Skip to main content
Log in

Formation Mechanism, Evolution and Modification of Non-Metallic Inclusions in Al-killed, Ti-Alloyed Steel Melt: A Review

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Titanium alloying is done to impart special properties to the steel. Addition of titanium to an Al-killed steel results in the formation of transient Al-Ti-O inclusions. These Al-Ti-O inclusions cause castability issues and enhance the nozzle clogging phenomenon during continuous casting. The present study comprehensively reviews the formation mechanism, evolution, and modification of Al-Ti–O inclusions during secondary steelmaking covering simple (Al and Ti) and complex (Al-Ti) deoxidation equilibria. The formation mechanism of transient Al-(Mg)-Ti-O inclusions in Al-killed, Ti-alloyed steel has also been discussed in detail. The influence of important process parameters such as the addition sequence of Ti, its sources (Ti/ferrotitanium type), the presence of Mg and the Ca treatment for the modification of Al-Ti-O have been covered. In a nutshell, we have endeavoured (a) to link the various stages from the formation to modification via the transient route of Al-Ti-O inclusions and (b) to identify the gaps which are not clearly established and/or not understood. Bridging these gaps could be an effective approach to enhance steel cleanness in Al-killed, Ti-alloyed steel grades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thornton P A, J. Mater. Sci. 6 (1977) 347. https://doi.org/10.1007/PL00020378

    Article  Google Scholar 

  2. Zerbst U, Madia M, Klinger C, Bettge D, and Murakami Y, Eng. Fail. Anal. 98 (2019) 228. https://doi.org/10.1016/j.engfailanal.2019.01.054

    Article  CAS  Google Scholar 

  3. Park J H, and Kang Y, Steel Res. Int. 88 (2017) 1. https://doi.org/10.1002/srin.201700130

    Article  CAS  Google Scholar 

  4. Park J H, and Todoroki H, ISIJ Int. 50 (2010) 1333. https://doi.org/10.2355/isijinternational.50.1333

    Article  CAS  Google Scholar 

  5. Ren Y, and Zhang L, Ironmak. Steelmak. 45 (2018) 585. https://doi.org/10.1080/03019233.2017.1303933

    Article  CAS  Google Scholar 

  6. Basu S, Choudhary S K, and Girase N U, ISIJ Int. 44 (2004) 1653. https://doi.org/10.2355/isijinternational.44.1653

    Article  CAS  Google Scholar 

  7. Wang D, Jiang M, Matsuura H, and Tsukihashi F, Steel Res. Int. 85 (2014) 16. https://doi.org/10.1002/srin.201300013

    Article  CAS  Google Scholar 

  8. Mandal G K, Ashok K, Das S K, Biswas P, Sarkar R B, Sundara Bharathy R, et al., J. Mater. Eng. Perform. 27 (2018) 5622. https://doi.org/10.1007/s11665-018-3703-1

    Article  CAS  Google Scholar 

  9. Sarma D S, Karasev A V, and Jönsson P G, ISIJ Int. 49 (2009) 1063. https://doi.org/10.2355/isijinternational.49.1063

    Article  CAS  Google Scholar 

  10. Silva A L V D C E, J. Mater. Res. Technol. 7 (2018) 283. https://doi.org/10.1016/j.jmrt.2018.04.003

    Article  CAS  Google Scholar 

  11. Deng Z, Liu Z, Zhu M, and Huo L, ISIJ Int. 61 (2021) 1. https://doi.org/10.2355/isijinternational.ISIJINT-2020-352

    Article  Google Scholar 

  12. Poirier J, Metall. Res. Technol. 112 (2015) 2015. https://doi.org/10.1051/metal/2015028

    Article  CAS  Google Scholar 

  13. Liu C, Gao X, Ueda S, Guo M, and Kitamura S, ISIJ Int. 60 (2020) 1835. https://doi.org/10.2355/isijinternational.ISIJINT-2019-695

    Article  CAS  Google Scholar 

  14. Wang Y, Karasev A, Park J H, and Jonsson P G, Metall. Mater. Trans. B 52 (2021) 2892. https://doi.org/10.1007/s11663-021-02259-7

    Article  CAS  Google Scholar 

  15. Reis B H, Bielefeldt W V, and Vilela A C F, J. Mater. Res. Technol. 3 (2014) 179. https://doi.org/10.1016/j.jmrt.2014.03.011

    Article  CAS  Google Scholar 

  16. Chen C, Jiang Z, Li Y, Zheng L, Huang X, Yang G, et al., Steel Res. Int. 90 (2019) 1800547. https://doi.org/10.1002/srin.201800547

