Skip to main content

Advances in Lignocellulosic Biomass Pretreatment Strategies

  • Chapter
  • First Online:
Advanced Energy Technologies and Systems I

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 395))

Abstract

The modern world visualizes the achievement of sustainable development goals by 2030 and hence, the idea of sustainable biorefinery has gained immense attention of researchers globally. One of the most abundant organic resources worldwide is the lignocellulosic biomass. Being a promising source of renewable energy, it offers a wide range of benefits due to its environment-friendly nature, ease of availability and affordability. Three fractions make up the lignocellulosic biomass-cellulose, hemicelluloses and lignin, making it a recalcitrant structure. To convert this lignocellulosic biomass into value-added products demand the disruption of its recalcitrant structure via pretreatment methods with acidic, alkaline and combined acidic-alkaline treatments being the common techniques in practice. However, the conventional pretreatment methods available are costly, consume heat as well as power, and produce a variety of secondary inhibitory compounds. These compounds hamper the accessibility of polysaccharides to the microbes and enzymes. There is a dire need to discover effective pretreatment strategies and their optimization in a way that overcomes the obstacles of operational costs, energy consumption and ensures efficiency and enhanced production of fermentable sugars. However, to make it applicable for industrial adaptation still remains a vague domain. This chapter provides an insight on the recent advances in the lignocellulosic biomass pretreatment strategies, along with an exclusive discussion and comparative study of their efficacy based on the composition of different feedstock materials. This analysis would be a doorway for the development of sustainable energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, B., Yang, T., Li, R., & Kai, X.: Co-generation of liquid biofuels from lignocellulose by integrated biochemical and hydrothermal liquefaction process. Energy, 200, 117524 (2020)

    Google Scholar 

  2. Vu, H.P., Nguyen, L.N., Vu, M.T., Johir, M.A.H., McLaughlan, R., Nghiem, L.D.: (2020). A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Sci. Total Environ. 743, 140630 (2004)

    Google Scholar 

  3. Yan, C.W., Sankaran, R., Loke, S.P., Nilam, T., Wayne, C.K., Culaba, A., Chang, J.S.: Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res. J. 25, 1115–1127 (2020)

    Google Scholar 

  4. Den, W., Sharma, V.K., Lee, M., Nadadur, G., Varma, R.S.: Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals. Front. Chem. 6, 141 (2018)

    Article  Google Scholar 

  5. Bhatia, S.K., Gurav, R., Choi, T.R., Jung, H.R., Yang, S.Y., Moon, Y.M., Yang, Y.H.: Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Biores. Technol. 271, 306–315 (2019)

    Article  Google Scholar 

  6. Dahmen, N., Lewandowski, I., Zibek, S., Weidtmann, A.: Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives. GCB Bioenergy 11(1), 107–117 (2019)

    Article  Google Scholar 

  7. Mapemba, L.D., Epplin, F.M.: Lignocellulosic Biomass Harvest and Delivery Cost (No. 1364-2016-108017)

    Google Scholar 

  8. Ahorsu, R., Medina, F., Constantí, M.: Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: a review. Energies 11(12), 3366 (2018)

    Article  Google Scholar 

  9. Hamaguchi, M., Kautto, J., Vakkilainen, E.: Effects of hemicellulose extraction on the kraft pulp mill operation and energy use: Review and case study with lignin removal. Chem. Eng. Res. Des. 91(7), 1284–1291 (2013)

    Article  Google Scholar 

  10. Patel, A.K., Singhania, R.R., Sim, S.J., Pandey, A.: Thermostable cellulases: current status and perspectives. Biores. Technol. 279, 385–392 (2019)

    Article  Google Scholar 

  11. Bhatia, S.K., Gurav, R., Choi, T.R., Han, Y.H., Park, Y.L., Park, J.Y., Yang, Y.H.: Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01. Bioresour. Technol. 289, 121704 (2019)

