Skip to main content
Log in

Biorefinery-Fermentation of Agro-Wastes by Haloferax lucentensis GUBF-2 MG076878 to Haloextremozymes for use as Biofertilizer and Biosynthesizer of AgNPs

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The green biorefinery approach is an alternative to the chemical method of production of enzyme-rich hydrolysate from waste biomass. Specifically, feather and coconut oil cake (COC) hydrolysate manifests the generation of bioproducts like dietary fibers, biofertilizers, bioplastics, esters, nanoparticles, etc.

Methods

We scaled up the production of haloextremozyme-rich hydrolysates using Haloferax lucentensis GUBF-2 MG076878 in an economical bioreactor for valuation as biofertilizer for rice growth and biosynthesis of silver nanoparticles (AgNPs), showing antimicrobial activity.

Results

The strain solubilizes 10% feather and COC with 78.75 ± 0.717% and 88.35 ± 0.654% degradation after 20 days, respectively. Moreover, tangential filtration aided co-concentration of both protease and lipase from feather/COC hydrolysate to >70% yield. SEM of feather/COC hydrolysate depicted particle size ranging 100-10000 nm. FTIR evidenced the functional groups of >C=O, -CH, -NH, -CH3, OH, and COO−. Priming seeds of rice with feather hydrolysate resulted in 100% germination energy and higher vigor index (1214), alongside increased shoot length (43.2 ± 0.58) under saline conditions. Biosynthesized AgNPs showed absorption maxima at 440 nm and vibrations of -CH, -OH, -NH, >C=C, and >C=O functionality in FTIR. AFM depicted the semi-oval morphology of AgNPs with a maximum height of 22 nm. Also, the presence of silver was confirmed by SEM-EDAX. AgNPs exhibited antimicrobial activity against human pathogens as; C. albicans>S. aureus>S. pyogenes>E. coli ATCC 8439>P.vulgaris, and S.typhi.

Conclusion

Conclusively, the production of haloextremozyme-rich feather and COC hydrolysate via the biorefinery approach employing  Haloferax lucentensis GUBF-2; is lucrative, considering waste valorization and biosynthesis of bioproducts in biotechnological applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Consent for publication

Not applicable.

References

  1. Santamaria-Fernandez, M., Ytting, N.K., Lübeck, M., Uellendahl, H.: Potential nutrient recovery in a green biorefinery for production of feed, fuel and fertilizer for organic farming. Waste Biomass Valor. 11, 5901–5911 (2020). https://doi.org/10.1007/s12649-019-00842-3

    Article  Google Scholar 

  2. Singh, K., Garg, S.K., Kalla, A., Bhatnagar, A.: Oilcakes as protein sources in supplementary diets for the growth of Cirrhinus mrigala (Ham.) fingerlings: Laboratory and field studies. Bioresour Technol. 86, 283–291 (2003). https://doi.org/10.1016/S0960-8524(02)00120-7

    Article  Google Scholar 

  3. Sobucki, L., Ferraz, R., Elci, R., Gustavo, G., Douglas, B., Kaiser, R., Daroit, D.J.: Feather hydrolysate as a promising nitrogen - rich fertilizer for greenhouse lettuce cultivation. Int J Recycling Org Waste Agric. 8, 493–499 (2019). https://doi.org/10.1007/s40093-019-0281-7

    Article  Google Scholar 

  4. Ramachandran, S., Patel, A.K., Nampoothiri, K.M., Francis, F., Nagy, V., Szakacs, G., Pandey, A.: Coconut oil cake - a potential raw material for the production of α-amylase. Bioresour. Technol. 93, 169–174 (2004). https://doi.org/10.1016/j.biortech.2003.10.021

    Article  Google Scholar 

  5. Nurdiawati, A., Suherman, C., Maxiselly, Y., Akbar, M.A., Purwoko, B.A., Prawisudha, P., Yoshikawa, K.: Liquid feather protein hydrolysate as a potential fertilizer to increase growth and yield of patchouli (Pogostemon cablin Benth) and mung bean (Vigna radiata). Int J Recycling Org Waste Agric. 8, 221–232 (2019). https://doi.org/10.1007/s40093-019-0245-y