    Article  CAS  Google Scholar 

  17. Zhang L, and Thomas B G, Metall. Mater. Trans. B 37 (2006) 733. https://doi.org/10.1007/s11663-006-0057-0

    Article  Google Scholar 

  18. Atkinson H V, and Shi G, Prog. Mater. Sci. 48 (2003) 457. https://doi.org/10.1016/S0079-6425(02)00014-2

    Article  CAS  Google Scholar 

  19. Kaushik P, Pielet H, and Yin H, Ironmak. Steelmak. 39 (2009) 572. https://doi.org/10.1179/030192309X12492910938177

    Article  CAS  Google Scholar 

  20. Kaushik P, Pielet H, and Yin H, Ironmak. Steelmak. 36 (2009) 561. https://doi.org/10.1179/030192309X12492910938131

    Article  CAS  Google Scholar 

  21. Zhang L, and Thomas B G, ISIJ Int. 43 (2003) 271. https://doi.org/10.2355/isijinternational.43.271

    Article  CAS  Google Scholar 

  22. Mu W, Dogan N, and Coley K S, JOM 70 (2018) 1199. https://doi.org/10.1007/s11837-018-2893-1

    Article  CAS  Google Scholar 

  23. Turkdogan E T, and Fruehan R J, Can. Metall. Q. 11 (1972) 371. https://doi.org/10.1179/cmq.1972.11.2.371

    Article  CAS  Google Scholar 

  24. Kang Y B, ISIJ Int. 60 (2020) 2717. https://doi.org/10.2355/isijinternational.ISIJINT-2020-101

    Article  CAS  Google Scholar 

  25. Silva A L V D C E, Neto F B, and Avilez R R D, Technol, Mater. Min, Metall (2015). https://doi.org/10.4322/2176-1523.0935

    Book  Google Scholar 

  26. Kang Y B, and Jung S H, ISIJ Int. 58 (2018) 1371. https://doi.org/10.2355/isijinternational.ISIJINT-2018-198

    Article  CAS  Google Scholar 

  27. You D, Michelic S K, Presoly P, Liu J, and Bernhard C, Metals (Basel). 7 (2017) 460. https://doi.org/10.3390/met7110460

    Article  CAS  Google Scholar 

  28. Park J H, and Zhang L, Metall. Mater. Trans. B 51 (2020) 2453. https://doi.org/10.1007/s11663-020-01954-1

    Article  CAS  Google Scholar 

  29. Webler B A, and Pistorius P C, Metall. Mater. Trans. B 51 (2020) 2437. https://doi.org/10.1007/s11663-020-01949-y

    Article  Google Scholar 

  30. Ånmark N, Karasev A, and Jönsson P G, Materials (Basel). 8 (2015) 751. https://doi.org/10.3390/ma8020751

    Article  CAS  Google Scholar 

  31. Vaara J, Mantyla A, Frondelius T (2017) J. Struct. Mech. https://doi.org/10.23998/rm.65048.

  32. Silva A L V D C E, Integr, Res, Med (2019). https://doi.org/10.1016/j.jmrt.2019.01.009

    Book  Google Scholar 

  33. Hilty D C, and Crafts W, JOM 2 (1950) 414. https://doi.org/10.1007/bf03399019

    Article  Google Scholar 

  34. Janke D, and Fischer A, Arch. Eisenhüttenwes. (1976). https://doi.org/10.1002/srin.197603805

    Article  Google Scholar 

  35. Kang Y, Thunman M, Sichen D, Morohoshi T, Mizukami K, and Morita K, ISIJ Int. 49 (2009) 1483. https://doi.org/10.2355/isijinternational.49.1483

    Article  CAS  Google Scholar 

  36. Fruehan R J, Metall. Trans. 1 (1970) 3403. https://doi.org/10.1007/BF03037871

    Article  CAS  Google Scholar 

  37. Dimitrov S, Weyl A, and Janke D, Process Metall. 66 (1995) 3. https://doi.org/10.1002/srin.199501762

    Article  CAS  Google Scholar 

  38. Paek M K, Jang J M, Kang Y B, and Pak J J, Metall. Mater. Trans. B 46 (2015) 1826. https://doi.org/10.1007/s11663-015-0368-0

    Article  CAS  Google Scholar 

  39. Gokcen N A, and Chipman J, JOM 5 (1953) 173. https://doi.org/10.1007/BF03397469

    Article  CAS  Google Scholar 

  40. Lee K R, and Suito H, Metall, Trans. B Process Metall. Mater. Process. Sci, Mater (1996). https://doi.org/10.1007/BF02914907

