Skip to main content
Log in

Formation of Inclusions in Ti-Stabilized 17Cr Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The behavior and formation mechanisms of inclusions in Ti-stabilized, 17Cr Austenitic Stainless Steel produced by the ingot casting route were investigated through systematic sampling of liquid steel and rolled products. Analysis methods included total oxygen and nitrogen contents, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicate that the composition of inclusions was strongly dependent on the types of added alloying agents. During the AOD refining process, after the addition of ferrosilicon alloy and electrolytic manganese, followed by aluminum, the composition of inclusions changed from manganese silicate-rich inclusions to alumina-rich inclusions. After tapping and titanium wire feeding, pure TiN particles and complex inclusions with Al2O3-MgO-TiO x cores containing TiN were found to be the dominant inclusions when [pct Ti] was 0.307 mass pct in the molten steel. These findings were confirmed by thermodynamic calculations which indicated that there was a driving force for TiN inclusions to be formed in the liquid phase due to the high contents of [Ti] and [N] in the molten steel. From the start of casting through to the rolled bar, there was no further change in the composition of inclusions compared to the titanium addition stage. Stringer-shaped TiN inclusions were observed in the rolled bar. These inclusions were elongated along the rolling direction with lengths varying from 17 to 84 µm and could have a detrimental impact on the corrosion resistance as well as the mechanical properties of the stainless steel products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43 (3), pp. 271-91.

    Article  Google Scholar 

  2. H. Ono, K. Nakajima, S. Agawa, T. Ibuta, R. Maruo and T. Usui: Steel Res. Int., 2015, vol. 86 (3), pp. 241-51.

    Article  Google Scholar 

  3. S.B. Lee, J.H. Choi, H.G. Lee, P.H. Rhee and S.M. Jung: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 414-16.

    Article  Google Scholar 

  4. M. Vanende, M. Guo, J. Proost, B. Blanpain and P. Wollants: ISIJ Int., 2011, vol. 51 (1), pp. 27-34.

    Article  Google Scholar 

  5. S. Yang, Q. Wang, L. Zhang, J. Li and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 731-50.

    Article  Google Scholar 

  6. J. Park and D. Kim: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 495-502.

    Article  Google Scholar 

  7. J.H. Park: Mater. Sci. Eng.: A, 2008, vol. 472 (1-2), pp. 43-51.

    Article  Google Scholar 

  8. T. Nishi and K. Shinme: Tetsu-to-Hagané, 1998, vol. 84 (12), pp. 837-43.

    Google Scholar 

  9. M. B. Leban and R. Tisu: Eng. Fail. Anal., 2013, vol. 33, pp. 430-38.

    Article  Google Scholar 

  10. H. Fujimura, S. Tsuge, Y. Komizo and T. Nishizawa: Tetsu-to-Hagané, 2001, vol. 87 (11), pp. 707-12.

    Google Scholar 

  11. T. Koseki and H. Inoue: J. Jpn. Inst. Met., 2001, vol. 65 (7), pp. 644-51.

    Google Scholar 

  12. L. P. Zhang, C. L. Davis and M. Strangwood: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1147-55.

    Article  Google Scholar 

  13. Y. F. Sui, G. D. Sun, Y. Zhao, C.G. Wang, M. Guo and M. Zhang: J. Univ. Sci. Technol. Beijing. 2014, vol. 36 (9), pp. 1174-82.

    Google Scholar 

  14. J. Du, M. Strangwood and C.L. Davis: J. Mater. Sci. Technol., 2012, vol. 28 (10), pp. 878-88.

    Article  Google Scholar 

  15. W. Yan, Y.Y. Shan and K. Yang: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2147-58.

    Article  Google Scholar 

  16. M.A. Linaza, J.L. Romero, J.M. Rodríguez-Ibabe and J.J. Urcola: Scripta Metallurgica et Materialia, 1993, vol. 29 (4), pp. 451-56.

    Article  Google Scholar 

  17. T. Uesugi: Trans. ISIJ, 1986, vol. 26 (7), pp. 614-20.

    Article  Google Scholar 

  18. M.Q. Yu, Z.Z. Wang, M.H. Xu, and X.J. Chen: Iron Steel, 2009, 41 (9), pp. 26-29.

    Google Scholar 

  19. M.W. Zhou and H. Yu: Int. J. Miner. Metall. Mater., 2012, vol. 19 (9), pp. 805-11.

    Article  Google Scholar 

  20. Y. Cogne, B. Heritier, and J. Monnot: Proceedings of the Third International Conference on Clean Steel, The Institute of Metals, Balatonfüred, Hungary, 1987, pp. 26–31.