    Article  Google Scholar 

  6. Zheng, Y., Tian, H., Li, Y., Wang, X., Shi, P.: Effects of carboxymethylation, hydroxypropylation and dual enzyme hydrolysis combination with heating on physicochemical and functional properties and antioxidant activity of coconut cake dietary fibre. Food Chem. 336, 127688 (2021). https://doi.org/10.1016/j.foodchem.2020.127688

    Article  Google Scholar 

  7. Gaonkar, S.K., Furtado, I.J.: Valorization of low-cost agro-wastes residues for the maximum production of protease and lipase haloextremozymes by Haloferax lucentensis GUBF-2 MG076878. Process Biochem. 101, 72–88 (2020). https://doi.org/10.1016/j.procbio.2020.10.019

    Article  Google Scholar 

  8. Govinden, G., Puchooa, D.: Isolation and characterization of feather degrading bacteria from Mauritian soil. Afr. J. Biotech. 11, 13591–13600 (2012). https://doi.org/10.5897/ajb12.1683

    Article  Google Scholar 

  9. Ghosh, A., Chakrabarti, K., Chattopadhyay, D.: Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J. Ind. Microbiol. Biotechnol. 35, 825–834 (2008). https://doi.org/10.1007/s10295-008-0354-5

    Article  Google Scholar 

  10. Kaewsalud, T., Yakul, K., Jantanasakulwong, K., Tapingkae, W., Watanabe, M., Chaiyaso, T.: Biochemical characterization and application of thermostable-alkaline keratinase from Bacillus halodurans SW-X to valorize chicken feather wastes. Waste Biomass Valor. (2020). https://doi.org/10.1007/s12649-020-01287-9

    Article  Google Scholar 

  11. Lateef, A., Adelere, I.A., Asafa, T.B., Beukes, L.S.: Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett (2015). https://doi.org/10.1007/s40089-014-0133-4

    Article  Google Scholar 

  12. Tamreihao, K., Mukherjee, S., Khunjamayum, R., Devi, L.J., Asem, R.S., Ningthoujam, D.S.: Feather degradation by keratinolytic bacteria and biofertilizing potential for sustainable agricultural production. J Baisc Microbiol (2019). https://doi.org/10.1002/jobm.201800434

    Article  Google Scholar 

  13. Bhange, K., Chaturvedi, V., Bhatt, R.: Ameliorating effects of chicken feathers in plant growth promotion activity by a keratinolytic strain of Bacillus subtilis PF1. Bioresour Bioprocess. (2016). https://doi.org/10.1186/s40643-016-0091-y

    Article  Google Scholar 

  14. Rai, S.K., Mukherjee, A.K.: Optimization for production of liquid nitrogen fertilizer from the degradation of chicken feather by iron-oxide (Fe3O4) magnetic nanoparticles coupled β-keratinase. Biocatal. Agric. Biotechnol. 4, 632–644 (2015). https://doi.org/10.1016/j.bcab.2015.07.002

    Article  Google Scholar 

  15. Paul, D., Lade, H.: Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain (2014). https://doi.org/10.1007/s13593-014-0233-6

    Article  Google Scholar 

  16. Bose, A., Pathan, S., Pathak, K.: Keratinolytic protease production by Bacillus amyloliquefaciens 6B using feather meal as substrate and application of feather hydrolysate as organic nitrogen input for agricultural soil. Waste Biomass Valor. (2014). https://doi.org/10.1007/s12649-013-9272-5

    Article  Google Scholar 

  17. Khot, M., Gupta, R., Barve, K., Zinjarde, S., Govindwar, S., RaviKumar, A.: Fungal production of single cell oil using untreated copra cake and evaluation of its fuel properties for biodiesel. J. Microbiol. Biotechnol. 25, 459–463 (2015). https://doi.org/10.4014/jmb.1407.07074

    Article  Google Scholar 

  18. Sabu, A., Sarita, S., Pandey, A., Bogar, B., Szakacs, G., Soccol, C.R.: Solid-state fermentation for production of phytase by Rhizopus oligosporus. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol 102–103, 251–260 (2002)