    Book  Google Scholar 

  41. Rohde V L E, Choudhury A, and Wahlster M, Arch. für das Eisenhüttenwes. 42 (1971) 165. https://doi.org/10.1002/srin.197102580

    Article  CAS  Google Scholar 

  42. Steelmaking Data Sourcebook, Japan Society for the Promotion of Science, 19th Comm. on Steelmaking, Gordon & Breach Science, New York, NY, 1988

  43. Suito H, Inoue H, and Inoue R, ISIJ Internatonal 31 (1991) 1381. https://doi.org/10.2355/isijinternational.31.1381

    Article  CAS  Google Scholar 

  44. Wagner C Thermodynamics of Alloys, Addison-Wesley, Reading, MA, 1962, p. 51 (No. 546.3015367)

  45. Ishfaq M, and Pande M M, Ironmak. Steelmak. (2022). https://doi.org/10.1080/03019233.2022.2082829

    Article  Google Scholar 

  46. Jung I H, Decterov S A, and Pelton A D, Metall. Mater. Trans. B 35 (2004) 493. https://doi.org/10.1007/s11663-004-0050-4

    Article  Google Scholar 

  47. Paek M K, Pak J J, and Kang Y B, Metall. Mater. Trans. B 46 (2015) 2224. https://doi.org/10.1007/s11663-015-0369-z

    Article  CAS  Google Scholar 

  48. Pelton A D, Degterov S A, Eriksson G, Robelin C, and Dessureault Y, Metall. Mater. Trans. B 31 (2000) 651. https://doi.org/10.1007/s11663-000-0103-2

    Article  Google Scholar 

  49. Inoue R, and Suito H, Mater. Trans. JIM 32 (1991) 1164. https://doi.org/10.2320/matertrans1989.32.1164

    Article  CAS  Google Scholar 

  50. Zhang J, and Lee H G, ISIJ Int. 44 (2004) 1629. https://doi.org/10.2355/isijinternational.44.1629

    Article  CAS  Google Scholar 

  51. Zhang L, and Pluschkell W, Ironmak. Steelmak. 30 (2003) 106. https://doi.org/10.1179/030192303225001766

    Article  CAS  Google Scholar 

  52. Li G, and Suito H, ISIJ Int. 37 (1997) 762. https://doi.org/10.5006/0010-9312-26.5.171

    Article  CAS  Google Scholar 

  53. Van Ende M A, Guo M, Blanpain B, and Wollants P, Front. Mater. Sci. 5 (2011) 69. https://doi.org/10.1007/s11706-011-0116-6

    Article  Google Scholar 

  54. Wang G, Xiao Y, Zhao C, and Li J, Metall. Mater. Trans. B 49 (2018) 282. https://doi.org/10.1007/s11663-017-0973-1

    Article  CAS  Google Scholar 

  55. Seo J D, Kim S H, and Lee K R, Steel Res. 69 (1998) 49. https://doi.org/10.1002/srin.199801342

    Article  CAS  Google Scholar 

  56. Hayashi A, Uenishi T, Kandori H, Miki T, and Hino M, ISIJ Int. 48 (2008) 1533. https://doi.org/10.2355/isijinternational.48.1533

    Article  CAS  Google Scholar 

  57. Cha W Y, Nagasaka T, Miki T, Sasaki Y, and Hino M, ISIJ Int. 46 (2006) 996. https://doi.org/10.2355/isijinternational.46.996

    Article  CAS  Google Scholar 

  58. Cha W Y, Miki T, Sasaki Y, and Hino M, ISIJ Int. 48 (2008) 729. https://doi.org/10.2355/isijinternational.48.729

    Article  CAS  Google Scholar 

  59. Suzuki K I, and Sanbongi K, Trans. ISIJ. (1975). https://doi.org/10.2355/isijinternational1966.15.618

    Article  Google Scholar 

  60. Hadley R L, and Derge G, JOM 7 (1955) 55. https://doi.org/10.1007/BF02672884

    Article  CAS  Google Scholar 

  61. Chino H, Nakamura Y, Tsunetomi E, and Segawa K, Testu-to-Hagane 52 (1966) 959. https://doi.org/10.2355/tetsutohagane1955.52.6_959