  21. M. Hasegawa, S. Maruhashi, Y. Kamidate, Y. Muranaka and F. Hoshi: Tetsu-to-Hagané, 1984, vol. 70 (14), pp. 1704-11.

    Google Scholar 

  22. Y. Gao and K. Sorimachi: ISIJ Int., 1993, vol. 33 (2), pp. 291-97.

    Article  Google Scholar 

  23. R. Maddalena, R. Rastogi, S. Bassem and A.W. Cramb: Iron and Steelmaker, 2000, vol. 27 (12), pp. 71-79.

    Google Scholar 

  24. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin and S. Petersen: Calphad, 2009, vol. 33 (2), pp. 295-311.

    Article  Google Scholar 

  25. B. Bramfitt: Metall. Trans., 1970, vol. 1 (7), pp. 1987-95.

    Article  Google Scholar 

  26. J. Park, C. Lee and J. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1550-64.

    Article  Google Scholar 

  27. G.V. Pervushin and H. Suito: ISIJ Int., 2001, vol. 41 (7), pp. 748-56.

    Article  Google Scholar 

  28. G.V. Pervushin and H. Suito: ISIJ Int., 2001, vol. 41 (7), pp. 728-37.

    Article  Google Scholar 

  29. J.S. Park and J.H. Park: Steel Res. Int., 2014, vol. 85 (8), pp. 1303-09.

    Article  Google Scholar 

  30. X.F. Shi, G.C. Guo, P. Zhao: Iron Steel Vanadium Titanium, 2011, vol. 32 (1), pp. 57-61.

    Google Scholar 

  31. F. Meng, J. Wang, E.H. Han and W. Ke: Corrosion Sci., 2010, vol. 52 (3), pp. 927-32.

    Article  Google Scholar 

  32. J.H. Park: Calphad, 2011, vol. 35 (4), pp. 455-62.

    Article  Google Scholar 

  33. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980.

    Google Scholar 

  34. X.F. Shi and G.G. Cheng: Steelmaking, 2008, vol. 24 (4), pp. 36-39.

    Google Scholar 

  35. H.Y. Liu, H.L. Wang, L. Li, J.Q. Zheng, Y.H. Li and X.Y. Zeng: Ironmaking Steelmaking, 2011, vol. 38 (1), pp. 53-58.

    Article  Google Scholar 

  36. W.J. Ma, Y.P. Bao, L.H. Zhao and M. Wang: Int. J. Miner. Metall. Mater., 2014, vol. 21 (3), pp. 234-39.

    Article  Google Scholar 

  37. H.P. Wang, L.F. Sun, B. Peng and M.F. Jiang: J. Iron and Steel Res. Int., 2013, vol. 20 (10), pp. 70-74.

    Article  Google Scholar 

  38. J.J. Pak, J.T. Yoo, Y.S. Jeong, S.J. Tae, S.M. Seo, D.S. Kim and Y.D. Lee: ISIJ Int., 2005, vol. 45 (1), pp. 23-29.

    Article  Google Scholar 

  39. J. Park, S. B. Lee and H. Gaye: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 853-61.

    Article  Google Scholar 

  40. G.K. Sigworth and J.F. Elliott: Met. Sci., 1974, vol. 8 (1), pp. 298-310.

    Article  Google Scholar 

  41. Y. C. Guo and C.Z. Wang: Metall. Trans. B, 1990, vol. 21B, pp. 543-47.

    Google Scholar 

  42. Y. Kawashita and H. Suito: ISIJ Int., 1995, vol. 35 (12), pp. 1468-76.

    Article  Google Scholar 

  43. Z. Morita and K. Kunisada: Tetsu-to-Hagané, 1977, vol. 63 (10), pp. 1663-71.

    Google Scholar 

  44. M.K. Paek, J.M. Jang, H.J. Kang and J.J. Pak: ISIJ Int., 2013, vol. 53 (3), pp. 535-37.

    Article  Google Scholar 

  45. J.J. Pak, Y.S. Jeong, I.K. Hong, W.Y. Cha, D.S. Kim and Y.Y. Lee: ISIJ Int., 2005, vol. 45 (8), pp. 1106-11.

    Article  Google Scholar 

  46. J.Y. Wang, J.H. Liu, J.F. Liu, M.L. Feng, M.W. Zhou, Z. Liao and Y.H. Jia: J. Univ. Sci. Technol. Beijing, 2014, vol. 36 (8), pp. 1025-31.

    Google Scholar 

Download references

Acknowledgments

Acknowledgments are expressed to the China Scholarship Council (CSC) for financial support of this study, to Ruipu Technology for providing samples of stainless steel and to the Natural Sciences and Engineering Research Council of Canada for support of steel-related research at the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Sun.

Additional information

Manuscript submitted June 24, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Sun, Y., Yang, Y. et al. Formation of Inclusions in Ti-Stabilized 17Cr Austenitic Stainless Steel. Metall Mater Trans B 47, 3274–3284 (2016). https://doi.org/10.1007/s11663-016-0681-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0681-2

Keywords

Navigation