    Article  Google Scholar 

  19. Govarthanan, M., Lee, G.W., Park, J.H., Kim, J.S., Lim, S.S., Seo, S.K., Cho, M., Myung, H., Kamala-Kannan, S., Oh, B.T.: Bioleaching characteristics, influencing factors of Cu solubilization and survival of Herbaspirillum sp. GW103 in Cu contaminated mine soil. Chemosphere. 109, 42–48 (2014). https://doi.org/10.1016/j.chemosphere.2014.02.054

    Article  Google Scholar 

  20. Roopan, S.M., Elango, G.: Exploitation of Cocos nucifera a non-food toward the biological and nanobiotechnology field. Ind. Crops Prod. 67, 130–136 (2015). https://doi.org/10.1016/j.indcrop.2015.01.008

    Article  Google Scholar 

  21. Kalishwaralal, K., Deepak, V., Ram Kumar Pandian, S.B., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., Gurunathan, S.: Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerf 77, 257–262 (2010). https://doi.org/10.1016/j.colsurfb.2010.02.007

    Article  Google Scholar 

  22. Patil, S., Fernandes, J., Tangasali, R., Furtado, I.: Exploitation of Haloferax alexandrinus for biogenic synthesis of silver nanoparticles antagonistic to human and lower mammalian pathogens. J. Cluster Sci. 25, 423–433 (2014). https://doi.org/10.1007/s10876-013-0621-0

    Article  Google Scholar 

  23. Srivastava, P., Bragança, J., Ramanan, S.R., Kowshik, M.: Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17, 821–831 (2013). https://doi.org/10.1007/s00792-013-0563-3

    Article  Google Scholar 

  24. Oren, A.: Industrial and environmental applications of halophilic microorganisms. Environ. Technol. 31, 825–834 (2010). https://doi.org/10.1080/09593330903370026

    Article  Google Scholar 

  25. Amoozegar, M.A., Siroosi, M., Atashgahi, S., Smidt, H., Ventosa, A.: Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology (United Kingdom). 163, 623–645 (2017). https://doi.org/10.1099/mic.0.000463

    Article  Google Scholar 

  26. Zhou, Y., Fang, X., Zhang, R., Qin, S., Wang, J., Lu, J.: Salt-tolerant microorganisms treating hypersaline organic wastewater and the microbial population dynamics. Energy Sour Part A Recovery Util Environ Effects. 38, 2854–2859 (2016). https://doi.org/10.1080/15567036.2015.1107923

    Article  Google Scholar 

  27. Etesami, H., Beattie, G.A.: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol. (2018). https://doi.org/10.3389/fmicb.2018.00148

    Article  Google Scholar 

  28. Bhambure, A.B., Mahajan, G.R., Kerkar, S.: Salt tolerant bacterial inoculants as promoters of rice growth and microbial activity in coastal saline soil. Proc Nat Acad Sci India Sect B Biol Sci. 88, 1531–1538 (2018). https://doi.org/10.1007/s40011-017-0901-9

    Article  Google Scholar 

  29. Yadav, A.N., Gulati, S., Sharma, D., Singh, R.N., Rajawat, M.V.S., Kumar, R., Dey, R., Pal, K.K., Kaushik, R., Saxena, A.K.: Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74, 1031–1043 (2019). https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

  30. Yadav, A.N., Verma, P., Kaushik, R., Dhaliwal, H.S., Saxena, A.K.: Archaea endowed with plant growth promoting attributes. EC Microbiology 8(6), 294–298 (2017)

    Google Scholar 

  31. Yadav, A.N., Sharma, D., Gulati, S., Singh, S., Dey, R., Pal, K.K., Kaushik, R., Saxena, A.K.: Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci. Rep. 5, 1–10 (2015). https://doi.org/10.1038/srep12293

    Article  Google Scholar 

  32. Dave, B.P., Anshuman, K., Hajela, P.: Siderophores of halophilic archaea and their chemical characterization. Indian J. Exp. Biol. 44, 340–344 (2006)