    Article  CAS  Google Scholar 

  62. Smellie A M, and Bell H B, Can. Metall. Q. 11 (1972) 351. https://doi.org/10.1179/cmq.1972.11.2.351

    Article  CAS  Google Scholar 

  63. Pak J J, Jo J O, Kim S I, Kim W Y, Chung T I, Seo S M, et al., ISIJ Int. 47 (2007) 16. https://doi.org/10.2355/isijinternational.47.16

    Article  CAS  Google Scholar 

  64. Cha W Y, Miki T, Sasaki Y, and Hino M, ISIJ Int. 46 (2006) 987. https://doi.org/10.2355/isijinternational.46.987

    Article  CAS  Google Scholar 

  65. Kojima V Y, Inouye M, and Ohi J, Arch. für das Eisenhüttenwes. 40 (1969) 667. https://doi.org/10.1002/srin.196904374

    Article  CAS  Google Scholar 

  66. Jung I H, Eriksson G, Wu P, and Pelton A, ISIJ Int. 49 (2009) 1290. https://doi.org/10.1063/1.2822460

    Article  CAS  Google Scholar 

  67. Pande M M, Guo M, Guo X, Geysen D, Devisscher S, Blanpain B, et al., Ironmak. Steelmak. 37 (2010) 502. https://doi.org/10.1179/030192310X12700328925787

    Article  CAS  Google Scholar 

  68. Pande M M, Guo M, Devisscher S, and Blanpain B, Ironmak. Steelmak. 39 (2012) 519. https://doi.org/10.1179/030192312X13313073941699

    Article  CAS  Google Scholar 

  69. Park J H, Mater. Sci. Eng. A 472 (2008) 43. https://doi.org/10.1016/j.msea.2007.03.011

    Article  CAS  Google Scholar 

  70. Harada A, Miyano G, Maruoka N, Shibata H, and Kitamura S Y, ISIJ Int. 54 (2014) 2230. https://doi.org/10.2355/isijinternational.54.2230

    Article  CAS  Google Scholar 

  71. Deng Z, Zhu M, and Sichen D, Metall. Mater. Trans. B 47 (2016) 3158. https://doi.org/10.1007/s11663-016-0746-2

    Article  CAS  Google Scholar 

  72. Verma N, Pistorius P C, Fruehan R J, Potter M, Lind M, and Story S, Metall. Mater. Trans. B 42 (2011) 711. https://doi.org/10.1007/s11663-011-9516-3

    Article  CAS  Google Scholar 

  73. Matsuura H, Wang C, Wen G, and Sridhar S, ISIJ Int. 47 (2007) 1265. https://doi.org/10.2355/isijinternational.47.1265

    Article  CAS  Google Scholar 

  74. Pande M M, Guo M, and Blanpain B, ISIJ Int. 53 (2013) 629. https://doi.org/10.2355/isijinternational.53.629

    Article  CAS  Google Scholar 

  75. Wang C, Nuhfer N T, and Sridhar S, Metall. Mater. Trans. B 41 (2010) 1084. https://doi.org/10.1007/s11663-010-9397-x

    Article  CAS  Google Scholar 

  76. Sun M K, Jung I H, and Lee H G, Metals. Mater. Int. (2008). https://doi.org/10.3365/met.mat.2008.12.791

    Article  Google Scholar 

  77. Ruby-Meyer F, Lehmann J, and Gaye H, Scand. J. Metall. 29 (2000) 206. https://doi.org/10.1034/j.1600-0692.2000.d01-24.x

    Article  CAS  Google Scholar 

  78. Jung I H, Kang Y B, Decterov S A, and Pelton A D, Metall. Mater. Trans. B 35 (2004) 259. https://doi.org/10.1007/s11663-004-0027-3

    Article  Google Scholar 

  79. Kim W, Jo J, Lee C, Kim D, and Pak J J, ISIJ Int. 48 (2008) 17. https://doi.org/10.2355/isijinternational.48.17

    Article  CAS  Google Scholar 

  80. Kang Y B, and Lee J H, ISIJ Int. 57 (2017) 1665. https://doi.org/10.2355/isijinternational.ISIJINT-2017-182

    Article  CAS  Google Scholar 

  81. Park Y J, Kim W Y, and Kang Y B, J. Eur. Ceram. Soc. 41 (2021) 7362. https://doi.org/10.1016/j.jeurceramsoc.2021.06.052

    Article  CAS  Google Scholar 

  82. Jung I H, Decterov S A, and Pelton A D, ISIJ Int. 44 (2004) 527. https://doi.org/10.2355/isijinternational.44.527

    Article  CAS  Google Scholar 

  83. Van Ende M A, Guo M, Dekkers R, Burty M, Dyck J V, Jones P T, et al., ISIJ Int. 49 (2009) 1133. https://doi.org/10.2355/isijinternational.49.1133

