Skip to main content

Advertisement

Log in

Different Facets of Lignocellulosic Biomass Including Pectin and Its Perspectives

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The plant matter, lignocellulosic biomass, is a renewable and inexpensive abundant natural resource in the world. The development of inexhaustible energy rehabilitated from agricultural waste is an alternative for fossil fuel to reduce CO2 emission and prevent global warming. The amount of waste generated has a direct correlation with the human population. Thus, the waste generated by the community is being added to the environment as the municipal, agricultural waste, and waste produced from forest-based industries. Moreover, there are high possibilities of having environment-friendly valuable bio-based products, including biofuels, biogas, enzymes, and biochar from biomass without competing with the food supply chain. However, only a few or limited kinds of products are produced industrially. This review highlights the significance of lignocellulosic biomass. It describes the different valuable products like biochemicals, biochar, enzymes, single-cell protein, dye dispersant, and bioplastic from lignocellulosic biomass, emphasizing their applications briefly. Besides, this review also highlights the pretreatment of biomass, mainly focusing on biological pretreatment. Natural biomass utilization would lead to solving the energy shortage, food security issues, and obstacles for developing technological solutions in agriculture, agro-processing, and other related manufacturing sectors.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dashtban, M., Schraft, H., Qin, W.: Fungal bioconversion of lignocellulosic residues, opportunities and perspectives. Int. J. Biol. Sci. 5, 578–595 (2009)

    Article  Google Scholar 

  2. Saini, A., Aggarwal, N.K., Sharma, A., Yadav, A.: Actinomycetes: a source of lignocellulolytic enzymes. Enzyme Res. 2015, 1–15 (2015)

    Article  Google Scholar 

  3. Sabiiti, E.N.: Utilizing agricultural waste to enhance food security and conserve the environment. Afr. J. Food Agric. Nutr. Dev. 11, 1–9 (2011)

    Google Scholar 

  4. Ezcurra, A.I., De-Zarate, O., Dhin, P.V., Lacaux, J.P.: Cereal waste burning pollution observed in the town of Vitoria (northern Spain). Atmos. Environ. 35, 1377–1386 (2001)

    Article  Google Scholar 

  5. Sanchez, C.: Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv. 27, 185–194 (2009)

    Article  Google Scholar 

  6. Kumar, A., Gautam, A., Dutt, D.: Biotechnological transformation of lignocellulosic biomass into industrial products: an overview. Adv. Biosci. Biotechnol. 7, 149–168 (2016)

    Article  Google Scholar 

  7. Iqbal, H.M.N., Kyazze, G., Keshavarz, T.: Advances in valorization of lignocellulosic materials by biotechnology: an overview. BioResources. 8, 3157–3176 (2013)

    Article  Google Scholar 

  8. Gupta, V.K., Kubicek, C.P., Berrin, J.G., Wilson, D.W., Couturier, M., Berlin, A., Filho, E.X.F., Ezeji, T.: Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem. Sci. 41, 633–645 (2015)

    Article  Google Scholar 

  9. Soccol, C.R., Faraco, V., Karp, S.G., Vandenberghe, L.P.S., Thomaz-Soccol, V., Woiciechowski, A.L., Pandey, A.: Lignocellulosic Bioethanol: Current Status and Future Perspectives. Biofuels: Alternative Feedstocks and Conversion Process for the Production of Liquid and Gaseous Biofuels, 2nd edn, pp. 331–354. Academic press / Elsevier Inc, New York (2019)

    Book  Google Scholar 

  10. Isikgor, F.H., Becer, C.R.: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559 (2015)

    Article  Google Scholar 

  11. Rancourt, Y., Neumeyer, C., Zou, N.: Results from 2015 Bio-Products Production and Development Survey. A report by statistics Canada, Ottawa (2017)

    Google Scholar 

  12. Biotechnology Innovation Organization: Advancing the bio-based economy: Renewable chemical biorefinery commercialization, progress and market opportunities, 2016 and beyond. http://www.bio.org/sites/default/files/BIO_Advancing _the _Biobased _Economy _2016.pdf (2016)

  13. Cherubini, F.: The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ. Convers. Manage. 51, 1412–1421 (2010)

    Article  Google Scholar 

  14. Huber, G.W.: Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries, pp. 23–25. National Science Foundation, New York (2008)

    Google Scholar 

  15. Larson, E.: Biofuel Production Technologies: Status, Prospects and Implications for Trade and Development, p. 41. United Nations Conference on Trade and Development, Geneva (2008)

    Google Scholar 

  16. De Jong, E., Higson, A., Walsh, P., Wellissch, M.: Bio-based chemicals, value added products from biorefineries. In: IEA Bioenergy task 42 report. https://www.ieabioenergy.com/wpcontent/uploads/2013/10/Task-42-Biobased-Chemicals value-added-products-from biorefineries.pdf (2013)