    Google Scholar 

  33. Saxena, A.K., Kaushik, R., Yadav, A.N., Gulati, S., Sharma, D.: Role of Archaea in sustenance ofplants in extreme saline environments. Proc 56th Ann Conf Assoc Microbiol India Int Symp B Emerg Discoveries Microbiol. (2015). https://doi.org/10.13140/RG.2.1.2073.9925

    Article  Google Scholar 

  34. Srivastava, P., Braganca, J.M., Kowshik, M.: In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti-proliferative properties against HeLa cell line. Biotechnol. Prog. 30, 1480–1487 (2014). https://doi.org/10.1002/btpr.1992

    Article  Google Scholar 

  35. Costa, M.I., Álvarez-Cerimedo, M.S., Urquiza, D., Ayude, M.A., Hoppe, C.E., Fasce, D.P., De Castro, R.E., Giménez, M.I.: Synthesis, characterization and kinetic study of silver and gold nanoparticles produced by the archaeon Haloferax volcanii. J. Appl. Microbiol. 129, 1297–1308 (2020). https://doi.org/10.1111/jam.14726

    Article  Google Scholar 

  36. Rodrigo-Baños, M., Garbayo, I., Vílchez, C., Bonete, M.J., Martínez-Espinosa, R.M.: Carotenoids from Haloarchaea and their potential in biotechnology. Marine Drugs 13, 5508–5532 (2015)

    Article  Google Scholar 

  37. Gaonkar, S.K., Furtado, I.J.: Characterization of extracellular protease from the haloarcheon Halococcus sp. strain GUGFAWS-3 (MF425611). Curr Microbiol 77, 1024–1034 (2020). https://doi.org/10.1007/s00284-020-01896-6

    Article  Google Scholar 

  38. Tamreihao, K., Devi, L.J., Khunjamayum, R., Mukherjee, S., Ashem, R.S., Ningthoujam, D.S.: Biofertilizing potential of feather hydrolysate produced by indigenous keratinolytic Amycolatopsis sp. MBR 40 for rice cultivation under field conditions. Biocatalys Agric Biotechnol. 10, 317–320 (2017). https://doi.org/10.1016/j.bcab.2017.04.010

    Article  Google Scholar 

  39. Govarthanan, M., Seo, Y.S., Lee, K.J., Jung, I.B., Ju, H.J., Kim, J.S., Cho, M., Kamala-Kannan, S., Oh, B.T.: Low-cost and eco-friendly synthesis of silver nanoparticles using coconut (Cocos nucifera) oil cake extract and its antibacterial activity. Artificial Cells Nanomed Biotechnol. 44, 1878–1882 (2016). https://doi.org/10.3109/21691401.2015.1111230

    Article  Google Scholar 

  40. Govarthanan, M., Cho, M., Park, J., Jang, J., Yi, Y., Kamala-kannan, S., Oh, B.: Cottonseed oilcake extract mediated green synthesis of silver nanoparticles and its antibacterial and cytotoxic activity. J Nanomat (2016). https://doi.org/10.1155/2016/7412431

    Article  Google Scholar 

  41. Islam, M., Masum, S., Rayhan, K., Haque, Z.: Antibacterial activity of crab-chitosan against Staphylococcus aureus and Escherichia coli. J Adv Scientific Res. 2, 63–66 (2011). https://doi.org/10.5897/AJMR2016.7908

    Article  Google Scholar 

  42. Dei Piu’, L., Tassoni, A., Serrazanetti, D.I., Ferri, M., Babini, E., Tagliazucchi, D., Gianotti, A.: Exploitation of starch industry liquid by-product to produce bioactive peptides from rice hydrolyzed proteins. Food Chem 155, 199–206 (2014). https://doi.org/10.1016/j.foodchem.2014.01.055

    Article  Google Scholar 

  43. Kim, J.M., Choi, Y.M., Suh, H.J.: Preparation of feather digests as fertilizer with Bacillus pumilis KHS-1. J. Microbiol. Biotechnol. 15, 472–476 (2005)