    Google Scholar 

  12. Meng, X., Bhagia, S., Wang, Y., Zhou, Y., Pu, Y., Dunlap, J.R., Yoo, C.G.: Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Ind. Crops Products, 146, 112144 (2020)

    Google Scholar 

  13. Padilla-Rascón, C., Ruiz, E., Romero, I., Castro, E., Oliva, J.M., Ballesteros, I., Manzanares, P.: Valorisation of olive stone by-product for sugar production using a sequential acid/steam explosion pretreatment. Ind. Crops Products, 148, 112279 (2020)

    Google Scholar 

  14. Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., Mohammadi, A.A.: Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy, 199, 117457 (2020)

    Google Scholar 

  15. Sorn, V., Chang, K.L., Phitsuwan, P., Ratanakhanokchai, K., Dong, C.D.: Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresour. Technol. 293, 121929 (2019)

    Google Scholar 

  16. Lyu, H., Zhang, J., Zhou, J., Shi, X., Lv, C., Geng, Z.: A subcritical pretreatment improved by self-produced organic acids to increase xylose yield. Fuel Process. Technol. 195, 106148 (2019)

    Google Scholar 

  17. Bhatia, S.K., Jagtap, S.S., Bedekar, A.A., Bhatia, R.K., Patel, A.K., Pant, D. Yang, Y.H.: Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour. Technol. 300, 122724 (2020)

    Google Scholar 

  18. Shen, J., Zhang, J., Wang, W., Liu, G., Chen, C.: Assessment of pretreatment effects on anaerobic digestion of switchgrass: economics-energy-environment (3E) analysis. Ind. Crops Products, 145, 111957 (2020)

    Google Scholar 

  19. Saini, R., Hegde, K., Brar, S.K., Vezina, P.: Advanced biofuel production and road to commercialization: an insight into bioconversion potential of Rhodosporidium sp. Biomass Bioenergy, 132, 105439 (2020)

    Google Scholar 

  20. Siqueira, J.G.W., Rodrigues, C., de Souza Vandenberghe, L.P., Woiciechowski, A.L., Soccol, C.R.: Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenergy, 132, 105419 (2020)

    Google Scholar 

  21. Seidl, P.R., Goulart, A.K.: Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Curr. Opin. Green Sustain. Chem. 2, 48–53 (2016)

    Article  Google Scholar 

  22. Dibyajyoti, H., Purkait, M.K.: A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: mechanistic insight and advancements. Chemosphere, 264(Part 2) (2021)

    Google Scholar 

  23. Abraham, A., Mathew, A.K., Park, H., Choi, O., Sindhu, R., Parameswaran, B., Sang, B.I.: Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresour. Technol. 301, 122725 (2020)

    Google Scholar 

  24. Lee, B.M., Lee, J.Y., Kang, P.H., Hong, S.K., Jeun, J.P.: Improved pretreatment process using an electron beam for optimization of glucose yield with high selectivity. Appl. Biochem. Biotechnol. 174(4), 1548–1557 (2014)

    Article  Google Scholar 

  25. Kumar, A.K., Sharma, S.: Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4(1), 1–19 (2017)

    Article  Google Scholar 

  26. Amin, F.R., Khalid, H., Zhang, H., Rahman, S., Zhang, R., Liu, G., Chen, C.: Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7(1), 1–12 (2017)

    Article  Google Scholar 

  27. Prasad, A., Sotenko, M., Blenkinsopp, T., Coles, S.R.: Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production. Int. J. Life Cycle Assess. 21(1), 44–50 (2016)

    Article  Google Scholar 

  28. Jędrzejczyk, M., Soszka, E., Czapnik, M., Ruppert, A.M., Grams, J.: Physical and chemical pretreatment of lignocellulosic biomass. In: Second and Third Generation of Feedstocks, pp. 143–196. Elsevier

    Google Scholar 

  29. Zheng, J., Rehmann, L.: Extrusion pretreatment of lignocellulosic biomass: a review. Int. J. Mol. Sci. 15(10), 18967–18984 (2014)

