Skip to main content
Log in

Lignin Extracted from Rubber Seed Shell by Ultrasound-Assisted Organosolv Pretreatment

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Herein, the extraction of lignin from rubber tree residues (Hevea brasiliensis Müll. Arg), particularly from the seed shell, is reported with the aim of providing added value to this plantation.

Methods

The protocol employed consisted of an organosolv extraction using formic or acetic acids and p-TsOH as catalyst assisted by ultrasound, avoiding the use of high temperatures and mineral acids.

Results

22% yield of lignin was obtained from the dried rubber seed shell using the formic acid/p-TsOH combination in comparison with 13% yield obtained with acetic acid/p-TsOH. The extracted lignin was oxidized isolating typical fragments derived from syringyl, guaiacyl and p-hydroxyphenyl units. The lignin was characterized by IR, UV, NMR, TGA and DSC. Moreover, total phenol content and antioxidant activity were also evaluated.

Conclusion

The results exhibited the presence of typical lignin aromatic composition. The lignin obtained by the seed shell could be effectively employed in numerous future applications and the method could be considered as a low-cost acid catalysed process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data available on request from the authors

References

  1. Beretta, G.P.: World energy consumption and resources: an outlook for the rest of the century. Int. J. Environ. Technol. Manage. 7(1), 99–112 (2007)

    Article  Google Scholar 

  2. Hatfield, R., Vermerris, W.: Lignin formation in plants. The dilemma of linkage specificity. Plant Phys. 126, 1351–1357 (2001)

    Article  Google Scholar 

  3. Ragauskas, A.J., Beckham, G., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E.: Lignin valorization: improving lignin processing in the biorefinery. Science 344, 1246843 (2014)

    Article  Google Scholar 

  4. Poveda-Giraldo, J.A., Solarte-Toro, J.C., Cardona-Alzate, C.A.: The potential use of lignin as a platform product in biorefineries: A review. Renew. Sustain. Energy Rev. 138, 110688 (2021)

    Article  Google Scholar 

  5. Bajwa, D.S., Pourhashem, G., Ullah, A.H., Bajwa, S.G.: A concise review of current lignin production, applications, products and their environment impact. Ind. Crops Prod. 139, 111526 (2019)

    Article  Google Scholar 

  6. Marks, C., Viell, J.: Acetosolv pretreatment of wood for biorefinery applications. Biomass Convers. Biorefin. 13, 11687–11701 (2023)

    Article  Google Scholar 

  7. Tofani, G., Jasiukaitytė-Grojzdek, E., Grilc, M., Likozar, B.: Organosolv biorefinery: resource-based process optimisation, pilot technology scale-up and economics. Green Chem. 26, 186–201 (2024)

    Article  Google Scholar 

  8. Prado, R., Erdocia, X., Labidi, J.: Lignin extraction and purification with ionic liquids. J. Chem. Technol. Biotechnol. 88, 1248–1257 (2013)

    Article  Google Scholar 

  9. Bozell, J.J., Black, S.K., Myers, M., Cahill, D., Miller, W.P., Park, S.: Solvent fractionation of renewable woody feedstocks: organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass Bioenerg. 35, 4197–4208 (2011)

    Article  Google Scholar 

  10. Guragain, Y.N., Bastola, K.P., Mad, R.L., Vadlani, P.V.: Novel Biomass Pretreatment Using Alkaline Organic Solvents: A Green Approach for Biomass Fractionation and 2,3-Butanediol. Production Bioenerg. Res. 9, 643–655 (2016)

    Article  Google Scholar 

  11. Zhou, S., Liu, L., Wang, B., Xu, F., Sun, R.: Microwave-enhanced extraction of lignin from birch in formic acid: Structural characterization and antioxidant activity study. Process Biochem. 47, 1799–1806 (2012)

    Article  Google Scholar 

  12. Zhang, M., Qi, W., Liu, R., Su, R., Wu, S., He, Z.: Fractionating lignocellulose by formic acid: Characterization of major components. Biomass Bioenerg. 34, 525–532 (2010)

    Article  Google Scholar 

  13. Zhao, X., Cheng, K., Liu, D.: Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 82, 15–827 (2009)

    Article  Google Scholar 

  14. Xu, F., Sun, J.X., Sun, R., Fowler, P., Baird, M.S.: Comparative study of organosolv lignins from wheat straw. Ind. Crops Prod. 23, 180–193 (2006)

    Article  Google Scholar 

  15. Labauze, H., Cachet, N., Benjelloun-Mlayah, B.: Acid-based organosolv lignin extraction from wheat straw: kinetic and structural analysis. Ind. Crop Prod. 187, 115328 (2022)

    Article  Google Scholar 

  16. Liu, B., Liu, L., Deng, B., Huang, C., Zhu, J., Liang, L., He, X., Wei, Y., Qin, C., Liang, C., Liu, S., Yao, S.: Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review. Int. J. Biol. Macromol. 222, 1400–1413 (2022)

    Article  Google Scholar 

  17. Snelders, J., Dornez, E., Benjelloun-Mlayah, B., Huijgen, W.J.J., de Wild, P.J., Gosselink, R.J.A., Gerritsma, J., Courtin, C.M.: Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process Bioresour. Technol. 156, 275–282 (2014)

    Google Scholar 

  18. Ouyang, X., Huang, X., Hendriks, B.M.S., Boot, M.D., Hensen, E.J.M.: Coupling organosolv fractionation and reductive depolymerization of woody biomass in a two-step catalytic process. Green Chem. 20, 2308–2319 (2018)

    Article  Google Scholar 

  19. Constant, S., Basset, C., Dumas, C., Di Renzo, F., Robitzer, M., Barakat, A., Quignard, F.: Reactive organosolv lignin extraction from wheat straw: Influence of Lewis acid catalysts on structural and chemical properties of lignins. Ind. Crops Prod. 65, 180–189 (2015)

    Article  Google Scholar 

  20. Chotirotsukona, C., Raitaa, M., Champreda, V., Laosiripojana, N.: Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification. Ind. Crops Prod. 141, 111753 (2019)

    Article  Google Scholar 

  21. Deng, B., Hou, Y., Wang, F., Bao, Y., Zeng, F., Qin, C., Liang, C., Huang, C., Ma, J., Yao, S.: Highly selective separation of eucalyptus hemicellulose by salicylic acid treatment with both aromatic and hydroxy acids. Bioresour. Technol. Rep. 355, 127304 (2022)

    Article  Google Scholar 

  22. Sarkanen, K.V.: Acid-catalysed delignification of lignocellulosics in organic solvents. Prog. Biomass Convers. 2, 127–144 (1980)

    Article  Google Scholar 

  23. Bian, H., Chen, L., Gleisner, R., Dai, H., Zhu, J.Y.: Producing wood-based nanomaterials by rapid fractionation of wood at 80°C using a recyclable acid hydrotrope. Green Chem. 19, 3370–3379 (2017)

    Article  Google Scholar 

  24. Fan, D., Xie, X., Li, C., Liu, X., Zhong, J., Ouyang, X., Liu, Q., Qiu, X.: Extraction of Noncondensed Lignin from Poplar Sawdusts with p-Toluenesulfonic Acid and Ethanol. J. Agric. Food Chem. 69, 10838–10847 (2021)

    Article  Google Scholar 

  25. He, D., Zhuang, J., Jiang, Y., Xie, D., Yoo, C.G., Yang, Q.: Fractionation of poplar wood using a bifunctional aromatic acid under mild conditions. ACS Sustainable Chem. Eng. 9, 5364–5376 (2021)

    Article  Google Scholar 

  26. Chen, L., Dou, J., Ma, Q., Li, N., Wu, R., Bian, H., Yelle, D.J., Vuorinen, T., Fu, S., Pan, X.: Rapid and near-complete dissolution of wood lignin at ≤80°C by a recyclable acid hydrotrope. Sci. Adv. 3, e1701735 (2017)

    Article  Google Scholar 

  27. Wang, S., Song, Z., He, H., Wang, Q.: Molecular structure of poplar lignin obtained by p-Toluene sulfonic acid (p-TsOH) and formic acid delignificacion. BioResources 16, 3186–3199 (2021)

