Skip to main content

Mechanism of 6-hydroxydopamine neurotoxicity

  • Conference paper
Advances in Research on Neurodegeneration

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 50))

Summary

The catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) has recently been found to be formed endogenously in patients suffering from Parkinson’s disease. In this article, we highlight the latest findings on the biochemical mechanism of 6-OHDA toxicity. 6-OHDA has two ways of action: it easly forms free radicals and it is a potent inhibitor of the mitochondrial respiratory chain complexes I and IV. The inhibition of respiratory enzymes by 6-OHDA is reversible and insensitive towards radical scavengers and iron chelators with the exception of desferrioxamine. We conclude that free radicals ate not involved in the interaction between 6-OHDA and the respiratory chain and that the two mechanisms are biochemically independent, although they may act synergistically in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altar CA, Boyland CB, Fritsche M, Jones BE, Jackson C, Wiegand SJ, Lindsay RM, Hyman C (1993) Efficacy of brain-derived neurotrophic factor and neurotrophin-3 on neurochemical and behavioral deficits associated with partial nigrostriatal dopamine lesions. J Neurochem 63: 1021–1032

    Article  Google Scholar 

  • Andrew R, Watson DG, Best SA, Midgey H, Wenlong H, Petty RKH (1993) The determination of hydroxydopamines and other trace amines in the urine of Parkinsonian patients and normal controls. Neurochem Res 18: 1175–1177

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 16: 125–131

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Youdim MBH (1990) Selectivity of melanized nigra-striatal dopamine neurons to degeneration in Parkinson’s disease may depend on iron-melanin interaction. J Neural Transm [Suppt] 29: 251–258

    CAS  Google Scholar 

  • Ben-Shachar D, Youdim MBH (1991) Intranigral iron injection induces behavioral and biochemical “parkinsonism” in rats. J Neurochem 57: 2133–2135

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Eshel G, Finberg JPM, Youdim MBH (1991) The iron chelator desferoxamine (desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 56: 1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Zuk R, Glinka Y (1994) Dopamine neurotoxicity: inhibition of mitochondrial respiration. J Neurochem 64: 718–723

    Article  Google Scholar 

  • Cerruti C, Drian MJ, Kamenka JM, Privat A (1993) Protection by BTCP of cultured dopaminergic neurons exposed to neurotoxins. Brain Res 617: 138–142

    Article  PubMed  CAS  Google Scholar 

  • Chadi G, Cao Y, Pettersson RF, Fuxe K (1994) Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Neuroscience 61: 891–910

    Article  PubMed  CAS  Google Scholar 

  • Cohen G, Werner P (1994) Free radicals, oxidative stress, and neurodegeneration. In: Calne DB (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 139–162

    Google Scholar 

  • Decker DE, Althaus JS, Buxser SE, Von Voigtlander PF, Ruppel PL (1993) Competitive irreversible inhibition of dopamine uptake by 6-hydroxydopamine. Res Commun Chem Pathol Pharmacol 79: 195–208

    PubMed  CAS  Google Scholar 

  • Dexter DT, Jenner P, Schapira AHV, Mardsen CD (1992) Alterations in level of iron, ferritin ans other trace metals in neurodegenerative disease affecting basal ganglia. Ann Neurol 32: 94–100

    Article  Google Scholar 

  • Erecinska M, Dagani F (1990) Relationship between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adensine triphosphate in isolated brain synaptosomes. J Gen Physiol 95: 591–616

    Article  PubMed  CAS  Google Scholar 

  • Filloux F, Townsend JJ (1993) Pre- and postsynaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Exp Neurol 119: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Gee P, San RH, Davison AJ, Stich HF (1992) Clastogenic and mutagenic actions of active species generated in the 6-hydroxydopamine/oxygen reaction: effects of scavengers of active oxygen, iron, and metal chelating agents. Free Radic Res Commun 16: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Glinka Y, Youdim MBH (1995) Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur J Pharmacol Environ Toxicol Pharmacol 292: 329–332

    Article  CAS  Google Scholar 

  • Glinka Y, Gassen M, Youdim MBH (1996a) Iron and neurotransmitter function in brain. In: Connors JR (ed) Metals and oxidative damage in neurological disorders. Plenum Publishing Corp, New York

    Google Scholar 

  • Glinka Y, Tipton KF, Youdim MBH (1996b) Nature of inhibition of mitochondrial respiratory complex 1 by 6-hydroxydopamine. J Neurochem (in press)

    Google Scholar 

  • Gordon BG, DeBoer JM, Wooldridge LD, Sharp JG (1991) Effect of 6-hydroxydopamine on murine hepatopoetic stem cells: enhanced cytotoxicity on megakaryocyte colony forming units. Life Sci 49: 121–127

    Article  PubMed  CAS  Google Scholar 

  • Inoue A, Ueda H, Nakata Y, Mizu Y (1994) Supersensitivity of quinpirole-evoked GTPase activation without changes in gene expression of D2 and Gi protein in the striatum of hemi-dopaminergic lesioned rats. Neurosci Lett 175: 107–110