    Google Scholar 

  44. Cao, Z., Lu, D., Luo, L.: Composition analysis and application of degradation products of whole feathers through a large scale of fermentation. Environ Sci Pollut 19, 2690–2696 (2012). https://doi.org/10.1007/s11356-012-0763-x

    Article  Google Scholar 

  45. Deshavath, N.N., et al.: The cost-effective stirred tank reactor for cellulase production from alkaline-pretreated agriculture waste biomass. In: Ghosh, S. (ed.) Utilization and management of bioresources. Springer, Singapore (2018)

    Google Scholar 

  46. De Castro, R.E., Maupin-Furlow, J.A., Giménez, M.I., Herrera Seitz, M.K., Sánchez, J.J.: Haloarchaeal proteases and proteolytic systems. FEMS Microbiol. Rev. 30, 17–35 (2006). https://doi.org/10.1111/j.1574-6976.2005.00003.x

    Article  Google Scholar 

  47. Li, X., Yu, H.Y.: Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiologica. 59, 455–463 (2014). https://doi.org/10.1007/s12223-014-0320-8

    Article  Google Scholar 

  48. Akmoussi-Toumi, S., Khemili-Talbi, S., Ferioune, I., Kebbouche-Gana, S.: Purification and characterization of an organic solvent-tolerant and detergent-stable lipase from Haloferax mediterranei CNCMM 50101. Int. J. Biol. Macromol. 116, 817–830 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.087

    Article  Google Scholar 

  49. Sharma, S., Gupta, A., Chik, S.M.S.T., Kee, C.G., Mistry, B.M., Kim, D.H., Sharma, G.: Characterization of keratin microparticles from feather biomass with potent antioxidant and anticancer activities. Int. J. Biol. Macromol. 104, 189–196 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.015

    Article  Google Scholar 

  50. Eslahi, N., Dadashian, F., Nejad, N.H.: An Investigation on Keratin Extraction from Wool and Feather. Preparat Biochem Biotechnol. (2013). https://doi.org/10.1080/10826068.2013.763826

    Article  Google Scholar 

  51. Pedram Rad, Z., Tavanai, H., Moradi, A.R.: Production of feather keratin nanopowder through electrospraying. J Aerosol Sci. 51, 49–56 (2012). https://doi.org/10.1016/j.jaerosci.2012.04.007

    Article  Google Scholar 

  52. Subaşı, B.G., Casanova, F., Capanoglu, E., Ajalloueian, F., Sloth, J.J., Mohammadifar, M.A.: Protein extracts from de-oiled sunflower cake: structural, physico-chemical and functional properties after removal of phenolics. Food Biosci. (2020). https://doi.org/10.1016/j.fbio.2020.100749

    Article  Google Scholar 

  53. Sritrakul, N., Nitisinprasert, S., Keawsompong, S.: Copra meal hydrolysis by the recombinant β-mannanase KMAN-3 and MAN 6.7 expressed in Escherichia coli. 3 Biotech. 10, 1–7 (2020). https://doi.org/10.1007/s13205-019-2005-0

    Article  Google Scholar 

  54. Drozłowska, E., Łopusiewicz, Ł, Mężyńska, M., Bartkowiak, A.: Valorization of flaxseed oil cake residual from cold-press oil production as a material for preparation of spray-dried functional powders for food applications as emulsion stabilizers. Biomolecules. (2020). https://doi.org/10.3390/biom10010153

    Article  Google Scholar 

  55. Goswami, D., Thakker, J.N., Dhandhukia, P.C.: Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food & Agriculture. (2016). https://doi.org/10.1080/23311932.2015.1127500

    Article  Google Scholar 

  56. Jones, D.L., Kielland, K.: Soil biology & biochemistry amino acid, peptide and protein mineralization dynamics in a taiga forest soil. Soil Biol. Biochem. 55, 60–69 (2012). https://doi.org/10.1016/j.soilbio.2012.06.005

