Skip to main content
Log in

One-Electron Reduction of 6-Hydroxydopamine Quinone is Essential in 6-Hydroxydopamine Neurotoxicity

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

6-Hydroxydamine has widely been used as neurotoxin in preclinical studies related on the neurodegenerative process of dopaminergic neurons in Parkinson’s disease based on its ability to be neurotoxic as a consequence of free radical formation during its auto-oxidation to topaminequinone. We report that 50-µM 6-hydroxydopamine is not neurotoxic in RCSN-3 cells derived from substantia nigra incubated during 24 h contrasting with a significant sixfold increase in cell death (16 ± 2 %; P < 0.001) was observed in RCSN-3NQ7 cells expressing a siRNA against DT-diaphorase that silence the enzyme expression. To observe a significant cell death in RCSN-3 cells induced by 6-hydroxydopamine (24 ± 1 %; P < 0.01), we have to increase the concentration to 250 μm while a 45 ± 2 % cell death (P < 0.001) was observed at this concentration in RCSN-3NQ7 cells. The cell death induced by 6-hydroxydopamine in RCSN-3NQ7 cells was accompanied with a (i) significant increase in oxygen consumption (P < 0.01), (ii) depletion of reduced glutathione and (iii) a significant decrease in ATP level (P < 0.05) in comparison with RCSN-3 cells. In conclusion, our results suggest that one-electron reduction of 6-hydroxydopamine quinone seems to be the main reaction responsible for 6-hydroxydopamine neurotoxic effects in dopaminergic neurons and DT-diaphorase seems to play an important neuroprotective role by preventing one-electron reduction of topaminequinone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arriagada A, Paris I, Sanchez de las Matas MJ, Cardenas S, Castañeda P, Graumann R, Perez-Pastene C, Olea-Azar C, Couve E, Herrero MT, Caviedes P, Segura-Aguilar J (2004) On the neurotoxicity of leukoaminochrome o-semiquinone radical derived of dopamine oxidation: mitochondria damage, necrosis and hydroxyl radical formation. Neurobiol Dis 16:468–477

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Gomez FJ, Pastor MD, Garcia-Martinez EM, Melero-Fernandez de Mera R, Gou-Fabregas M, Gomez-Lazaro M, Calvo S, Soler RM, Galindo MF, Jordán J (2006) Pyruvate protects cerebellar granular cells from 6-hydroxydopamine-induced cytotoxicity by activating the Akt signaling pathway and increasing glutathione peroxidase expression. Neurobiol Dis 24(2):296–307

    Article  PubMed  CAS  Google Scholar 

  • Fuentes P, Paris I, Nassif M, Caviedes P, Segura-Aguilar J (2007) Inhibition of VMAT-2 and DT-Diaphorase induce cell death in a substantia nigra-derived cell line-an experimental cell model for dopamine toxicity studies. Chem Res Toxicol 20:776–783

    Article  PubMed  CAS  Google Scholar 

  • Gee P, Davison AJ (1984) 6-hydroxydopamine does not reduce molecular oxygen directly, but requires a coreductant. Arch Biochem Biophys 231:164–168

    Article  PubMed  CAS  Google Scholar 

  • Glinka Y, Gassen M, Youdim MB (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl 50:55–66

    Article  PubMed  CAS  Google Scholar 

  • Gregorio ML, Wietzikoski EC, Ferro MM, Silveira JL, Vital MA, Da Cunha C (2009) Nicotine induces sensitization of turning behavior in 6-hydroxydopamine lesioned rats. Neurotox Res 15:359–366

    Article  PubMed  CAS  Google Scholar 

  • Hara H, Ohta M, Ohta K, Kuno S, Adachi T (2003) Increase of antioxidative potential by tert-butylhydroquinone protects against cell death associated with 6-hydroxydopamine-induced oxidative stress in neuroblastoma SH-SY5Y cells. Brain Res Mol Brain Res 119:125–131

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG (2000) Metabolic control: a new solution to an old problem. Curr Biol 10:757–759

