Skip to main content
Log in

Atomic Cluster Aggregates in Nucleation of Solid Alumina Inclusion in the Aluminum Deoxidation for Liquid Iron

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Nucleation plays a decisive role in determining the structure and size distribution of a solid inclusion particle in liquid iron. The literature does not yet provide a clear picture about the pathway leading to solid alumina inclusion from liquid iron. The main confusion surrounds the little-known structures and thermodynamic properties of metastable alumina phase (MAP) that appear in the nucleation of alumina inclusion. In this work, it is suggested that MAP could appear in the Al-deoxidation reaction, based on the summaries and analysis in terms of various equilibrium experimental results and thermodynamic modeling of the Al deoxidation in liquid iron since the 1950s. The structures and thermodynamic properties of a species of MAP, alumina atomic cluster aggregates (AACAs), are calculated by density functional theory (DFT) methods. The thermodynamics on formation and transformation of AACAs shows that AACAs are in equilibrium with Al and O with various contents measured in the Al-deoxidation equilibrium experiments for liquid iron. It is suggested that the residual Al and O, which cannot nucleate, appear in the form of AACAs in Al-deoxidized liquid iron. It can be concluded that AACAs are the metastable intermediates and structural units for alumina inclusion nucleating from liquid iron. Thus, the behaviors of AACAs are important to the control of the nucleation rate of alumina inclusions in the Al deoxidation for liquid iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H. Lowe and A. Mitchell: Clean Steel: Superclean Steel, 1995.