    Article  Google Scholar 

  84. Huang Q, Wang X, Jiang M, Hu Z, and Yang C, Steel Res. Int. 87 (2016) 445. https://doi.org/10.1002/srin.201500088

    Article  CAS  Google Scholar 

  85. Zhang T, Liu C, and Jiang M, Metall. Mater. Trans. B 47 (2016) 2253. https://doi.org/10.1007/s11663-016-0706-x

    Article  CAS  Google Scholar 

  86. Wang C, Nuhfer N T, and Sridhar S, Metall. Mater. Trans. B 40 (2009) 1022. https://doi.org/10.1007/s11663-009-9290-7

    Article  CAS  Google Scholar 

  87. Pan C, Hu X, Lin P, and Chou K, Metall. Mater. Trans. B 51 (2020) 3039. https://doi.org/10.1007/s11663-020-01968-9

    Article  CAS  Google Scholar 

  88. Wang C, Verma N, Kwon Y, Tiekink W, Kikuchi N, and Sridhar S, ISIJ Int. 51 (2011) 375. https://doi.org/10.2355/isijinternational.51.375

    Article  CAS  Google Scholar 

  89. Xuan C, Karasev A V, and Jönsson P G, ISIJ Int. 56 (2016) 1204. https://doi.org/10.2355/isijinternational.ISIJINT-2016-030

    Article  CAS  Google Scholar 

  90. Li Y, Zhang T, and Duan H, Metals (Basel). 9 (2019) 1. https://doi.org/10.3390/met9010104

    Article  CAS  Google Scholar 

  91. Wang M, Bao Y P, Cui H, Wu H J, and Wu W S, ISIJ Int. 50 (2010) 1606. https://doi.org/10.2355/isijinternational.50.1606

    Article  CAS  Google Scholar 

  92. Yin X U E, Sun Y, Yang Y, Bai X, Barati M, and Mclean A, Metall. Mater. Trans. B 47 (2016) 3274. https://doi.org/10.1007/s11663-016-0681-2

    Article  CAS  Google Scholar 

  93. Bai X, Sun Y, and Zhang Y, Metals (Basel). 9 (2019) 702. https://doi.org/10.3390/met9060702

    Article  CAS  Google Scholar 

  94. Michelic S K, Loder D, Reip T, Barani A A, and Bernhard C, Mater. Charact. 100 (2015) 61. https://doi.org/10.1016/j.matchar.2014.12.014

    Article  CAS  Google Scholar 

  95. Shin J H, and Park J H, Metall. Mater. Trans. B 48 (2017) 2820. https://doi.org/10.1007/s11663-017-1080-z

    Article  CAS  Google Scholar 

  96. Kumar D and Pistorius P C, in Advances in Molten Slags, Fluxes, and Salts: Proceedings of The 10th International Conference on Molten Slags, Fluxes and Salts, TMS, 2016, 2016.

  97. Liu C, Huang F, Suo J, and Wang X, Metall. Mater. Trans. B 47 (2016) 989. https://doi.org/10.1007/s11663-015-0540-6

    Article  CAS  Google Scholar 

  98. Ren Y, Zhang L, Yang W, and Duan H, Metall. Mater. Trans. B 45 (2014) 2057. https://doi.org/10.1007/s11663-014-0121-0

    Article  CAS  Google Scholar 

  99. Zhang T, Li Y, Liu C, and Jiang M, Metall. Mater. Trans. B 49 (2018) 3534. https://doi.org/10.1007/s11663-018-1410-9

    Article  CAS  Google Scholar 

  100. Seo C W, Kim S H, Jo S K, Suk M O, and Byun S M, Metall. Mater. Trans. B 41 (2010) 790. https://doi.org/10.1007/s11663-010-9377-1

    Article  CAS  Google Scholar 

  101. Ono H, Nakajima K, Agawa S, Ibuta T, Maruo R, and Usui T, Steel Res. Int. 86 (2015) 241. https://doi.org/10.1002/srin.201400034

    Article  CAS  Google Scholar 

  102. Deng Z, Chen L E I, Song G, and Zhu M, Metall. Mater. Trans. B 51 (2020) 173. https://doi.org/10.1007/s11663-019-01728-4