    Article  Google Scholar 

  • Heikkila R, Cohen G (1971) Inhibition of biogenic amine uptake by hydrogen peroxide: a mechanism for toxic effects of 6-hydroxydopamine. Science 172:1257–1258

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Cohen G (1973) 6-Hydroxydopamine: evidence for superoxide radical as an oxidative intermediate. Science 181:456–457

    Article  PubMed  CAS  Google Scholar 

  • Jia Z, Zhu H, Misra HP, Li Y (2008) Potent induction of total cellular GSH and NQO1 as well as mitochondrial GSH by 3H-1,2-dithiole-3-thione in SH-SY5Y neuroblastoma cells and primary human neurons: protection against neurocytotoxicity elicited by dopamine, 6-hydroxydopamine, 4-hydroxy-2-nonenal, or hydrogen peroxide. Brain Res 1197:159–169

    Article  PubMed  CAS  Google Scholar 

  • Kasture S, Pontis S, Pinna A, Schintu N, Spina L, Longoni R, Simola N, Ballero M, Morelli M (2009) Assessment of symptomatic and neuroprotective efficacy of mucuna pruriens seed extract in rodent model of Parkinson’s disease. Neurotox Res 15:111–122

    Article  PubMed  Google Scholar 

  • LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11:1159–1161

    Article  Google Scholar 

  • Lozano J, Muñoz P, Nore BF, Ledoux S, Segura-Aguilar J (2010) Stable expression of short interfering RNA for DT-diaphorase induces neurotoxicity. Chem Res Toxicol 3:1492–1496

    Article  Google Scholar 

  • Martí MC, Florez-Sarasa I, Camejo D, Pallol B, Ortiz A, Ribas-Carbó M, Jiménez A, Sevilla F (2012) Response of mitochondrial antioxidant system and respiratory pathways to reactive nitrogen species in pea leaves. Physiol Plant. doi:10.1111/j.1399-3054.2012.01654.x

    PubMed  Google Scholar 

  • Muñoz P, Huenchuguala S, Paris I, Cuevas C, Villa M, Caviedes P, Segura-Aguilar J, Tizabi Y (2012a) Protective effects of nicotine against aminochrome-induced toxicity in substantia nigra derived cells: implications for Parkinson’s disease. Neurotox Res 22:177–180

    Article  PubMed  Google Scholar 

  • Muñoz P, Paris I, Sanders LH, Greenamyre JT, Segura-Aguilar J (2012b) Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochim Biophys Acta 1822:1125–1136

    Article  PubMed  Google Scholar 

  • Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J (2012c) Dopamine oxidation and autophagy. Parkinsons Dis. 2012:920953. Epub 26 Aug 2012

  • Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H, Lee VM (2005) Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 280:21212–21219

    Article  PubMed  CAS  Google Scholar 

  • Napolitano A, Crescenzi O, Pezzella A, Prota G (1995) Generation of the neurotoxin 6-hydroxydopamine by peroxidase/H2O2 oxidation of dopamine. J Med Chem 38:917–922

    Google Scholar 

  • Nowak P, Kostrzewa RA, Skaba D, Kostrzewa RM (2009) Acute L: -DOPA effect on hydroxyl radical- and DOPAC-levels in striatal microdialysates of parkinsonian rats. Neurotox Res 17:299–304

    Article  PubMed  Google Scholar 

  • Paris I, Dagnino-Subiabre A, Marcelain K, Bennett LB, Caviedes P, Caviedes R, Olea-Azar C, Segura-Aguilar J (2001) Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. J Neurochem 77:519–529

    Article  PubMed  CAS  Google Scholar 

  • Paris I, Martinez-Alvarado P, Perez-Pastene C, Vieira MN, Olea-Azar C, Raisman-Vozari R, Cardenas S, Graumann R, Caviedes P, Segura-Aguilar J (2005) Monoamine transporter inhibitors and norepinephrine reduce dopamine-dependent iron toxicity in cells derived from the substantia nigra. J Neurochem 92:1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Paris I, Lozano J, Cardenas S, Perez-Pastene C, Saud K, Fuentes P, Caviedes P, Dagnino-Subiabre A, Raisman-Vozari R, Shimahara T, Kostrzewa JP, Chi D, Kostrzewa RM, Caviedes R, Segura-Aguilar J (2008) The catecholaminergic RCSN-3 cell line: a model to study dopamine metabolism. Neurotox Res 13:221–230

    Article  PubMed  CAS  Google Scholar 

  • Paris I, Lozano J, Perez-Pastene C, Muñoz P, Segura-Aguilar J (2009a) Molecular and neurochemical mechanisms in PD pathogenesis. Neurotox Res 16:271–279

    Article  PubMed  CAS  Google Scholar 

  • Paris I, Lozano J, Perez-Pastene C, Muñoz P, Segura-Aguilar J (2009b) Molecular and neurochemical mechanisms in PD pathogenesis. Neurotox Res 16:271–279

    Article  PubMed  CAS  Google Scholar 

  • Paris I, Perez-Pastene C, Couve E, Caviedes P, Ledoux S, Segura-Aguilar J (2009c) Copper dopamine complex induces mitochondrial autophagy preceding caspase-independent apoptotic cell death. J Biol Chem 284:13306–13315

    Article  PubMed  CAS  Google Scholar 

  • Paris I, Perez-Pastene C, Cardenas S, Iturriaga-Vasquez P, Muñoz P, Couve E, Caviedes P, Segura-Aguilar J (2010) Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotox Res 18:82–92

    Article  PubMed  Google Scholar 

  • Paris I, Muñoz P, Huenchuguala S, Couve E, Sanders LH, Greenamyre JT, Caviedes P, Segura-Aguilar J (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra derived cell line. Toxicol Sci 121:376–388

    Article  PubMed  CAS  Google Scholar 

  • Rauch F, Schwabe K, Krauss JK (2010) Effect of deep brain stimulation in the pedunculopontine nucleus on motor function in the rat 6-hydroxydopamine Parkinson model. Behav Brain Res 210:46–53

    Article  PubMed  Google Scholar 

  • Redman PT, Jefferson BS, Ziegler CB, Mortensen OV, Torres GE, Levitan ES, Aizenman E (2006) A vital role for voltage-dependent potassium channels in dopamine transporter-mediated 6-hydroxydopamine neurotoxicity. Neuroscience 143:1–6

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Pallares J, Parga JA, Joglar B, Guerra MJ, Labandeira-Garcia JL (2009) The mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate inhibits toxicity of 6-hydroxydopamine on dopaminergic neurons. Neurotox Res 15:82–95

    Article  PubMed  CAS  Google Scholar 

  • Segura-Aguilar J, Kaiser R, Lind C (1992) Separation and characterization of isoforms of DT-diaphorase from rat liver cytosol. Biochim Biophys Acta 1120:33–42

    Article  PubMed  CAS  Google Scholar 

  • Van Laar VS, Mishizen AJ, Cascio M, Hastings TG (2009) Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol Dis 34:487–500

    Article  PubMed  Google Scholar 

  • Walsh S, Mnich K, Mackie K, Gorman AM, Finn DP, Dowd E (2010) Loss of cannabinoid CB(1) receptor expression in the 6-hydroxydopamine-induced nigrostriatal terminal lesion model of Parkinson’s disease in the rat. Brain Res Bull 81:543–548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FONDECYT 1100165; Zeneca fellowship; 04553/GERM/06 & CICYT; MICINN BFU2011-28716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Segura-Aguilar.

Additional information

Monica Villa and Patricia Muñoz should be considered as first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villa, M., Muñoz, P., Ahumada-Castro, U. et al. One-Electron Reduction of 6-Hydroxydopamine Quinone is Essential in 6-Hydroxydopamine Neurotoxicity. Neurotox Res 24, 94–101 (2013). https://doi.org/10.1007/s12640-013-9382-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-013-9382-7

Keywords

Navigation