    Article  PubMed  CAS  Google Scholar 

  • Karoum F, Chrapusta SJ, Egan MF, Wyatt RJ (1993) Absence of 6-hydroxydopamine in the rat brain after treatment with stimulants and other dopaminergic agents: a mass fragmentographic study. J Neurochem 61: 1369–1375

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW (1994) Neurotransmitter receptors in neurodegeneration. In: Calne DB (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 119–128

    Google Scholar 

  • Kienzl E, Puchinger L, Jellinger K, Linert W, Stachelberger H, Jameson RF (1996) The role of the transition metals in the pathogenesis of Parkinson’s disease. J Neurol Sci 4766

    Google Scholar 

  • Kita T, Wagner GC, Philbert MA, King LA, Lowndes HE (1995) Effects of pargyline and pyrogallol on the methamphetamine-induced dopamine depletion. Mol Chem Neu-ropathol 24: 31–41

    Article  CAS  Google Scholar 

  • Kotlyar AB, Sled VD, Vinogradov AD (1992) Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim Biophys Acta 1098: 144–150

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163: 1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Shin-Ichiro I, Hattori N, Yoshino H (1993) Mitochondria in Parkinson’s disease. In: Calne DB, Horowski R, Mizuno Y, Poewe WH, Riederer P, Youdim MBH (eds) Advances in research on neurodegeneration. Birkhäuser, Boston, pp 55–66

    Google Scholar 

  • Monterio HP, Winterbourne CC (1989) 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 38: 4144–4182

    Google Scholar 

  • Morel I, Cillard J, Lescoat G, Sergent O, Pasdeloup N, Ocaktan AZ, Abdallah MA, Brissot P, Cillard P (1992) Antioxidant and free radical scavenging activities of the iron chelators pyoverdin and hydroxypyrid-4-ones in iron-loaded hepatocyte cultures: comparison of their mechanism of protection with that of desferoxamine. Free Radic Biol Med 13: 499–508

    Article  PubMed  CAS  Google Scholar 

  • Naveilhan P, Neveu I, Jehan F, Baudet C, Wion D, Brachet P (1994) Reactive oxygen species influence nerve growth factor synthesis in primary rat astrocytes. J Neurochem 62: 2178–2186

    Article  PubMed  CAS  Google Scholar 

  • Offen D, Ziv I, Gorodin S, Barzilai A, Malik Z, Melamed E (1995) Dopamine-induced programmed cell death in mouse thymocytes. Biochim Biophys Acta 1268: 171–177

    Article  PubMed  Google Scholar 

  • Orrenius S, Nicotera P (1994) The calcium ion and cell death. J Neural Transm [Suppl] 43: 1–11

    CAS  Google Scholar 

  • Perumal AS, Gopal VB, Tordzro WK, Cooper TB, Cadet JL (1992) Vitamin E attenuates the toxic effects of 6-hydroxydopamine on free radical scavenging systems in rat brain. Brain Res Bulletin 29: 699–701

    Article  CAS  Google Scholar 

  • Sampath D, Jackson GR, Werrbach-Perez K, Perez-Polo JR (1994) Effects of nerve growth factor on glutathione peroxidase and catalase in PC12 cells. J Neurochem 62: 2476–2479

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JP, Nishiyama N (1994) Neurotrophic factor gene expression in astrocytes during development and following injury. Brain Res Bull 35: 403–407

    Article  PubMed  CAS  Google Scholar 

  • Spina MB, Squinto SP, Miller J, Lindsay RM, Hyman C (1992) Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of glutathione system. J Neurochem 59: 99–106

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Ann Rev Biochem 62: 797–821

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Sato K, Okumura F, Inoue A, Nakata Y, Yue JL, Mizu Y (1995) Supersensitization of neurochemical responses by L-DOPA and dopamine receptor agonists in the striatum of experimental Parkinson’s disease model rats. Biomed Pharmacother 49: 169–177

    Article  PubMed  CAS  Google Scholar 

  • Vroegop SM, Decker DE, Buxser SE (1995) Localization of damage induced by reactive oxygen species in cultured cells. Free Radic Biol Med 18: 141–151

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama C, Okamura H, Ibata Y (1993) Resistance of hypothalamic dopaminergic neurons to neonatal 6-hydroxydopamine toxicity. Brain Res Bulletin 30: 551–559

    Article  CAS  Google Scholar 

  • Youdim MBH, Riederer P (1993) The role of iron in senescence of dopaminergic neuronsin Parkinson’s disease. J Neural Transm [Suppl] 40: 57–67

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this paper

Cite this paper

Glinka, Y., Gassen, M., Youdim, M.B.H. (1997). Mechanism of 6-hydroxydopamine neurotoxicity. In: Riederer, P., Calne, D.B., Horowski, R., Mizuno, Y., Poewe, W., Youdim, M.B.H. (eds) Advances in Research on Neurodegeneration. Journal of Neural Transmission. Supplementa, vol 50. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6842-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6842-4_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82898-4

  • Online ISBN: 978-3-7091-6842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics