Skip to main content
Log in

Structural characterization of by-product lignins from organosolv rapeseed straw pulping and their application as biosorbents

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The feasibility of the pulping technology depends on the efficiency of by-products and solvent recovery. In this regard, the development of an environmentally friendly peracetic method of delignification should be accompanied by the development of an effective method of lignin disposal. Usually, delignification methods are characterized without a detailed study of the by-products. Herein, let’s describe the structural and chemical characteristics of lignin, as well as its sorption properties. Pulping liquors after peracetic delignification of rapeseed straw were used in this work. The application of sodium tungstate and sodium molybdate as catalysts gave a significant effect on the dissolution of lignin during pulping. The composition, structure and functional groups of lignins were investigated. Application of catalysts in organosolv pulping resulted in small amounts of carbohydrates in lignins if compare to lignins after non-catalytic pulping. As catalysts, Na2WO4 and Na2MoO4 exhibited no obvious differences in carbohydrate contents and in molecular weights of organosolv lignin (Mw = 4910–5640 g/mol, Mn = 2350–2500 g/mol). The obtained lignin was successfully used for Methylene Blue adsorption due to high content of functional groups (R-OH = 1.72 mmol/g, Ph-OH = 5.72 mmol/g, R-COOH = 0.88 mmol/g) despite the poorly developed porous structure (11.03 ± 0.35 m2/g). Lignin has potential applicability as a biosorbent for wastewater treatment to solve environmental problems of water pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nashawi IS, Malallah A, Al-Bisharah M (2010) Forecasting World Crude Oil Production Using Multicyclic Hubbert Model. Energy Fuels 24(3):1788–1800. https://doi.org/10.1021/ef901240p

    Article  CAS  Google Scholar 

  2. Carvalho DMd, Sevastyanova O, Penna LS, Silva BPd, Lindström ME, Colodette JL (2015) Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Ind Crops Prod 73:118–126. https://doi.org/10.1016/j.indcrop.2015.04.021

    Article  CAS  Google Scholar 

  3. Galysh V, Sevastyanova O, Кartel M, Lindström ME, Gornikov Y (2017) Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents. J Therm Anal Calorim 128(2):1019–1025. https://doi.org/10.1007/s10973-016-5984-7

    Article  CAS  Google Scholar 

  4. Palianytsia B, Kulik T, Dudik O, Cherniavska T, Tonkha O (2018) Study of the Thermal Decomposition of Some Components of Biomass by Desorption Mass Spectrometry. in International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013). 2014. Cham: Springer International Publishing.

  5. Barbash V, Trembus I, Sokolovska N (2018) Performic pulp from wheat Straw. Cellul Chem Technol 52:673–680

    CAS  Google Scholar 

  6. Halysh V, Trus I, Nikolaichuk A, Skiba M, Radovenchyk I, Deykun I, Vorobyova V, Vasylenko I, Sirenko L (2020) Spent biosorbents as additives in cement production. J Ecol Eng 21(2):131–138. https://doi.org/10.12911/22998993/116328

    Article  Google Scholar 

  7. Chalmers IR, Abdullahi AA (2016) Paper Products: Container Board. Ref Module Mater Sci Mater Eng. https://doi.org/10.1016/B978-0-12-803581-8.02199-8

    Article  Google Scholar 

  8. Naga Sai MS, De D, Satyavathi B (2021) Sustainable production and purification of furfural from waste agricultural residue: An insight into integrated biorefinery. J Clean Prod 327:129467. https://doi.org/10.1016/j.jclepro.2021.129467

    Article  CAS  Google Scholar 

  9. Salelign K, Duraisamy R (2021) Sugar and ethanol production potential of sweet potato (Ipomoea batatas) as an alternative energy feedstock: processing and physicochemical characterizations. Heliyon 7(11):e08402. https://doi.org/10.1016/j.heliyon.2021.e08402

    Article  CAS  Google Scholar 

  10. Sebastian J, Rouissi T, Brar SK (2022) Miscanthus sp. – Perennial lignocellulosic biomass as feedstock for greener fumaric acid bioproduction. Ind Crops Prod 175:114248. https://doi.org/10.1016/j.indcrop.2021.114248

    Article  CAS  Google Scholar 

  11. Saif I, Salama E-S, Usman M, Lee DS, Malik K, Liu P, Li X (2021) Improved digestibility and biogas production from lignocellulosic biomass: Biochar addition and microbial response. Ind Crops Prod 171:113851. https://doi.org/10.1016/j.indcrop.2021.113851

    Article  CAS  Google Scholar 

  12. Varma AK, Mondal P (2017) Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Ind Crops Prod 95:704–717. https://doi.org/10.1016/j.indcrop.2016.11.039

    Article  CAS  Google Scholar 

  13. Dong L-L, He L, Tao G-H, Hu C (2013) High yield of ethyl valerate from the esterification of renewable valeric acid catalyzed by amino acid ionic liquids. RSC Adv 3(14):4806–4813. https://doi.org/10.1039/C3RA23034A

    Article  CAS  Google Scholar 

  14. Kon K, Onodera W, Shimizu K-I (2014) Selective hydrogenation of levulinic acid to valeric acid and valeric biofuels by a Pt/HMFI catalyst. Catal Sci Technol 4(9):3227–3234. https://doi.org/10.1039/C4CY00504J

    Article  CAS  Google Scholar 

  15. Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric Biofuels: A Platform of Cellulosic Transportation Fuels. Angew Chem Int Ed 49(26):4479–4483. https://doi.org/10.1002/anie.201000655

    Article  CAS  Google Scholar 

  16. Kulik T, Palianytsia B, Larsson M (2020) Catalytic Pyrolysis of Aliphatic Carboxylic Acids into Symmetric Ketones over Ceria-Based Catalysts: Kinetics, Isotope Effect and Mechanism. Catalysts 10(2). https://doi.org/10.3390/catal10020179

  17. Kulik TV (2012) Use of TPD–MS and Linear Free Energy Relationships for Assessing the Reactivity of Aliphatic Carboxylic Acids on a Silica Surface. J Phys Chem C 116(1):570–580. https://doi.org/10.1021/jp204266c

    Article  CAS  Google Scholar 

  18. Kulyk K, Palianytsia B, Alexander JD, Azizova L, Borysenko M, Kartel M, Larsson M, Kulik T (2017) Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolysis on Nanosized SiO2, γ-Al2O3, CeO2/SiO2, Al2O3/SiO2 and TiO2/SiO2. ChemPhysmChem 18(14):1943–1955. https://doi.org/10.1002/cphc.201601370

    Article  CAS  Google Scholar 

  19. Liao JJ, Latif NHA, Trache D, Brosse N, Hussin MH (2020) Current advancement on the isolation, characterization and application of lignin. Int J Biol Macromol 162:985–1024. https://doi.org/10.1016/j.ijbiomac.2020.06.168

    Article  CAS  Google Scholar 

  20. Shorey R, Gupta A, Mekonnen TH (2021) Hydrophobic modification of lignin for rubber composites. Ind Crops Prod 174:114189. https://doi.org/10.1016/j.indcrop.2021.114189

    Article  CAS  Google Scholar 

  21. Ye K, Liu Y, Wu S, Zhuang J (2021) A review for lignin valorization: Challenges and perspectives in catalytic hydrogenolysis. Ind Crops Prod 172:114008. https://doi.org/10.1016/j.indcrop.2021.114008

    Article  CAS  Google Scholar 

  22. Zhang K, Sun Q, Wei L, Sun J, Li K, Zhang J, Zhai S, An Q (2021) Characterization of lignin streams during ionic liquid/hydrochloric acid/formaldehyde pretreatment of corn stalk. Bioresour Technol 331:125064. https://doi.org/10.1016/j.biortech.2021.125064

    Article  CAS  Google Scholar 

  23. Zhang Z, Wu C, Ding Q, Yu D, Li R (2021) Novel dual modified alkali lignin based adsorbent for the removal of Pb2+ in water. Ind Crops Prod 173:114100. https://doi.org/10.1016/j.indcrop.2021.114100

    Article  CAS  Google Scholar 

  24. Laskar DD, Zeng J, Yan L, Chen S, Yang B (2013) Characterization of lignin derived from water-only flowthrough pretreatment of Miscanthus. Ind Crops Prod 50:391–399. https://doi.org/10.1016/j.indcrop.2013.08.002

    Article  CAS  Google Scholar 

  25. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3(1):29–60. https://doi.org/10.1023/B:PHYT.0000047809.65444.a4

    Article  CAS  Google Scholar 

  26. Nivedha M, Manisha M, Gopinath M, Baskar G, Tamilarasan K (2021) Fractionation, characterization, and economic evaluation of alkali lignin from saw industry waste. Bioresour Technol 335:125260. https://doi.org/10.1016/j.biortech.2021.125260

    Article  CAS  Google Scholar 

  27. Pin TC, Nascimento VM, Costa AC, Pu Y, Ragauskas AJ, Rabelo SC (2020) Structural characterization of sugarcane lignins extracted from different protic ionic liquid pretreatments. Renew Energy 161:579–592. https://doi.org/10.1016/j.renene.2020.07.078

    Article  CAS  Google Scholar 

  28. Chen HT, Funaoka M, Lai YZ (1997) Attempts to understand the nature of phenolic and etherified components of wood lignin. Wood Sci Technol 31:433–440. https://doi.org/10.1007/BF00702565

    Article  CAS  Google Scholar 

  29. Kulik T, Nastasiienko N, Palianytsia B, Ilchenko M, Larsson M (2021) Catalytic Pyrolysis of Lignin Model Compound (Ferulic Acid) over Alumina: Surface Complexes, Kinetics, and Mechanisms. Catalysts 11(12). https://doi.org/10.3390/catal11121508

  30. Nastasiienko N, Kulik T, Palianytsia B, Larsson M, Cherniavska T, Kartel M (2021) Decarboxylation of p-Coumaric Acid during Pyrolysis on the Nanoceria Surface. Colloids and Interfaces 5(4). https://doi.org/10.3390/colloids5040048

  31. Nastasiienko N, Palianytsia B, Kartel M, Larsson M, Kulik T (2019) Thermal Transformation of Caffeic Acid on the Nanoceria Surface Studied by Temperature Programmed Desorption Mass-Spectrometry, Thermogravimetric Analysis and FT–IR Spectroscopy. Colloids and Interfaces 3(1). https://doi.org/10.3390/colloids3010034

  32. Cheng F, Sun J, Wang Z, Zhao X, Hu Y (2019) Organosolv fractionation and simultaneous conversion of lignocellulosic biomass in aqueous 1,4-butanediol/acidic ionic-liquids solution. Ind Crops Prod 138:111573. https://doi.org/10.1016/j.indcrop.2019.111573

    Article  CAS  Google Scholar 

  33. Salapa I, Katsimpouras C, Topakas E, Sidiras D (2017) Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass Bioenergy 100:10–16. https://doi.org/10.1016/j.biombioe.2017.03.011

    Article  CAS  Google Scholar 

  34. Schulze P, Seidel-Morgenstern A, Lorenz H, Leschinsky M, Unkelbach G (2016) Advanced process for precipitation of lignin from ethanol organosolv spent liquors. Bioresour Technol 199:28–134. https://doi.org/10.1016/j.biortech.2015.09.040

    Article  CAS  Google Scholar 

  35. Mota TR, Oliveira DM, Morais GR, Marchiosi R, Buckeridge MS, Ferrarese-Filho O, dos Santos WD (2019) Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose. Ind Crops Prod 140:111657. https://doi.org/10.1016/j.indcrop.2019.111657

    Article  CAS  Google Scholar 

  36. Sahin HT, Young RA (2008) Auto-catalyzed acetic acid pulping of jute. Ind Crops Prod 28(1):24–28. https://doi.org/10.1016/j.indcrop.2007.12.008

    Article  CAS  Google Scholar 

  37. Trembus I, Trophimchuk J, Deykun I, Cheropkina R (2021) The catalytic delignification of sunflower stalks with hydrogen peroxide in the environment of acetic acid. J Chem Technol Metall 56:296–301

    CAS  Google Scholar 

  38. Liu X-J, Li M-F, Singh SK (2021) Manganese-modified lignin biochar as adsorbent for removal of methylene blue. J Mater Res Technol 12:1434–1445. https://doi.org/10.1016/j.jmrt.2021.03.076

    Article  CAS  Google Scholar 

  39. Brahim M, Boussetta N, Grimi N, Vorobiev E, Zieger-Devin I, Brosse N (2017) Pretreatment optimization from rapeseed straw and lignin characterization. Ind Crops Prod 95:643–650. https://doi.org/10.1016/j.indcrop.2016.11.033

    Article  CAS  Google Scholar 

  40. Svärd A, Moriana R, Brännvall E, Edlund U (2019) Rapeseed Straw Biorefinery Process. ACS Sustain Chem Eng 7(1):790–801. https://doi.org/10.1021/acssuschemeng.8b04420

    Article  CAS  Google Scholar 

  41. Chen B-Y, Zhao B-C, Li M-F, Sun R-C (2018) Characterization of lignins isolated with alkali from the hydrothermal or dilute-acid pretreated rapeseed straw during bioethanol production. Int J Biol Macromol 106:885–892. https://doi.org/10.1016/j.ijbiomac.2017.08.090

    Article  CAS  Google Scholar 

  42. Brahim M, Checa Fernandez BL, Regnier O, Boussetta N, Grimi N, Sarazin C, Husson E, Vorobiev E, Brosse N (2017) Impact of ultrasounds and high voltage electrical discharges on physico-chemical properties of rapeseed straw’s lignin and pulps. Bioresour Technol 237:11–19. https://doi.org/10.1016/j.biortech.2017.04.003

    Article  CAS  Google Scholar 

  43. Deykun I, Halysh V, Barbash V (2018) Rapeseed straw as an alternative for pulping and papermaking. Cellul Chem Technol 52:833–839

    CAS  Google Scholar 

  44. Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro MJ, Castro E (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87(6):692–700. https://doi.org/10.1016/j.fuel.2007.05.008

    Article  CAS  Google Scholar 

  45. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  46. Gong W, Xiang Z, Ye F, Zhao G (2016) Composition and structure of an antioxidant acetic acid lignin isolated from shoot shell of bamboo (Dendrocalamus Latiforus). Ind Crops Prod 91:340–349. https://doi.org/10.1016/j.indcrop.2016.07.023

    Article  CAS  Google Scholar 

  47. Granata A, Argyropoulos DS (1995) 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a Reagent for the Accurate Determination of the Uncondensed and Condensed Phenolic Moieties in Lignins. J Agric Food Chem 43(6):1538–1544. https://doi.org/10.1021/jf00054a023

    Article  CAS  Google Scholar 

  48. Samsuri AW, Sadegh-Zadeh F, Seh-Bardan BJ (2014) Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals. Int J Environ Sci Technol 11(4):967–976. https://doi.org/10.1007/s13762-013-0291-3

    Article  CAS  Google Scholar 

  49. Moussout H, Ahlafi H, Aazza M, Maghat H (2018) Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala Int J Mod Sci 4(2):244–254. https://doi.org/10.1016/j.kijoms.2018.04.001

    Article  Google Scholar 

  50. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276(1):47–52. https://doi.org/10.1016/j.jcis.2004.03.048

    Article  CAS  Google Scholar 

  51. Weber WJ, Morris JC (1963) Kinetics of Adsorption on Carbon from Solutions. J Sanit Eng Div 89:31–39. https://doi.org/10.1061/JSEDAI.0000430

    Article  Google Scholar 

  52. Barbash V, Poyda V, Deykun I (2011) Peracetic acid pulp from annual plants. Cellul Chem Technol 45:613–617

    CAS  Google Scholar 

  53. Potucek F, Gurung B, Hájková K (2014) Soda pulping of rapeseed straw. Cellul Chem Technol 48:683–691

    CAS  Google Scholar 

  54. Halysh V, Sevastyanova O, de Carvalho DM, Riazanova AV, Lindström ME, Gomelya M (2019) Effect of oxidative treatment on composition and properties of sorbents prepared from sugarcane residues. Ind Crops Prod 139:111566. https://doi.org/10.1016/j.indcrop.2019.111566

