004) Faraday Discussions 125:357–377

    Google Scholar 

  89. Taylor RJ, Humffray AA (1975) J Electroanal ChemInterfacial Electrochem 64:63–84

    Google Scholar 

  90. Paliteiro C, Hamnett A, Goodenough JB (1987) J Electroanal ChemInterfacial Electrochem 233:147–59

    Google Scholar 

  91. Baez VB, Pletcher D (1995) JElectroanal Chem 382:59–64

    Google Scholar 

  92. Sljukic B, Banks CE, Compton RG (2004) Iranian J Chem 2(1):1–25

    Google Scholar 

  93. Sljukic B, Banks CE, Mentus S, Compton RG (2004) Phys Chem Chem Phys 6:992–997

    Google Scholar 

  94. Sljukic B, Banks CE, Compton RG (2004) Phys Chem Chem Phys 6:4034–4041

    Google Scholar 

  95. Tammeveski K, Kontturi K, Nichols RJ, Potter RJ, Schiffrin DJ (2001) J Electroanal Chem 515:101–112

    Google Scholar 

  96. Vaik K, Sarapuu A, Tammeveski K, Mirkhalaf F, Schiffrin DJ (2004) J Electroanal Chem 564:159–166

    Google Scholar 

  97. Vaik K, Schiffrin DJ, Tammeveski K (2004) Electrochem Commun 6:1–5

    Google Scholar 

  98. Bowling RJ, McCreery RL, Pharr CM, Engstrom RC (1989) Anal Chem 61:2763–2766

    Google Scholar 

  99. Bowling RJ, Packard RT, McCreery RL (1989) J Am Chem Soc 111:1217–223

    Google Scholar 

  100. Pontikos NM, McCreery RL (1992) J Electroanal Chem 324:229–42

    Google Scholar 

  101. Xu J, Huang W, McCreery RL (1996) J Electroanal Chem 410:235–242

    Google Scholar 

  102. Dujardin E, Meny C, Panissod P, Kintzinger JP, Yao N, Ebbesen TW (2000) Solid State Commun 114:543–546

    Google Scholar 

  103. Jeong T, Kim W-Y, Hahn Y-B (2001) Chem Phys Lett 344:18–22

    Google Scholar 

  104. Katsunobu Y, Guoyue S, Tianshu Z, Fan X, Jiming X, Takeshi KJ-YJ, Litong J (2003) Analyst (Camb, UK) 128:249

    Google Scholar 

  105. Domenech A, Alarcon J (2002) Anal Chim Acta 452:11–22

    Google Scholar 

  106. Westbroek P, Temmerman E, Kiekens P (1999) Anal Chim Acta 385:423–428

    Google Scholar 

  107. Schachl K, Alemu H, Kalcher K, Moderegger H, Svancara I, Vytras K (1998) Fresenius’ J Anal Chem 362:194–200

    Google Scholar 

  108. Qu J, Shen Y, Qu X, Dong S (2004). Electroanalysis 16(17):1444–1450

    Google Scholar 

Download references

Acknowledgements

CMW thanks the EPSRC for project studentship funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Compton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, C.M., Banks, C.E., Simm, A.O. et al. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem 382, 12–21 (2005). https://doi.org/10.1007/s00216-005-3205-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3205-5

Keywords

Navigation