    Article  CAS  Google Scholar 

  103. Park J H, Lee S B, and Gaye H R, Metall. Mater. Trans. B 39 (2008) 853. https://doi.org/10.1007/s11663-008-9172-4

    Article  CAS  Google Scholar 

  104. Li J, Cheng G, Ruan Q, Pan J, and Chen X, ISIJ Int. 58 (2018) 2280. https://doi.org/10.2355/isijinternational.ISIJINT-2018-332

    Article  CAS  Google Scholar 

  105. Wang C, Nuhfer N T, and Sridhar S, Metall. Mater. Trans. B 40 (2009) 1005. https://doi.org/10.1007/s11663-009-9267-6

    Article  CAS  Google Scholar 

  106. Zhang T, Liu C, Mu H, Li Y, and Jiang M, Ironmak. Steelmak. 45 (2018) 187. https://doi.org/10.1080/03019233.2016.1251749

    Article  CAS  Google Scholar 

  107. Li J, Cheng G, Ruan Q, Pan J, and Chen X, Ironmak. Steelmak. 47 (2020) 31. https://doi.org/10.1080/03019233.2019.1568367

    Article  CAS  Google Scholar 

  108. Zheng W, Wu Z H, Li G Q, Zhang Z, and Zhu C Y, ISIJ Int. 54 (2014) 1755. https://doi.org/10.2355/isijinternational.54.1755

    Article  CAS  Google Scholar 

  109. Kruger D, and Garbers-Craig A, Metall. Mater. Trans. B 48 (2017) 1514. https://doi.org/10.1007/s11663-017-0945-5

    Article  CAS  Google Scholar 

  110. Li J, Cheng G, Ruan Q, Pan J, and Chen X, ISIJ Int. 58 (2018) 1042. https://doi.org/10.1080/03019233.2019.1568367

    Article  CAS  Google Scholar 

  111. Zhang T, Liu C, Qiu J, Li X, and Jiang M, ISIJ Int. 57 (2017) 314. https://doi.org/10.1007/s12540-020-00617-9

    Article  CAS  Google Scholar 

  112. Li J, Cheng G, Ruan Q, Pan J, and Chen X, Metall. Mater. Trans. B 49 (2018) 2357. https://doi.org/10.1007/s11663-018-1331-7

    Article  CAS  Google Scholar 

  113. Wang Y, Li C, Wang L, Xiong X, Chen L, and Zhuang C, Metals (Basel). 10 (2020) 1. https://doi.org/10.3390/met10121696

    Article  CAS  Google Scholar 

  114. Zhang T, Li Y, Mu H, Liu C, Jiang M (2017) Metall. Res. Technol. https://doi.org/10.1051/metal/2017021.

  115. Hou X, Ren Q, Yang Y, Cao X, Hu J, Zhang C, et al., J. Nat. Gas Sci. Eng. (2021). https://doi.org/10.1016/j.jngse.2020.103718

    Article  Google Scholar 

  116. Kivio M, and Holappa L, Metall. Mater. Trans. B 43 (2012) 233. https://doi.org/10.1007/s11663-011-9603-5

    Article  CAS  Google Scholar 

  117. Sugden P and Bhadeshia H K D H, Metall. Trans. A 20 A (1989) 1811.

  118. Gregg J M, and Bhadeshia H K D, Acta. Mater. (1997). https://doi.org/10.1016/S1359-6454(96)00187-5

    Article  Google Scholar 

  119. Shim J H, Cho Y W, Chung S H, Shim J D, and Lee D N, Acta Mater. 47 (1999) 2751.

    Article  CAS  Google Scholar 

  120. Byun J S, Shim J H, Cho Y W, and Lee D N, Acta Mater. 51 (2003) 1593. https://doi.org/10.1016/S1359-6454(02)00560-8

    Article  CAS  Google Scholar 

  121. Shim J H, Oh Y J, Suh J Y, Cho Y W, Shim J D, Byun J S, et al., Acta Mater. 49 (2001) 2115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for preparing this manuscript has been provided by Industrial Research and Consultancy Center (IRCC) IIT Bombay, Mumbai (project no. RD/0518-IRCCSH0-011) (2) Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (project no. CRG/2019/000086) and (3) Centre of Excellence in Steel Technology (CoEST), IIT Bombay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish M. Pande.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pindar, S., Pande, M.M. Formation Mechanism, Evolution and Modification of Non-Metallic Inclusions in Al-killed, Ti-Alloyed Steel Melt: A Review. Trans Indian Inst Met 76, 2587–2600 (2023). https://doi.org/10.1007/s12666-023-02947-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02947-9

Keywords

Navigation