    Article  CAS  Google Scholar 

  55. Zhang Y, Hou Q, Fu Y, Xu C, Smeds AI, Willför S, Wang Z, Li Z, Qin M (2018) One-Step Fractionation of the Main Components of Bamboo by Formic Acid-based Organosolv Process Under Pressure. J Wood Chem Technol 38(3):170–182. https://doi.org/10.1080/02773813.2017.1388823

    Article  CAS  Google Scholar 

  56. Halysh V, Trembus I, Deykun I, Ostapenko A, Nikolaichuk A, Ilnitska G (2018) Development of effective technique for the disposal of the Prunus Armeniaca seed shells. East-Eur J Enterp Technol 1:4–9

    Google Scholar 

  57. Shui T, Feng S, Yuan Z, Kuboki T, Xu C (2016) Highly efficient organosolv fractionation of cornstalk into cellulose and lignin in organic acids. Bioresour Technol 218:953–961. https://doi.org/10.1016/j.biortech.2016.07.054

    Article  CAS  Google Scholar 

  58. Zhang M, Qi W, Liu R, Su R, Wu S, He Z (2010) Fractionating lignocellulose by formic acid: Characterization of major components. Biomass Bioenergy 34(4):525–532. https://doi.org/10.1016/j.biombioe.2009.12.018

    Article  CAS  Google Scholar 

  59. Manjarrez Nevárez L, Ballinas Casarrubias L, Canto OS, Celzard A, Fierro V, Ibarra Gómez R, González Sánchez G (2011) Biopolymers-based nanocomposites: Membranes from propionated lignin and cellulose for water purification. Carbohydr Polym 86(2):732–741. https://doi.org/10.1016/j.carbpol.2011.05.014

    Article  CAS  Google Scholar 

  60. Xu F, Sun J-X, Sun R, Fowler P, Baird MS (2006) Comparative study of organosolv lignins from wheat straw. Ind Crops Prod 23(2):180–193. https://doi.org/10.1016/j.indcrop.2005.05.008

    Article  CAS  Google Scholar 

  61. Zhao X, Liu D (2010) Chemical and thermal characteristics of lignins isolated from Siam weed stem by acetic acid and formic acid delignification. Ind Crops Prod 32(3):284–291. https://doi.org/10.1016/j.indcrop.2010.05.003

    Article  CAS  Google Scholar 

  62. Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. I Ind Crops Prod 28(3):237–259. https://doi.org/10.1016/j.indcrop.2008.03.008

    Article  CAS  Google Scholar 

  63. Shukry N, Fadel SM, Agblevor FA, El-Kalyoubi SF (2008) Some physical properties of acetosolv lignins from bagasse. J Appl Polym Sci 109(1):434–444. https://doi.org/10.1002/app.28059

    Article  CAS  Google Scholar 

  64. Wen J-L, Xue B-L, Xu F, Sun R-C, Pinkert A (2013) Unmasking the structural features and property of lignin from bamboo. Ind Crops Prod 42:332–343. https://doi.org/10.1016/j.indcrop.2012.05.041

    Article  CAS  Google Scholar 

  65. Gordobil O, Moriana R, Zhang L, Labidi J, Sevastyanova O (2016) Assesment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemical modification. Ind Crops Prod 83:155–165. https://doi.org/10.1016/j.indcrop.2015.12.048

    Article  CAS  Google Scholar 

  66. Pu Y, Cao S, Ragauskas AJ (2011) Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ Sci 4(9):3154–3166. https://doi.org/10.1039/C1EE01201K

    Article  CAS  Google Scholar 

  67. Wang Y-Y, Li M, Wyman CE, Cai CM, Ragauskas AJ (2018) Fast Fractionation of Technical Lignins by Organic Cosolvents. ACS Sustain Chem Eng 6(5):6064–6072. https://doi.org/10.1021/acssuschemeng.7b04546

    Article  CAS  Google Scholar 

  68. Pareek N, Gillgren T, Jönsson LJ (2013) Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresour Technol 148:70–77. https://doi.org/10.1016/j.biortech.2013.08.121

    Article  CAS  Google Scholar 

  69. Roa K, Oyarce E, Boulett A, ALSamman M, Oyarzún D, Pizarro GDC, Sánchez J, (2021) Lignocellulose-based materials and their application in the removal of dyes from water: A review. Sustain Mater Technol 29:e00320. https://doi.org/10.1016/j.susmat.2021.e00320