    Article  Google Scholar 

  57. Bewley, J.D.: Seed germination and dormancy. Plant Cell 9(7), 1055–1066 (1997). https://doi.org/10.1105/tpc.9.7.1055

    Article  Google Scholar 

  58. Negm, N.A., Tawfik, S.M., Abd-elaal, A.A.: Synthesis, characterization and biological activity of colloidal silver nanoparticles stabilized by gemini anionic surfactants. J. Ind. Eng. Chem. (2014). https://doi.org/10.1016/j.jiec.2014.05.015

    Article  Google Scholar 

  59. Hamouda, R.A., Hussein, M.H., Abo-elmagd, R.A., Bawazir, S.S.: Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Rep. (2019). https://doi.org/10.1038/s41598-019-49444-y

    Article  Google Scholar 

  60. Preetha, D., Arun, R., Kumari, P., Aarti, C.: Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against Mcf-7 cell line. J Nanotechnol. (2013). https://doi.org/10.1155/2013/598328

    Article  Google Scholar 

  61. Shetty, R., Kumar, B.S., Kumar, Y.S.: Characterization of silver nanoparticles synthesized by using marine isolate characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol. 22, 614–621 (2012). https://doi.org/10.4014/jmb.1107.07013

    Article  Google Scholar 

  62. Amooaghaie, R., Reza, M., Azizi, M.: Ecotoxicology and environmental safety synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with che- mical silver nanoparticles. Ecotoxicol. Environ. Saf. 120, 400–408 (2015). https://doi.org/10.1016/j.ecoenv.2015.06.025

    Article  Google Scholar 

  63. Pletikapić, G., Žutić, V., Vinković Vrček, I., Svetličić, V.: Atomic force microscopy characterization of silver nanoparticles interactions with marine diatom cells and extracellular polymeric substance. J Mol Recognit 25, 309–317 (2012)

    Article  Google Scholar 

  64. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ram, J.T., Yacaman, M.J.: The bactericidal effect of silver nanoparticles. Nanotechnology (2005). https://doi.org/10.1088/0957-4484/16/10/059

    Article  Google Scholar 

  65. Pal, S., Tak, Y.K., Song, J.M.: Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle ? a study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007). https://doi.org/10.1128/AEM.02218-06

    Article  Google Scholar 

  66. Young, E., Yong, J., Son, J., Yeun, S., Ji, P., Yoo, Y., Nam, Y., Seong, C., Jeong, Y.: Improved biosynthesis of silver nanoparticles using keratinase from Stenotrophomonas maltophilia R13: reaction optimization, structural characterization, and biomedical activity. Bioprocess Biosyst. Eng. 41, 381–393 (2018). https://doi.org/10.1007/s00449-017-1873-0

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Mr. Naveen Gaonkar, Project Assistant, BITS PILANI, Goa- India, for providing saline soil and Rice (Khorgut) from his field of Panchawadi-Village, Shiroda-Goa. S.K Gaonkar, thank Dr. Vivekanand Gobre for helping in doing AFM analysis at the School of Chemical Sciences, Goa University. S. K Gaonkar also thanks Mr. Aniketh Gaonkar, Research Scholar, School of Physical and Applied Sciences for helping in the setting up of bioreactor. S. K. Gaonkar acknowledges Research studentship, Goa University (Grant No. GU/Acad-PG/Ph.D./Res.Stud./2017-18/211).

Additional Information

Authors dedicate the paper to Prof. Joe D'Souza, Professor in Microbiology on the occasion of his 70 Birthday.

Funding

Grant No. GU/Acad-PG/Ph.D./Res.Stud./2017-18/211.

Author information

Authors and Affiliations

Authors

Contributions

Author SKG designed, performed the experiments, analyzed the data, and drafted the manuscript. IJF helped in the data analysis and corrected the manuscript.

Corresponding author

Correspondence to Irene J. Furtado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8940 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaonkar, S.K., Furtado, I.J. Biorefinery-Fermentation of Agro-Wastes by Haloferax lucentensis GUBF-2 MG076878 to Haloextremozymes for use as Biofertilizer and Biosynthesizer of AgNPs. Waste Biomass Valor 13, 1117–1133 (2022). https://doi.org/10.1007/s12649-021-01556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01556-1

Keywords

Navigation