  17. Saritha, M., Arora, A.: Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J. Microbiol. 52, 122–130 (2012)

    Article  Google Scholar 

  18. Zhou, C.H., Xia, X., Lin, C.X., Tonga, D.S., Beltraminib, J.: Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40, 5588–5617 (2011)

    Article  Google Scholar 

  19. Alonso, D.M., Wettstein, S.G., Dumesic, J.A.: Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 15, 584–595 (2013)

    Article  Google Scholar 

  20. Melero, J.A., Iglesias, J., Garcia, A.: Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy Environ. Sci. 5, 7393–7420 (2012)

    Article  Google Scholar 

  21. Rajendran, K., Drielak, E., Varma, V.S., Muthusamy, S., Kumar, G.: Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Conver. Biorefin. 8, 471–483 (2017)

    Article  Google Scholar 

  22. Saha, B.C.: Enzymes as Biocatalysts for Conversion of Lignocellulosic Biomass to Fermentable Sugars, in Handbook of Industrial Biocatalysis, C.R.C. Press, pp. 1–12 (2005)

  23. Stocker, M.: Biofuels and biomass-to-biofuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed. Engl. 47, 9200–9211 (2008)

    Article  Google Scholar 

  24. Doran-Peterson, J., Cook, D.M., Brandon, S.K.: Microbial conversion of sugars from plant biomass to lactic acid or ethanol. Plant J. 54, 582–592 (2008)

    Article  Google Scholar 

  25. Edwards, M.C., Henriksen, E.D., Yomano, L.P., Gardner, B.C., Sharma, L.N., Ingram, L.O., Peterson, J.D.: Addition of genes for Cellobiase and Pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich Lignocellulosic biomass. App. Environ. Microbio. 77, 5184–5191 (2011)

    Article  Google Scholar 

  26. Mohen, D.: Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11, 266–277 (2008)

    Article  Google Scholar 

  27. Scheller, H.V., Ulvskov, P.: Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010)

    Article  Google Scholar 

  28. Bajpai, P.: Pretreatment of lignocellulosic biomass for biofuel production: Structure of lignocellulosic biomass, pp 17–70. Springer eBooks (2016)

  29. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., Morgan, T.J.: An overview of the organic and inorganic phase composition of biomass. Fuel. 94, 1–33 (2012)

    Article  Google Scholar 

  30. Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B.: Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29, 675–685 (2011)

    Article  Google Scholar 

  31. Morais, S., Morag, E., Barak, Y., Goldman, D., Hadar, Y., Lamed, R., Shoham, Y., Wilson, D.B., Bayer, E.A.: Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. Microbiology. 3, 1–11 (2012)

    Google Scholar 

  32. Gardner, K., Blackwell, J.: The structure of native cellulose. Biopolymers. 13, 1975–2001 (1974)

    Article  Google Scholar 

  33. Li, X., Hua-jun-Yang, H., Roy, B., Wang, D., Yue, W., Jiang, L., Park, E.Y., Miao, Y.: The most stirring technology in future: Cellulase enzyme and biomass utilization. Afr. J. Biotechnol. 8, 2418–2422 (2009)

    Google Scholar 

  34. VanderHart, D.L., Atalla, R.H.: Studies of microstructure in native celluloses using solid-state carbon-13 N.M.R. Macromolecules. 17, 1465–1472 (1984)

    Article  Google Scholar 

  35. Kuhad, R.C., Singh, A., Eriksson, K.E.L.: Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv. Biochem. Eng. Biotechnol. 57, 45–125 (1997)

    Google Scholar 

  36. Klemm, D., Heublein, B., Fink, H.P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005)

    Article  Google Scholar 

  37. Sorieul, M., Dickson, A., Hill, S.J., Pearson, H.: Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials. 9, 1–36 (2016)

    Article  Google Scholar 

  38. Saha, B.C.: Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279–291 (2003)

    Article  Google Scholar 

  39. Pérez, J., Muñoz-Dorado, J., De-la-Rubia, T., Martínez, J.: Biodegradation and biological treatments of cellulose, hemicelluloses and lignin: an overview. Int. Microbiol. 5, 53–63 (2002)

    Article  Google Scholar 

  40. Xiao, C., Anderson, C.T.: Roles of pectin in biomass yield and processing for biofuels. Frontiers in plant sci. 4(67) (2013)

  41. Liaotrakoon, W., Van Buggenhout, S., Christiaens, S., Houben, K., De Clercq, N., Dewettinck, K., Hendrickx, M.E.: An explorative study on the cell wall polysaccharides in the pulp and peel of dragon fruits (Hylocereus spp.). European Food Res. Technol. 237, 341–351 (2013)

    Article  Google Scholar 

  42. Taboada, E., Fisher, P., Jara, R., Zúñiga, E., Gidekel, M., Cabrera, J.C., Pereira, E., Gutierrez-Moraga, A., Villalonga, R., Cabrera, G.: Isolation and characterization of pectic substances from murta (Ugni molinae Turcz) fruits. Food Chem. 123, 669–678 (2010)

    Article  Google Scholar 

  43. Abid, M., Cheikhrouhou, S., Renard, C.M., Bureau, S., Cuvelier, G., Attia, H., Ayadi, M.A.: Characterization of pectins extracted from pomegranate peel and their gelling properties. Food Chem. 215, 318–325 (2017)

    Article  Google Scholar 

  44. Saulnier, L., Thibault, J.F.: Extraction and characterization of pectic substances from pulp of grape berries. Carbohydr. Polym. 7, 329–343 (1987)

    Article  Google Scholar 

  45. Kulkarni, S.G., Vijayanand, P.: Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel (Passiflora edulis f. flavicarpa L.). LWT-Food Sci. Technol. 43, 1026–1031 (2010)

    Article  Google Scholar 

  46. Femenia, A., Garcia-Conesa, M., Simal, S., Rosselló, C.: Characterisation of the cell walls of loquat (Eriobotrya japonica L.) fruit tissues. Carbohydr. Polym. 35, 169–177 (1998)

    Article  Google Scholar 

  47. Boluda-Aguilar, M., García-Vidal, L., del Pilar González-Castañeda, F., López-Gómez, A.: Mandarin peel wastes pretreatment with steam explosion for bioethanol production. Bioresour. Technol. 101, 3506–3513 (2010)

    Article  Google Scholar 

  48. Hilz, H., Bakx, E.J., Schols, H.A., Voragen, A.G.: Cell wall polysaccharides in black currants and bilberries—characterisation in berries, juice, and press cake. Carbohydr. Polym. 59, 477–488 (2005)

    Article  Google Scholar 

  49. Liang, R.H., Chen, J., Liu, W., Liu, C.M., Yu, W., Yuan, M., Zhou, X.Q.: Extraction, characterization and spontaneous gel-forming property of pectin from creeping fig (Ficus pumila Linn.) seeds. Carbohydr. Polym. 87, 76–83 (2012)

    Article  Google Scholar 

  50. Ridley, B.L., O’Neill, M., Mohen, D.: Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochem. 57, 929–967 (2001)

    Article  Google Scholar 

  51. Coetzee, B., Schols, H.A., Wolfaardt, F.: Determination of pectin content of eucalyptus wood. Holzforschung. 65, 327–331 (2011)

    Article  Google Scholar 

  52. Edwards, M.C., Doran-Peterson, J.: Pectin-rich biomass as feedstock for fuel ethanol production. Appl. Microbiol. Biotechnol. 95, 565–575 (2012)

    Article  Google Scholar 

  53. Marcus, S.E., Verhertbruggen, Y., Herve, C., Ordaz-Ortiz, J.J., Farkas, V., Pedersen, H.L., Willats, W.G., Knox, J.P.: Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol. 8, 60 (2008)

    Article  Google Scholar 

  54. Willats, W.G., Mccartney, L., Mackie, W., Knox, J.P.: Pectin: cell biology and prospects for functional analysis. Plant Mol. Biol. 47, 9–27 (2001)

    Article  Google Scholar 

  55. Pedrolli, D.B., Monteiro, A.C., Gomes, E., Carmona, E.C.: Pectin and pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol. J. 3, 9–18 (2009)

    Article  Google Scholar 

  56. Chen, J., Liu, W., Liu, C.M., Li, T., Liang, R.H., Luo, S.J.: Pectin modifications: a review. Critical reviews in food sci. nutri. 55, 1684–1698 (2015)

    Article  Google Scholar 

  57. Sharma, H.K., Xu, C., Qin, W.: Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz. 10, 235–251 (2019)

    Article  Google Scholar 

  58. Chaturvedi, V., Verma, P.: An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value-added products. 3 Biotech. 3, 415–431 (2013)

    Article  Google Scholar 

  59. Puligundla, P., Oh, S.E., Mok, C.: Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review. Carbon Letters (Carbon Lett.). 17, 1–10 (2016)

    Article  Google Scholar 

  60. Tu, W.C., Hallett, J.P.: Recent advances in the pretreatment of lignocellulosic biomass. Current opinion Green Sustainable Chem. 20, 11–17 (2019)

    Article  Google Scholar 

  61. Kuhad, R.C., Singh, A.: Lignocellulose Biotechnology: Future Prospects, Pp 400. I.K. International Ltd, New Delhi (2007)

    Google Scholar 

  62. Kuhad, R.C., Gupta, R., Singh, A.: Microbial celluloses and their industrial applications. Enzymes Res. 2011, 1–10 (2011)

    Article  Google Scholar 

  63. Mtui, G.Y.S.: Lignocellulolytic enzymes from tropical fungi: types, substrates and applications- review. Scientific Res. Essays. 15, 1544–1555 (2012)

    Google Scholar 

  64. Agrawal, R., Semwal, S., Kumar, R., Mathur, A., Gupta, R.P., Tuli, D.K., Satlewal, A.: Synergistic enzyme cocktail to enhance hydrolysis of steam exploded wheat straw at pilot scale. Front. Energy Res. 6, 122 (2018)

    Article  Google Scholar 

  65. Henrissat, B., Davies, G.: Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637–644 (1997)

    Article  Google Scholar 

  66. Beguin, P., Aubert, J.P.: The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–58 (1994)

    Article  Google Scholar 

  67. Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577 (2002)

    Article  Google Scholar 

  68. Bhat, M.K., Bhat, S.: Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15, 583–620 (1997)

    Article  Google Scholar 

  69. Maki, M., Leung, K.T., Qin, W.: The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5, 500–516 (2009)

    Article  Google Scholar 

  70. Adsul, M., Sandhu, S.K., Singhania, R.R., Gupta, R., Puri, S.K., Mathur, A.: Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme Microbial Technol. 133, 109442 (2020)

    Article  Google Scholar 

  71. Sajith, S., Priji, P., Sreedevi, S., Benjamin, S.: An overview on fungal cellulases with an industrial perspective. J. Nutr. Food Sci. 6, 1–13 (2016)

    Google Scholar 

  72. Sweeney, M.D., Xu, F.: Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts. 2, 244–263 (2012)

    Article  Google Scholar 

  73. Walia, A., Guleria, S., Mehta, P., Chauhan, A., Parkash, J.: Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech. 7, 11 (2017)

    Article  Google Scholar 

  74. Chauhan, P.S., Puri, N., Sharma, P., Gupta, N.: Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl. Microbiol. Biotechnol. 93, 1817–1830 (2012)

    Article  Google Scholar 

  75. Dekker, R.F.H.: Biodegradation of the hemicelluloses. In: Higuchi, T. (ed.) Biosynthesis and Biodegradation of Wood Components, pp. 505–533. Academic Press, New York (1985)

    Chapter  Google Scholar 

  76. Niladevi, K.N.: Ligninolytic Enzymes, in: Biotechnology for Agro-Industrial Residues Utilization, pp. 397–414. Springer, Dordrecht (2009)

    Book  Google Scholar 

  77. Sokan-Adeaga, A.A., Ana, G.R.E.E., Sokan-Adeaga, M.A., Sokan-Adeaga, E.D.: Lignocelluloses: an economical and ecological resource for bio-ethanol production – a review. Intl. J. Natural Resour. Ecology and Management. 1, 128–144 (2016)

    Google Scholar 

  78. Hofrichter, M.: Lignin conversion by manganese peroxidase (MnP). Enzyme Microbio. Technol. 30, 454–466 (2002)

    Article  Google Scholar 

  79. Tian, J.H., Pourcher, A.M., Bouchez, T., Gelhaye, E., Peu, P.: Occurrence of lignin degradation genotypes and phenotypes among prokaryotes- review. Appl. Microbiol. Biotechnol. 98, 9527–9544 (2014)

    Article  Google Scholar 

  80. Heinzkill, M., Bech, L., Halkier, T., Schneider, P., Anke, T.: Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl. Environ. Microbio. 64, 1601–1606 (1998)

    Article  Google Scholar 

  81. Huang, X.F., Santhanam, N., Badri, D.V., Hunter, W.J., Manter, D.K., Decker, S.R., Vivanco, J.M., Reardon, K.F.: Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol. Bioeng. 110, 1616–1626 (2013)

    Article  Google Scholar 

  82. Fisher, A.B., Fong, S.S.: Lignin biodegradation and industrial implications. AIMS Bioeng. 1, 92–112 (2014)

    Article  Google Scholar 

  83. Singh, R., Kumar, M., Mittal, A., Mehta, P.K.: Microbial enzymes: industrial progress in 21st century. 3 Biotech. 6, 1–15 (2016)

    Google Scholar 

  84. Maciel, M.J., Silva, A.C., Ribeiro, H.C.T.: Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electron. J. Biotechnol. 13, 14–15 (2010)

    Google Scholar 

  85. Placido, J., Capareda, S.: Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Biores. Bioprocess. 2, 1–12 (2015)

    Article  Google Scholar 

  86. Lobos, S., Larram, J., Salas, L., Cullen, D., Vicuna, R.: Isoenzymes of manganese dependent peroxidase and laccase produced by the lignin degrading basidiomycete Ceriporiopsis subvermispora. Microbio. 14, 2691–2698 (1994)

    Article  Google Scholar 

  87. Hammel, K.E., Cullen, D.: Role of fungal peroxidases in biological ligninolysis. Curr. Opin. Plant Biol. 11, 349–355 (2008)

    Article  Google Scholar 

  88. Kashyap, D.R., Vohra, P.K., Chopra, S., Tewari, R.: Applications of pectinases in the commercial sector: a review. Bioresour. Technol. 77, 215–227 (2001)

    Article  Google Scholar 

  89. Jayani, R.S., Saxena, S., Gupta, R.: Microbial pectinolytic enzymes: a review. Process Biochem. 40, 2931–2944 (2005)

    Article  Google Scholar 

  90. Garg, G., Singh, A., Kaur, A., Singh, R., Kaur, J., Mahajan, R.: Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech. 6, 47 (2016)

    Article  Google Scholar 

  91. Geetha, M., Saranraj, P., Mahalakshmi, S., Reetha, D.: Screening of pectinase producing bacteria and fungi for its pectinolytic activity using fruit waste. Int. J. Biochem. Biotechnol. Sci. 1, 30–42 (2012)

    Google Scholar 

  92. Pandey, A., Selvakumar, P., Soccol, C.R., Nigam, P.: Solid-state fermentation for the production of industrial enzymes. Curr. Sci. 77, 149–162 (2009)

    Google Scholar 

  93. Grethlein, H.E., Converse, A.O.: Common aspects of acid prehydrolysis and steam explosion for pretreating wood. Bioresour. Technol. 36, 77–82 (1991)

    Article  Google Scholar 

  94. Howard, R.L., Abotsi, E., Jansen-van-Rensburg, E.L., Howard, S.R.: Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2, 602–619 (2003)

    Article  Google Scholar 

  95. Cho, E.J., Trinh, L.T.P., Song, Y., Lee, Y.G., Bae, H.J.: Bioconversion of biomass waste into high value chemicals. Bioresour. Technol. 298, 122386 (2020)

    Article  Google Scholar 

  96. Garcia, A., Gandini, A., Labidi, J., Belgacem, N., Bras, J.: Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind. Crop. Prod. 93, 26–38 (2016)

    Article  Google Scholar 

  97. Liu, X., Duan, X., Wei, W., Wang, S., Ni, B.J.: Photocatalytic conversion of lignocellulosic biomass to valuable products. Green Chem. 21, 4266–4289 (2019)

    Article  Google Scholar 

  98. Kobayashi, F.A.: Synthesis and utilization of sugar compounds derived from lignocellulosic biomass. Green Chem. 15, 1740–1763 (2013)

    Article  Google Scholar 

  99. Werpy, T.A., Petersen, G.: Top value-added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. National Renewable Energy Lab United States (2004). https://doi.org/10.2172/15008859

  100. Bozell, J.J., Petersen, G.R.: Technology development for the production of biobased products from biorefinery carbohydrates-the U.S. Department of Energy’s "top 10" revisited. Green Chem. 12, 539–554 (2010)

    Article  Google Scholar 

  101. Luque, R., Clark, J.H., Yoshida, K.: Gai, PL: efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons. Chem. Comm. 45, 5305–5307 (2009)

    Article  Google Scholar 

  102. Delhomme, C., Weuster-Botz, D., Kuhn, F.E.: Succinic acid from renewable resources as a C4 building-block chemical-a review of the catalytic possibilities in aqueous media. Green Chem. 11, 13–26 (2009)

    Article  Google Scholar 

  103. Nhuan, P.N., Kleff, S., Schwegmann, S.: Review succinic acid: technology development and commercialization. Fermentation. 3, 1–14 (2017)

    Google Scholar 

  104. Mäki-Arvela, P., Simakova, L.I., Salmi, T., Murzin, D.Y.: Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chem. Rev. 114, 1909–1971 (2014)

    Article  Google Scholar 

  105. Kahlich, D., Wiechern, U., Lindner, J.: Propylene Oxide, In Ullmann’s Encyclopedia of Industrial Chemistry, (Ed.). Wiley-VCH (2011). https://doi.org/10.1002/14356007.a22_239.pub2

  106. Alsaheb, R.A.A., Aladdin, A., Othman, N.Z., Malek, R.A., Leng, O.M., Aziz, R., El Enshasy, H.A.: Lactic acid applications in pharmaceutical and cosmeceutical industries. J. Chem. Pharm. Res. 7, 729–735 (2015)

    Google Scholar 

  107. Nee; Nigam, P.S.: Chapter 3: Production of Organic Acids from Agro-Industrial Residues, Book Biotechnology for Agro Industries, pp. 38–58. Springer, New Delhi (2009)

    Google Scholar 

  108. Fernandes, D.R., Rocha, A.S., Mai, E.F., Mota, C.J.A., Teixeira, D.S.A.: Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl. Catal. A: General. 425-426, 199–204 (2012)

    Article  Google Scholar 

  109. Bozell, J.J., Moens, L., Elliott, D.C., Wang, Y., Neuenscwander, G.G., Fitzpatrick, S.W., Bilski, R.J., Jarnefeld, J.L.: Production of levulinic acid and use as a platform chemical for derived products. Resour. Conserv. Recy. 28, 227–239 (2000)

    Article  Google Scholar 

  110. Dutta, S., De, S., Saha, B.: A brief summary of the synthesis of polyester building-block chemicals and biofuels from 5-hydroxymethylfurfural. ChemPlusChem. 77, 259–272 (2012)

    Article  Google Scholar 

  111. Yan, K., Wu, G., Lafleur, T., Jarvis, C.: Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew. Sust. Energ. Rev. 38, 663–676 (2014)

    Article  Google Scholar 

  112. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sadaba, I., Lopez, G.M.: Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Env. Sci. 9, 1144–1189 (2016)

    Article  Google Scholar 

  113. Takkellapati, S., Li, T., Gonzalez, M.A.: An overview of biorefinery derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Techn. Environ. Policy. 20, 1615–1630 (2018)

    Article  Google Scholar 

  114. Van-Putten, R.J., van der Waal, J.C., De Jong, E., Rasrendra, C.B., Heeres, H.J., De Vries, J.G.: Hydroxymethylfurfural: a versatile platform chemical made from renewable resources. Chem. Rev. 113, 1499–1597 (2013)

    Article  Google Scholar 

  115. Bai, R., Zhang, H., Mei, F., Wang, S., Li, T., Gu, Y., Li, G.: One-pot synthesis of glycidol from glycerol and dimethyl carbonate over a highly efficient and easily available solid catalyst NaAlO2. Green Chem. 15, 2929–2934 (2013)

    Article  Google Scholar 

  116. Almeida, J.R., Fávaro, L.C., Quirino, B.F.: Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol. Biofuels. 5, 48 (2012)

    Article  Google Scholar 

  117. Santacesaria, E., Tesser, R., Di Serio, M., Casale, L., Verde, D.: New process for producing Epichlorohydrin via glycerol chlorination. Ind. Eng. Chem. Res. 49, 964–970 (2010)

    Article  Google Scholar 

  118. Pappenberger, G., Hohmann, H.P.: Industrial production of L-ascorbic acid (vitamin C) and D-isoascorbic acid. Adv. Biochem. Eng. Biotechnol. 143, 143–188 (2014)

    Google Scholar 

  119. Parker, J.D., Parker, J.O.: Nitrate therapy for stable angina pectoris. N. Engl. J. Med. 338, 520–531 (1998)

    Article  Google Scholar 

  120. Zhang, J., Li, J., Wu, S.B., Liu, Y.: Advances in catalytic production and utilization of sorbitol. Ind. Eng. Chem. Res. 52, 11799–11815 (2013)

    Article  Google Scholar 

  121. Star-Colibri: Strategic targets for 2020-collaboration initiative on biorefineries: Background information and biorefinery status, potential and Sustainability. https://edepot.wur.nl/158542 (2010). Accessed 18 Mar 2010

  122. Lugani, Y., Oberoi, S., Sooch, B.S.: Xylitol: a sugar substitute for patients of diabetes mellitus. World J. Pharm. Pharm. Sci. 6, 741–749 (2017)

    Google Scholar 

  123. Guo, X., Zhang, R., Li, Z., Dai, D., Li, C., Zhou, X.: A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresour. Technol. 128, 547–552 (2013)

    Article  Google Scholar 

  124. Kim, S.: Evaluation of alkali-pretreated soybean straw for lignocellulosic bioethanol production. Int. J. Polym. Sci. 2018, 1–7 (2018)

    Google Scholar 

  125. Subramani, V., Gangwal, S.K.: A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuel. 22, 814–839 (2008)

    Article  Google Scholar 

  126. Wyman, C.E., Kumar, R., Cai, C.M.: Bioethanol from Lignocellulosic Biomass. U.C. Riverside (2017). https://doi.org/10.1007/978-1-4939-2493-6_521-3

  127. Abubackar, H.N., Veiga, M.C., Kennes, C.: Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod. Biorefin. 5, 93–114 (2011)

    Article  Google Scholar 

  128. Choi, D.W., Chipman, D.C., Bents, S.C., Brown, R.C.: A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl. Biochem. Biotechnol. 160, 1032–1046 (2010)

    Article  Google Scholar 

  129. Misawa, N.: Pathway engineering of plants toward astaxanthin production. Plant Biotechnol. 26, 93–99 (2009)

    Article  Google Scholar 

  130. Jaswir, I., Noviendri, D., Harini, R.F., Octavianti, F.: Carotenoids: sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res. 5, 7119–7131 (2011)

    Google Scholar 

  131. Lou, S.N., Hsu, Y.S., Ho, C.T.: Flavonoid compositions and antioxidant activity of calamondin extracts prepared using different solvents. J. Food and drug Analysis. 22, 290–295 (2014)

    Article  Google Scholar 

  132. Bradshaw, H.D., Schemske, D.W.: Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature. 426, 176–178 (2003)

    Article  Google Scholar 

  133. Saini, A., Panesar, P.S., Bera, M.B.: Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions based delivery system. Biores. Bioprocess. 6, 1–12 (2019)

    Article  Google Scholar 

  134. Minatel, O., Borges, C.V., Ferreira, M.I., Gomez, H.A.G., Chen, C.Y.O., Lima, G.P.P.: Phenolics compounds: Functional properties, impact of processing and bioavailability- In Phenolic compounds- biological activity (2017). https://doi.org/10.5772/66368

  135. Wang, C., Kelley, S.S., Venditti, R.A.: Lignin-based thermoplastic materials. ChemSusChem. 9, 770–783 (2016)

    Article  Google Scholar 

  136. Potočnik, J.: Renewable energy sources and the realities of setting an energy agenda. Science. 315, 810–811 (2007)

    Article  Google Scholar 

  137. Scacchi, C.C.O., Gonzalez-Garcia, S., Caserini, S., Rigamonti, L.: Greenhouse gases emissions and energy use of wheat grain-based bioethanol fuel blends. Sci. Total Environ. 21, 5010–5018 (2010)

    Article  Google Scholar 

  138. Wang, S., Dai, G., Yang, H., Luo, Z.: Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog. Energy Combust. Sci. 62, 33–86 (2017)

    Article  Google Scholar 

  139. Rosenbaum, M., He, Z., Angenent, L.T.: Light energy to bioelectricity: photosynthetic microbial fuel cells. Current Opinion in Biotechnol. 21, 259–264 (2010)

    Article  Google Scholar 

  140. Velasquez-Orta, S.B., Curtis, T.P., Logan, B.E.: Energy from algae using microbial fuel cells. Biotechnol. Bioeng. 103, 1068–1076 (2009)

    Article  Google Scholar 

  141. Rashid, N., Cui, Y.F., Rehman, M.S.U., Han, J.I.: Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci. Total Environ. 456-457, 91–97 (2013)

    Article  Google Scholar 

  142. Ren, Z., Ward, T.E., Regan, J.M.: Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ. Sci. Technol. 41, 4781–4786 (2007)

    Article  Google Scholar 

  143. Gujjala, L.K., Kumar, S.J., Talukdar, B., Dash, A., Kumar, S., Sherpa, K.C., Banerjee, R.: Biodiesel from oleaginous microbes: opportunities and challenges. Biofuels. 10, 45–59 (2019)

    Article  Google Scholar 

  144. Yousuf, A.: Biodiesel from lignocellulosic biomass–prospects and challenges. Waste Manag. 32, 2061–2067 (2012)

    Article  Google Scholar 

  145. Thushari, I., Babel, S.: Biodiesel production from waste palm cooking oil using solid acid catalyst derived from coconut meal residue. Waste Biomass Valor. 11, 4941–4956 (2020)

    Article  Google Scholar 

  146. Vanarasi, P., Singh, P., Auer, M., Adams, P.D., Simmons, B.A., Singh, S.: Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnol. Biofuels. 6, 1–9 (2013)

    Article  Google Scholar 

  147. Agrawal, A., Kaushik, N., Biswas, S.: Derivatives and applications of lignin – an insight – review article. The Scitech. 1, 2348–2311 (2014)

    Google Scholar 

  148. Bozell, J.J., Holladay, J.E., Johnson, D., White, D.F.: Top Value-Added Candidates from Biomass, Volume II: Results of Screening for Potential Candidates from Biorefinery Lignin, pp. 48–77. Pacific Northwest National Laboratory, Springfield (2007)

    Google Scholar 

  149. Ritala, A., Häkkinen, S.T., Toivari, M., Wiebe, M.G.: Single cell protein—state-of-the-art, industrial landscape and patents 2001-2016. Front. Microbiol. 8, 2009 (2017)

    Article  Google Scholar 

  150. Mondal, A.K., Sengupta, S., Bhowal, J., Bhattacharya, D.K.: Utilization of fruit wastes in producing single cell protein. Int. J. Environ. Sci. Technol. 1, 430–438 (2012)

    Google Scholar 

  151. Anupama, R.P.: Value-added food: single cell protein. Biotechnol. Adv. 18, 445–479 (2000)

    Article  Google Scholar 

  152. Turnbull, W.H., Leeds, A.R., Edwards, G.D.: Mycoprotein reduces blood lipids in free-living subjects. Am. J. Clin. Nutr. 55, 415–419 (1992)

    Article  Google Scholar 

  153. NSF.: Breaking the chemical and engineering barriers to lignocellulosic biofuels: Next generation hydrocarbon biorefineries. Ed. George W. Huber, University of Massachusetts Amherst, pp 180. National Science Foundation, Chemical, Bioengineering, Environmental, and Transport Systems Division, Washington DC (2008)

  154. Meyer, S., Glaser, B., Quicker, P.: Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ. Sci. Technol. 45, 9473–9483 (2011)

    Article  Google Scholar 

  155. Srinivasan, P., Sarmah, K.A., Smernik, R., Das, O., Farid, M., Gao, W.: A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposites feedstock: production, characterization and potential applications. Sci. Total Environ. 512-513, 495–505 (2015)

    Article  Google Scholar 

  156. Xiao, X., Chen, B., Chen, Z., Zhu, L., Schnoor, L.J.: Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environ. Sci. Technol. 52, 5027–5047 (2018)

    Article  Google Scholar 

  157. Yang, D.J., Li, H., Qin, Y.L., Zhong, R.S., Bai, M.X., Qiu, X.Q.: Structure and properties of sodium lignosulfonate with different molecular weight used as dye dispersant. J. Dispers. Sci. Technol. 36, 532–539 (2015)