    Article  CAS  Google Scholar 

  70. Budnyak TM, Aminzadeh S, Pylypchuk IV, Sternik D, Tertykh VA, Lindström ME, Sevastyanova O (2018) Methylene Blue dye sorption by hybrid materials from technical lignins. J Environ Chem Eng 6(4):4997–5007. https://doi.org/10.1016/j.jece.2018.07.041

    Article  CAS  Google Scholar 

  71. Boumediene M, Benaïssa H, Molina S, Merlin A (2018) Effects of pH and ionic strength on methylene blue removal from synthetic aqueous solutions by sorption onto orange peel and desorption study. J Mater Environ Sci 9(6):1700–1711. https://doi.org/10.26872/jmes.2018.9.6.190

    Article  CAS  Google Scholar 

  72. Liu L, Gao ZL, Su XP, Chen X, Jiang L, Yao JM (2015) Adsorption Removal of Dyes from Single and Binary Solutions Using a Cellulose-based Bioadsorbent. ACS Sustainable Chem Eng 3:432–442. https://doi.org/10.1021/sc500848m

    Article  CAS  Google Scholar 

  73. Sulaiman NS, Mohamad Amini MH, Danish M, Sulaiman O, Hashim R (2021) Kinetics, thermodynamics, and isotherms of methylene blue adsorption study onto cassava stem activated carbon. Water 13(20):2936. https://doi.org/10.3390/w13202936

    Article  CAS  Google Scholar 

  74. Demir H, Top A, Balköse D, Ülkü S (2008) Dye adsorption behavior of Luffa cylindrica fibers. J Hazard Mater 153(1–2):389–394. https://doi.org/10.1016/j.jhazmat.2007.08.070

    Article  CAS  Google Scholar 

  75. Islam MA, Ahmed MJ, Khanday WA, Asif M, Hameed BH (2017) Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J Environ Manage 203:237–244. https://doi.org/10.1016/j.jenvman.2017.07.029

    Article  CAS  Google Scholar 

  76. Manna S, Roy D, Saha P, Gopakumar D, Thomas S (2017) Rapid methylene blue adsorption using modified lignocellulosic materials. Process Saf Environ Prot 107:346–356. https://doi.org/10.1016/j.psep.2017.03.008

    Article  CAS  Google Scholar 

  77. Liu J, Li E, You X, Hu C, Huang Q (2016) Adsorption of methylene blue on an agro-waste oiltea shell with and without fungal treatment. Sci Rep 6(1):38450. https://doi.org/10.1038/srep38450

    Article  CAS  Google Scholar 

  78. Albadarin AB, Collins MN, Naushad M, Shirazian S, Walker G, Mangwandi C (2017) Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem Eng J 307:264–272. https://doi.org/10.1016/j.cej.2016.08.089

    Article  CAS  Google Scholar 

  79. Taleb F, Ammar M, Mb M, Rb S, Moussaoui Y (2020) Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Sci Rep 10(1):11048. https://doi.org/10.1038/s41598-020-68047-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The contribution of COST Action LignoCOST (CA17128), supported by COST (European Cooperation in Science and Technology), in promoting interaction, exchange of knowledge and collaborations in the field of lignin valorization is gratefully acknowledged. This publication is also based on work supported by the grant FSA3-20-66700 from the U.S. Civilian Research & Development Foundation (CRDF Global) with funding from the United States Department of State. This research was also supported in part by the Ministry of education and science of Ukraine (grant number 21/190490, 2019–2021) and program European Union (Harmonizing water-related graduate education /WaterH, www.waterh.net).

Author information

Authors and Affiliations

Authors

Contributions

Vita Halysh, Margarita Skiba, Alla Nesterenko, Tetiana Kulik and Borys Palianytsia have contributed equally to this work.

Corresponding author

Correspondence to Vita Halysh.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halysh, V., Skiba, M., Nesterenko, A. et al. Structural characterization of by-product lignins from organosolv rapeseed straw pulping and their application as biosorbents. J Polym Res 29, 510 (2022). https://doi.org/10.1007/s10965-022-03368-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03368-w

Keywords

Navigation