    Article  Google Scholar 

  30. Kumar, A., Kumar, J., Bhaskar, T.: Utilization of lignin: a sustainable and eco-friendly approach. J. Energy Inst. 93(1), 235–271 (2020)

    Article  Google Scholar 

  31. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Biores. Technol. 96(6), 673–686 (2005)

    Article  Google Scholar 

  32. Taylor, M.J., Alabdrabalameer, H.A., Skoulou, V.: Choosing physical, physicochemical and chemical methods of pre-treating lignocellulosic wastes to repurpose into solid fuels. Sustainability 11(13), 3604 (2019)

    Article  Google Scholar 

  33. Wang, D., Yan, L., Ma, X., Wang, W., Zou, M., Zhong, J., Liu, D.: Ultrasound promotes enzymatic reactions by acting on different targets: enzymes, substrates and enzymatic reaction systems. Int. J. Biol. Macromol. 119, 453–461 (2018)

    Article  Google Scholar 

  34. Velmurugan, R., Muthukumar, K.: Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: optimization through response surface methodology. Biores. Technol. 112, 293–299 (2012)

    Article  Google Scholar 

  35. Yachmenev, V., Condon, B., Klasson, T., Lambert, A.: Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J. Biobased Mater. Bioenergy 3(1), 25–31 (2009)

    Article  Google Scholar 

  36. Bussemaker, M.J., Zhang, D.: Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind. Eng. Chem. Res. 52(10), 3563–3580 (2013)

    Article  Google Scholar 

  37. Meneses, D.B., de Oca-Vásquez, G.M., Vega-Baudrit, J.R., Rojas-Álvarez, M., Corrales-Castillo, J., Murillo-Araya, L.C.: Pretreatment methods of lignocellulosic wastes into value-added products: recent advances and possibilities. Biomass Convers. Biorefinery 1–18 (2020)

    Google Scholar 

  38. Hassan, S.S., Williams, G.A., Jaiswal, A.K.: Emerging technologies for the pretreatment of lignocellulosic biomass. Biores. Technol. 262, 310–318 (2018)

    Article  Google Scholar 

  39. Chen, Y., Stevens, M.A., Zhu, Y., Holmes, J., Xu, H.: Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol. Biofuels 6(1), 1–10 (2013)

    Article  Google Scholar 

  40. Kim, J.S., Lee, Y.Y., Kim, T.H.: A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Biores. Technol. 199, 42–48 (2016)

    Article  Google Scholar 

  41. Sahoo, D., Ummalyma, S.B., Okram, A.K., Pandey, A., Sankar, M., Sukumaran, R.K.: Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Biores. Technol. 253, 252–255 (2018)

    Article  Google Scholar 

  42. Solarte-Toro, J.C., Romero-García, J.M., Martínez-Patiño, J.C., Ruiz-Ramos, E., Castro-Galiano, E., Cardona-Alzate, C.A.: Acid pretreatment of lignocellulosic biomass for energy vectors production: a review focused on operational conditions and techno-economic assessment for bioethanol production. Renew. Sustain. Energy Rev. 107, 587–601 (2019)

    Article  Google Scholar 

  43. Lenihan, P., Orozco, A., O’neill, E., Ahmad, M.N.M., Rooney, D.W., Walker, G.M.: Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 156(2), 395403 (2010)

    Google Scholar 

  44. Morais, A.R., da Costa Lopes, A.M., Bogel-Łukasik, R.: Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem. Rev. 115(1), 3–27 (2015)

    Article  Google Scholar 

  45. Singh, S.: Designing tailored microbial and enzymatic response in ionic liquids for lignocellulosic biorefineries. Biophys. Rev. 10(3), 911–913 (2018)

    Article  Google Scholar 

  46. Socha, A.M., Parthasarathi, R., Shi, J., Pattathil, S., Whyte, D., Bergeron, M., Singh, S.: Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc. Natl. Acad. Sci. 111(35), E3587–E3595 (2014)