    Article  Google Scholar 

  28. Monteil-Rivera, F., Huang, G.H., Paquet, L., Deschamps, S., Beaulieu, C., Hawari, J.: Microwave-assisted extraction of lignin from triticale straw: Optimization and microwave effects. Bioresour. Technol. 104, 775–782 (2012)

    Article  Google Scholar 

  29. Li, M.-F., Sun, S.-H., Xu, F., Sun, R.-C.: Microwave-assisted organic acid extraction of lignin from bamboo: Structure and antioxidant activity investigation. Food Chem. 134, 1392–1398 (2012)

    Article  Google Scholar 

  30. Sun, R., Tomkinson, J.: Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem. 9, 85–93 (2002)

    Article  Google Scholar 

  31. Li, M.-F., Sun, S.-N., Xu, F., Sun, R.-C.: Ultrasound-enhanced extraction of lignin from bamboo (Neosinocalamus affinis): Characterization of the ethanol-soluble fractions. Ultrason. Sonochem. 19, 243–249 (2012)

    Article  Google Scholar 

  32. Ji, Q., Yua, X., Yagoub, A.E.-G.A., Chend, L., Zhou, C.: Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Ind. Crops Prod. 149, 112357 (2020)

    Article  Google Scholar 

  33. Thoresen, P.P., Lange, H., Crestini, C., Rova, U., Matsakas, L., Christakopoulos, P.: Characterization of Organosolv Birch Lignins: Toward Application Specific Lignin Production. ACS Omega 6, 4374–4385 (2021)

    Article  Google Scholar 

  34. de Souza, R.E., Borges-Gomes, F.J., Oliveira-Brito, E., Costa-Lelis, R.C., Ribas- Batalha, L.A., Santos, F.A., Longue-Junior, D.: A review on lignin sources and uses. J. Appl. Biotechnol. Bioeng. 7, 100–105 (2020)

    Google Scholar 

  35. Yu, O., Kim, H.K.: Lignin to Materials: A Focused Review on Recent Novel Lignin Applications. Appl. Sci. 10, 4626 (2020)

    Article  Google Scholar 

  36. Rojo-Martínez, G., Jasso-Mata, J., Vargas-Hernández, J. J., Velázquez-Martínez, A., Palma-López, D. J.: Prediction of latex production in commercial plantations of rubber tree (Hevea brasiliensis müll. Arg.) In Oaxaca, México. Rev. Fitotec. Mex. 26, 183–190, (2002)

  37. González-Ramírez, M.G., Santoyo-Cortés, H., Aguilar-Ávila, J., Aguilar-Gallegos, N.: Desarrollo de proveedores de hule natural en la cuenca del río Papaloapan, México: avances y limitaciones. Ciencia y Tecnología Agropecuaria. 20, 259–276 (2019)

    Article  Google Scholar 

  38. Singleton, V.L., Orthofe, R., Lamuela-Raventos, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999)

    Article  Google Scholar 

  39. Brand-Williams, W., Cuvelier, M. E., y Berset, C. L. W. T.: Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol. 28, 25−30 (1995).

  40. Wu, X., Zhang, T., Liu, N., Zhao, Y., Tian, G., Wang, A.: Sequential extraction of hemicelluloses and lignin for wood fractionation using acid hydrotrope at mild conditions. Ind. Crops Prod. 145, 112086 (2020)

    Article  Google Scholar 

  41. Ekebafe, L.O., Imanah, J.E., Ekebafe, M.O., Ugbesia, S.O.: Graft Polymerization of Polyacrylonitrile onto Rubber (Hevea brasiliensis) Seed Shell-Cellulosic and its Utilization Potential for Heavy Metal Uptake from Aqueous Medium. Chem. Ind. Chem. Eng. 17, 133–140 (2011)

    Article  Google Scholar 

  42. Negrão, D.R., Sain, M., Leão, A.L., Sameni, J., Jeng, R., de Jesus, J.P., Monteiro, R.T.R.: Fragmentation of lignin from organosolv black liquor by white rot fungi. BioResources 10, 1553–1573 (2015)

    Article  Google Scholar 

  43. Ramezani, N., Sain, M.: Thermal and physiochemical characterization of lignin extracted from wheat straw by organosolv process. J. Polym. Environ. 26, 3109–3116 (2018)

    Article  Google Scholar 

  44. Wang, S., Wang, K., Liu, Q., Gu, Y., Luo, Z., Cen, K.: Comparison of the pyrolysis behaviour of lignins from different tree species. Biotechnol. Adv. 27, 562–567 (2009)

    Article  Google Scholar 

  45. Inayat, A., van Assche, A., Clark, J.H., Farmer, T.J.: Greening the esterification between isosorbide and acetic acid. Sustain. Chem. Pharm. 7, 41–49 (2018)

    Article  Google Scholar 

  46. Santhanakrishnan, A., Peereboom, L., Miller, D.J., Dumitrascu, A., Smith, P.: Measurement of p-Toluenesulfonic Acid-Catalyzed Reaction Kinetics of 1,2-Propylene Glycol Acetylation using in-situ 1H-NMR Spectroscopy. Ind. Eng. Chem. Res. 52, 9337–9342 (2013)

    Article  Google Scholar 

  47. Miles-Barret, D.M., Neal, A.R., Hand, C., Montgomery, J.R.D., Panovic, I., Ojo, O.S., Lancefield, C.S., Cordes, D.B., Slawin, A.M.Z., Lebl, T., Westwood, N.J.: The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins. Org. Biomol. Chem. 14, 10023–10030 (2016)

    Article  Google Scholar 

  48. Hage, R.E., Brosse, N., Chrusciel, L., Sanchez, C., Sannigrahi, P., Ragauskas, A.: Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym. Degrad. Stab. 94, 1632–1638 (2009)

    Article  Google Scholar 

  49. Li, M.-F., Sun, S.-N., Xu, F., Sun, R.-C.: Formic acid based organosolv pulping Comparative of bamboo (Phyllostachys acuta): characterization of the dissolved lignins with Milled wood lignin Chem. Eng. J. 179, 80–89 (2012)

    Google Scholar 

  50. Seca, A.M.L., Cavaleiro, J.A.S., Domingues, F.M.J., Silvestre, A.J.D., Evtuguin, D., PascoalNeto, C.: Structural Characterization of the Lignin from the Nodes and Internodes of Arundo donax Reed. J. Agric. Food Chem. 48, 817–824 (2000)

    Article  Google Scholar 

  51. You, T., Xu, F.: Applications of molecular spectroscopic methods to the elucidation of lignin structure. In: Stauffer, Mark (ed.) Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences, vol 2, pp. 235–260. IntechOpen, Rijeka (2016)

    Google Scholar 

  52. Wang, S., Wang, K., Liu, Q., Gu, Y., Luo, Z., Cen, K., Fransson, T.: Comparison of the pyrolisis behavior of lignins from different tree species. Biotechnol. Adv. 27, 562–567 (2009)

    Article  Google Scholar 

  53. Wądrzyk, M., Janus, R., Lewandowski, M., Magdziarz, A.: On mechanism of lignin decomposition – investigation using microscale techniques: Py-GC-MS. Py-FT-IR and TGA. Renew. Energy 177, 942–952 (2021)

    Article  Google Scholar 

  54. Benítez-Guerrero, M., López-Beceiro, J., Sánchez-Jiménez, P.E., Pascual-Cosp, J.: Comparison of thermal behaviour of natural and hot-washed sisal fibers based on their main components: cellulose, xylan and lignin. TG-FTIR analysis of volatile products. Thermochim. Acta 581, 70–86 (2014)

    Article  Google Scholar 

  55. Hatakeyama, H., Hatakeyama, T.: Lignin structure, properties, and applications. In: Abe, A., Dusek, K., Kobayashi, S. (eds.) Biopolymers- Lignin Proteins, Bioactive nanocomposites, vol 232, pp. 1–63. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  56. Wang, C., Kelley, S.S., Venditti, R.A.: Lignin-based thermoplastic materials. Chemsuschem 9, 770–783 (2016)

    Article  Google Scholar 

  57. Zhao, L., Ouyang, X., Maa, G., Qian, Y., Qiu, X., Ruana, T.: Improving antioxidant activity of lignin by hydrogenolysis. Ind. Crops Prod. 125, 228–235 (2018)

    Article  Google Scholar 

  58. de Sousa Nascimento, L., da Mata Vieira, F.I.D., Horácio, V., Marques, F.P., Rosa, M.F., Souza, S.A., de Freitas, R.M., Uchoa, D.E.A., Mazzeto, S.E., Lomonaco, D., Avelino, F.: Tailored organosolv banana peels lignins: Improved thermal, antioxidant and antimicrobial performances by controlling process parameters. Int. J. Biol. Macromol. 181, 241–252 (2021)

    Article  Google Scholar 

  59. Ugartondo, V., Mitjans, M., Vinardell, M.P.: Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour. Technol. 99, 6683–6687 (2008)

    Article  Google Scholar 

  60. Vanderghem, C., Richel, A., Jacquet, N., Blecker, C., Paquot, M.: Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physico-chemical properties of Miscanthus x giganteus lignins. Polym. Degrad. Stabil. 96, 1761–1770 (2011)

    Article  Google Scholar 

  61. Lu, X., Gu, X., Shi, Y.: A review on lignin antioxidants: Their sources, isolations, antioxidant activities and various applications. Int. J. Biol. Macromol. 210, 716–741 (2022)

    Article  Google Scholar 

  62. Ragauskas, A., Yao, L., Xiong, L., Yoo, C.G., Dong, C., Meng, X., Yang, C., Yu, J., Yang, H., Chen, X.: Correlations of physicochemical properties of organosolv lignins from Broussonetia papyrifera with their antioxidant activities. Sustain. Energy Fuels. 293, 2585–2592 (2015)

    Google Scholar 

  63. Wei, X., Liu, Y., Luo, Y., Shen, Z., Wang, S., Li, M., Zhang, L.: Effect of organosolv extraction on the structure and antioxidant activity of eucalyptus kraft lignin. Int. J. Biol. Macromol. 187, 462–470 (2021)

    Article  Google Scholar 

Download references

Funding

The authors thank CONAHCyT for the funding via the project INFRA-2019–301144.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception and design. Extraction of lignin and analysis were performed by Omar Viñas-Bravo, Mario Valera-Zaragoza, Lidia Gabriela Felipe-Zaragoza and Roxana Martínez-Pascual. Total phenol content and antioxidant activity were performed by Roseli Marlen García-Cruz and Ariana A. Huerta-Heredia; chemical oxidation of lignin and purification of the crude was accomplished by Lemuel Pérez Picaso and Roxana Martínez Pascual. The first draft of the manuscript was written by Roxana Martínez-Pascual and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Roxana Martínez-Pascual.

Ethics declarations

Competing Interests

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of Novelty

Motivated by the need of increasing the added value of rubber trees, a plantation which drops seeds every year, we have developed a practical protocol for the efficient extraction of lignin from the seed shell of Hevea brasiliensis Müll. Arg. To the best of our knowledge, there are no reports of lignin isolation from this source. The delignification process comprised an organosolvation pretreatment of the dried and pulverised biomass in the presence of mild organic acids. The extraction was assisted by ultrasonication which allowed the avoidance of harsh conditions, like high temperatures.

Highlights

• The seed shell of Hevea brasiliensis Müll. Arg was used as an unprecedent source of lignin.

• An organosolv protocol assisted with ultrasonication was developed for delignification.

• Mild oxidation of lignin yielded syringaldehyde, p-methoxybenzaldehyde and vanillin.

• Lignin was characterised using NMR, IR, UV, TGA and DSC techniques.

• Phenolic content was evaluated with the Felin-Ciocalteau and DPPH scavenging assays.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 242 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viñas-Bravo, O., Pérez-Picaso, L., Valera-Zaragoza, M. et al. Lignin Extracted from Rubber Seed Shell by Ultrasound-Assisted Organosolv Pretreatment. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02533-0

Keywords

Navigation