  2. H. Goto, K. Miyazawa, and T. Kadoya: ISIJ Int., 1995, vol. 35, pp. 1477–82.

    Article  Google Scholar 

  3. K. Oikawa, K. Ishida, and T. Nishizawa: ISIJ Int., 1997, vol. 37, pp. 332–38.

    Article  Google Scholar 

  4. J.S. Byun, J.H. Shim, Y.W. Cho, and D.N. Lee: Acta Mater., 2003, vol. 51, pp. 1593–1606.

    Article  Google Scholar 

  5. Z. Liu, Y. Kobayashi, F. Yin, M. Kuwabara, and K. Nagai: ISIJ Int., 2007, vol. 47, pp. 1781–88.

    Article  Google Scholar 

  6. D.C. Hilty and W. Crafts: J. Met., 1950, vol. 188, pp. 414–24.

    Google Scholar 

  7. I.A. Novokhatskiy and B.F. Belov: Russ. Metall., 1966, vol. l, p. 12.

    Google Scholar 

  8. V.E. Shevtsov: Russ. Metall., 1981, vol. 1, pp. 52–57.

    Google Scholar 

  9. J.H. Swisher: Trans. TMS-AIME, 1967, vol. 239, pp. 123–24.

    Google Scholar 

  10. N.A. Gokcen and J. Chipman: J. Met., 1953, vol. 197, pp. 173–78.

    Google Scholar 

  11. A. McLean and H.B. Bell: J. Iron Steel Inst., 1965, vol. 123, p. 203.

    Google Scholar 

  12. H. Schenck, E. Steinmetz, and K.K. Mehta: Arch. Eisenhüttenwes., 1970, vol. 41, pp. 131–38.

    Article  Google Scholar 

  13. J.D. Seo, S.H. Kim, and K.R. Lee: Steel Res., 1998, vol. 69, pp. 49–53.

    Article  Google Scholar 

  14. K. Wasai, K. Mukai, H. Fuchiwaki, and A. Yoshida: ISIJ Int., 1999, vol. 39, pp. 760–66.

    Article  Google Scholar 

  15. H. Suito, H. Inoue, and R. Inoue: ISIJ Int., 1991, vol. 31, pp. 1381–88.

    Article  Google Scholar 

  16. Y.J. Kang, M. Thunman, D. Sichen, T. Morohoshi, K. Mizukami, and K. Morita: ISIJ Int., 2009, vol. 49, pp. 1483–89.

    Article  Google Scholar 

  17. M.K. Paek, J.M. Jang, Y.B. Kang, and J.J. Pak: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1826–36.

    Article  Google Scholar 

  18. L.E. Rohde, A. Choudhury, and M. Wahlster: Arch. Eisenhüttenwes., 1971, vol. 42, pp. 165–74.

    Article  Google Scholar 

  19. D. Janke and W.A. Fischer: Arch. Eisenhüttenwes., 1976, vol. 47, pp. 195–98.

    Article  Google Scholar 

  20. S. Dimitrov, A. Weyl, and D. Janke: Steel Res., 1995, vol. 66, pp. 3–7.

    Article  Google Scholar 

  21. R.J. Fruehan: Metall. Trans., 1970, vol. 1, pp. 3403–10.

    Article  Google Scholar 

  22. J.C. d’Entremont, D.L. Guernsey, and J. Chipman: Trans. TMS-AIME, 1963, vol. 227, p. 14.

    Google Scholar 

  23. H. Itoh, M. Hino, and S.B. Ya: Tetsu-to-Hagané, 1997, vol. 83, pp. 773–78.

    Article  Google Scholar 

  24. K. Wasai and K. Mukai: J. Jpn. Inst. Met., 1988, vol. 52, pp. 1088–97.

    Article  Google Scholar 

  25. I.H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493–507.

    Article  Google Scholar 

  26. The 19th Committee in Steelmaking: Thermodynamic Data for Steelmaking, The Japan Society for Promotion of Science, Tohoku University Press, Sendai, Japan, 2010, pp. 10–13.

  27. M.K. Paek, J.J. Pak, and Y.B. Kang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2224–33.

    Article  Google Scholar 

  28. A.T. Phan, M.K. Paek, and Y.-B. Kang: Acta Mater., 2014, vol. 79, pp. 1–15.

    Article  Google Scholar 

  29. G.C. Wang, Q. Wang, S.L. Li, X.G. Ai, and C.G. Fan: Scient. Rep., 2014, vol. 4, pp. 5082–5802.

    Article  Google Scholar 

  30. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    Article  Google Scholar 

  31. G. Li and H. Suito: ISIJ Int., 1997, vol. 37, pp.762–69.

    Article  Google Scholar 

  32. K. Wasai and K. Mukai: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 1065–74.

    Article  Google Scholar 

  33. H. Suito and H. Ohta: ISIJ Int., 2006, vol. 46, pp. 33–41.

    Article  Google Scholar 

  34. L. Zhang, W. Pluschkell, and B.G. Thomas: 85th Steelmaking Conf. Proc., Nashville, TN, Mar. 10–13, 2002, vol. 85, pp. 463–76.

  35. P.G. Vekilov: Cryst. Growth Des., 2004, vol. 4, pp. 671–85.

    Article  Google Scholar 

  36. D. Erdemir, A.Y. Lee, and A.S. Myerson: Acc. Chem. Res., 2009, vol. 42, pp. 621–29.

    Article  Google Scholar 

  37. P.G. Vekilov: Nanoscale, 2010, vol. 2, pp. 2346–57.

    Article  Google Scholar 

  38. A.S. Myerson and L.T. Bernhardt: Science, 2013, vol. 341, pp. 855–56.

    Article  Google Scholar 

  39. ND Loh, S Sen, M Bosman, SF Tan, J Zhong, CA Nijhuis, P Král, P Matsudaira, and U Mirsaidov: Nat. Chem., 2017, vol. 9, pp. 77–82.

    Google Scholar 

  40. Peter G. Vekilov: Cryst. Growth Des., 2010, vol. 10, pp. 5007–19.

    Article  Google Scholar 

  41. S. Karthika, T.K. Radhakrishnan, and P. Kalaichelvi: Cryst. Growth Des., 2016, vol. 16, pp. 6663–81.

    Article  Google Scholar 

  42. Jim De Yoreo: Nat. Mater., 2013, vol. 12, pp. 284–85.

    Article  Google Scholar 

  43. M.H. Nielsen, S. Aloni, and S. De Yoreo: Science, 2014, vol. 345, pp. 1158–62.

    Article  Google Scholar 

  44. Yi Peng, Feng Wang, Ziren Wang, Ahmed M. Alsayed, Zexin Zhang, Arjun G. Yodh, and Yilong Han: Nat. Mater., 2015, vol. 14, pp. 101–08.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully express their appreciation to the Natural Science Foundation of Liaoning Province (Grant No. 2015020181), the Natural Science Foundation of China (Grant No. 51634004), and the Natural Science Foundation of China (Grant No. 51474125) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guocheng Wang.

Additional information

Manuscript submitted October 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Xiao, Y., Zhao, C. et al. Atomic Cluster Aggregates in Nucleation of Solid Alumina Inclusion in the Aluminum Deoxidation for Liquid Iron. Metall Mater Trans B 49, 282–290 (2018). https://doi.org/10.1007/s11663-017-0973-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0973-1

Keywords

Navigation