    Article  Google Scholar 

  47. Brandt, A., Ray, M.J., To, T.Q., Leak, D.J., Murphy, R.J., Welton, T.: Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem. 13(9), 2489–2499 (2011)

    Article  Google Scholar 

  48. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 1, 70–71 (2003)

    Article  Google Scholar 

  49. Francisco, M., van den Bruinhorst, A., Kroon, M.C.: New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem. 14(8), 2153–2157 (2012)

    Article  Google Scholar 

  50. Tan, Y.T., Chua, A.S.M., Ngoh, G.C.: Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products–a review. Bioresour. Technol. 297, 122522 (2020)

    Google Scholar 

  51. Keating, D.H., Zhang, Y., Ong, I.M., McIlwain, S., Morales, E.H., Grass, J.A., Landick, R.: Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification. Front. Microbiol. 5, 402 (2014)

    Article  Google Scholar 

  52. Meng, X., Parikh, A., Seemala, B., Kumar, R., Pu, Y., Christopher, P., Ragauskas, A.J.: Chemical transformations of poplar lignin during cosolvent enhanced lignocellulosic fractionation process. ACS Sustain. Chem. Eng. 6(7), 8711–8718 (2018)

    Article  Google Scholar 

  53. Petridis, L., Smith, J.C.: Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nat. Rev. Chem. 2(11), 382–389 (2018)

    Article  Google Scholar 

  54. Nguyen, T.Y., Cai, C.M., Kumar, R., Wyman, C.E.: Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. Chemsuschem 8(10), 1716–1725 (2015)

    Article  Google Scholar 

  55. Zhang, K., Pei, Z., Wang, D.: Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Biores. Technol. 199, 21–33 (2016)

    Article  Google Scholar 

  56. Kumari, D., Singh, R.: Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew. Sustain. Energy Rev. 90, 877–891 (2018)

    Article  Google Scholar 

  57. Park, J., Shin, H., Yoo, S., Zoppe, J.O., Park, S.: Delignification of lignocellulosic biomass and its effect on subsequent enzymatic hydrolysis. BioResources 10(2), 2732–2743 (2015)

    Article  Google Scholar 

  58. Duque, A., Manzanares, P., Ballesteros, I., Ballesteros, M.: Steam explosion as lignocellulosic biomass pretreatment. In: Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, pp. 349–368 (2016)

    Google Scholar 

  59. Rathnam, V.M., Madras, G.: Conversion of Shizochitrium limacinum microalgae to biodiesel by non-catalytic transesterification using various supercritical fluids. Bioresour. Technol. 288, 121538 (2019)

    Google Scholar 

  60. Serna, L.D., Alzate, C.O., Alzate, C.C.: Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Biores. Technol. 199, 113–120 (2016)

    Article  Google Scholar 

  61. Dias, A.L.B., dos Santos, P., Martinez, J.: Supercritical CO2 technology applied to the production of flavor ester compounds through lipase-catalyzed reaction: a review. J. CO2 Util. 23, 159–178 (2018)

    Google Scholar 

  62. Zabed, H.M., Akter, S., Yun, J., Zhang, G., Awad, F.N., Qi, X., Sahu, J.N.: Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sustain. Energy Rev. 105, 105–128 (2019)

    Article  Google Scholar 

  63. Sendich, E.D., Dale, B.E., Kim, S.: Comparison of crop and animal simulation options for integration with the biorefinery. Biomass Bioenerg. 32(12), 1162–1174 (2008)

    Article  Google Scholar 

  64. Wyman, C.E.B.E., Dale, R.T., Elander, M., zapple, H., Ladiseh, M.R., Lee, Y.Y.: Bioresour. Technol. 96, 1959–1966 (2005)

    Google Scholar 

  65. Tsubaki, S., Oono, K., Onda, A., Yanagisawa, K., Azuma, J.I.: Microwave-assisted hydrothermal hydrolysis of cellobiose and effects of additions of halide salts. Biores. Technol. 123, 703–706 (2012)