    Article  Google Scholar 

  158. Qin, Y., Lin, X., Lu, Y., Wu, S., Yang, D., Qiu, X., Fang, Y., Wang, T.: Preparation of a low reducing effect sulfonatd alkali lignin and application as dye dispersant. Polymers. 10, 982 (2018)

    Article  Google Scholar 

  159. Qiu, X., Yu, J., Yang, J., Mo, W., Qian, Y.: Whitening sulfonated alkali lignin via H2O2/UV radiation and its application as dye dispersant. ACS Sustain. Chem. Eng. 6, 1055–1060 (2018)

    Article  Google Scholar 

  160. Bacakova, L., Pajorova, J., Bacakova, M., Skogberg, A., Kallio, P., Kolarova, K., Svorcik, V.: Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing. Nanomaterials. 9, 1–39 (2019)

    Article  Google Scholar 

  161. de Souza, A.P., Grandis, A., Leite, D.C., Buckeridge, M.S.: Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenergy Res. 7, 24–35 (2014)

    Article  Google Scholar 

  162. Emaga, T.H., Robert, C., Ronkart, S.N., Wathelet, B., Paquot, M.: Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresour. Technol. 99, 4346–4354 (2008)

    Article  Google Scholar 

  163. Rabemanolontsoa, H., Saka, S.: Comparative study on chemical composition of various biomass species. RSC Adv. 3, 3946–3956 (2013)

    Article  Google Scholar 

  164. Bhushan, S., Kalia, K., Sharma, M., Singh, B., Ahuja, P.S.: Processing of apple pomace for bioactive molecules. Crit. Rev. Biotechnol. 28, 285–296 (2008)

    Article  Google Scholar 

  165. Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A.F., Arora, A.: Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chem. 225, 10–22 (2017)

    Article  Google Scholar 

  166. Zheng, Y.X., Wang, Y.L., Pan, J., Zhang, J.R., Dai, Y., Chen, K.Y.: Semi-continuous production of high-activity pectinases by immobilized Rhizopus oryzae using tobacco wastewater as substrate and their utilization in the hydrolysis of pectin-containing lignocellulosic biomass at high solid content. Biores.Technol. 241, 1138–1144 (2017)

    Article  Google Scholar 

  167. Wang, J., Chio, C., Chen, X., Su, E., Cao, F., Jin, Y., Qin, W.: Efficient saccharification of agave biomass using Aspergillus niger produced low-cost enzyme cocktail with hyperactive pectinase activity. Bioresour. Technol. 272, 26–33 (2019)

    Article  Google Scholar 

  168. Di-Blasi, C., Branca, C., Galgano, A.: Biomass screening for the production of furfural via thermal decomposition. Ind. Eng. Chem. Res. 49, 2658–2671 (2010)

    Article  Google Scholar 

  169. Thite, V.S., Nerurkar, A.S.: Physicochemical characterization of pectinase activity from Bacillus spp. and their accessory role in synergism with crude xylanase and commercial cellulase in enzyme cocktail mediated saccharification of agrowaste biomass. J. applied microbio. 124, 1147–1163 (2018)

    Article  Google Scholar 

  170. Rahimi, S., Hasanloo, T.: The effect of temperature and pH on biomass and bioactive compound production in Silybum marianum hairy root cultures. Res. J. Pharmacognosy. 3, 53–59 (2016)

    Google Scholar 

  171. Lee, M.J., Son, K.H., Oh, M.M.: Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Horticul. Environ. Biotechnol. 57, 139–147 (2016)

    Article  Google Scholar 

  172. Nitsos, C., Matsakas, L., Triantafyllidis, K., Rova, U., Christakopoulos, P.: Investigation of different pretreatment methods of Mediterranean-type ecosystem agricultural residues: characterisation of pretreatment products, high-solids enzymatic hydrolysis and bioethanol production. Biofuels. 9, 545–558 (2018)

    Article  Google Scholar 

  173. Schmidt, L.M., Mthembu, L.D., Reddy, P., Deenadayalu, N., Kaltschmitt, M., Smirnova, I.: Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment. Indus. crops products. 99, 172–178 (2017)

    Article  Google Scholar 

  174. Tao, P., Zhang, Y., Wu, Z., Liao, X., Nie, S.: Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: transition of cellulose crystal structure. Carbohydr. Polym. 214, 1–7 (2019)

    Article  Google Scholar 

Download references

Funding

No funding was provided for this review.

Author information

Authors and Affiliations

Authors

Contributions

SS did the major contribution in writing the manuscript, A.L.M.K. did proofread, and all authors have helped in writing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wensheng Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, S., Kognou, A.L.M., Zhang, J. et al. Different Facets of Lignocellulosic Biomass Including Pectin and Its Perspectives. Waste Biomass Valor 12, 4805–4823 (2021). https://doi.org/10.1007/s12649-020-01305-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01305-w

Keywords

Navigation