    Article  Google Scholar 

  66. Pellera, F.M., Gidarakos, E.: Microwave pretreatment of lignocellulosic agroindustrial waste for methane production. J. Environ. Chem. Eng. 5(1), 352–365 (2017)

    Article  Google Scholar 

  67. Bajpai, P.: Pretreatment of Lignocellulosic Biomass for Biofuel Production, p. 87. Springer Singapore, Singapore (2016)

    Google Scholar 

  68. Guo, X., Zhang, T., Shu, S., Zheng, W., Gao, M.: Compositional and structural changes of corn cob pretreated by electron beam irradiation. ACS Sustain. Chem. Eng. 5(1), 420–425 (2017)

    Article  Google Scholar 

  69. Lee, H.V., Hamid, S.B.A., Zain, S.K.: Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci. World J. (2014)

    Google Scholar 

  70. Liu, Y., Zhou, H., Wang, S., Wang, K., Su, X.: Comparison of γ-irradiation with other pretreatments followed with simultaneous saccharification and fermentation on bioconversion of microcrystalline cellulose for bioethanol production. Biores. Technol. 182, 289–295 (2015)

    Article  Google Scholar 

  71. Titirici, M.M., Funke, A., Kruse, A.: Hydrothermal carbonization of biomass. In: Recent Advances in Thermo-chemical Conversion of Biomass, pp. 325–352. Elsevier

    Google Scholar 

  72. Donohoe, B.S., Decker, S.R., Tucker, M.P., Himmel, M.E., Vinzant, T.B.: Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng. 101(5), 913–925 (2008)

    Article  Google Scholar 

  73. Dai, L., Zhou, N., Li, H., Deng, W., Cheng, Y., Wang, Y., Ruan, R.: Recent advances in improving lignocellulosic biomass-based bio-oil production. J. Anal. Appl.Pyrol. 104845 (2020)

    Google Scholar 

  74. Ruiz, H.A., Conrad, M., Sun, S.N., Sanchez, A., Rocha, G.J., Romaní, A., Meyer, A.S.: Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour. Technol. 299, 122685 (2020)

    Google Scholar 

  75. Reza, M.T., Rottler, E., Herklotz, L., Wirth, B.: Hydrothermal carbonization (HTC) of wheat straw: Influence of feedwater pH prepared by acetic acid and potassium hydroxide. Biores. Technol. 182, 336–344 (2015)

    Article  Google Scholar 

  76. Funke, A., Ziegler, F.: Heat of reaction measurements for hydrothermal carbonization of biomass. Biores. Technol. 102(16), 7595–7598 (2011)

    Article  Google Scholar 

  77. Binod, P., Janu, K.U., Sindhu, R., Pandey, A.: Hydrolysis of lignocellulosic biomass for bioethanol production. In: Biofuels, pp. 229–250. Academic press (2011)

    Google Scholar 

  78. Liu, F., Monroe, E., Davis, R.W.: Engineering microbial consortia for bioconversion of multisubstrate biomass streams to biofuels. In: Biofuels-Challenges and Opportunities. IntechOpen (2019)

    Google Scholar 

  79. Darabzadeh, N., Hamidi-Esfahani, Z., Hejazi, P.: Optimization of cellulase production under solid-state fermentation by a new mutant strain of Trichoderma reesei. Food Sci. Nutr. 7(2), 572–578 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Mukhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qadoos, K., Nawaz, A., Mukhtar, H. (2022). Advances in Lignocellulosic Biomass Pretreatment Strategies. In: Zaporozhets, A. (eds) Advanced Energy Technologies and Systems I. Studies in Systems, Decision and Control, vol 395. Springer, Cham. https://doi.org/10.1007/978-3-030-85746-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85746-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85745-5

  • Online ISBN: 978-3-030-85746-2

  • eBook Packages: Intelligent Technologies and Robotics

Publish with us

Policies and ethics