Skip to main content
Log in

The catecholaminergic RCSN-3 cell line: A model to study dopamine metabolism

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

RCSN-3 cells are a cloned cell line derived from the substantia nigra of an adult rat. The cell line grows in monolayer and does not require differentiation to express catecholaminergic traits, such as (i) tyrosine hydroxylase; (ii) dopamine release; (iii) dopamine transport; (iv) norepinephrine transport; (v) monoamine oxidase (MAO)-A expression, but not MAO-B; (vi) formation of neuromelanin; (vii) vesicular monoamine transporter-2 (VMAT-2) expression. In addition, this cell line expresses serotonin transporters, divalent metal transporter, DMT1, dopamine receptor 1 mRNA under proliferating conditions, and dopamine receptor 5 mRNA after incubation with dopamine or dicoumarol. Expression of dopamine receptors D2, D3 and D4 mRNA were not detected in proliferating cells or when the cells were treated with dopamine, CuSO4, dicoumarol or dopamine-copper complex. Angiotensin II receptor mRNA was also found to be expressed, but it underwent down regulation in the presence of aminochrome. Total quinone reductase activity corresponded 94% to DT-diaphorase. The cells also express antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase. This cell line is a suitablein vitro model for studies of dopamine metabolism, since under proliferating conditions the cells express all the pertinent markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar Hernandez R, MJ Sanchez De Las Matas, C Arriagada, C Barcia, P Caviedes, MT Herrero and J Segura-Aguilar (2003) MPP+-induced degeneration is potentiated by dicoumarol in cultures of the RCSN-3 dopaminergic cell line. Implications of neuromelanin in oxidative metabolism of dopamine neurotoxicity.Neurotox. Res. 5, 407–410.

    Google Scholar 

  • Arriagada C, J Salazar, T Shimahara, R Caviedes and P Caviedes (2002) An immortalized neuronal cell line derived from the substantia nigra of an adult rat: application to cell transplant therapy, In:Parkinson’s Disease (Ronken E and G van Scharrenburg, Eds) (IOS Press:Amsterdam, The Netherlands) ISBN 1 58603 207 0, pp 120–132.

    Google Scholar 

  • Arriagada A, I Paris, MJ Sanchez de las Matas, P Martinez-Alvarado, S Cardenas, P Castañeda, R Graumann, C Perez-Pastene, C Olea-Azar, E Couve, MT Herrero, P Caviedes and J Segura-Aguilar (2004) On the neurotoxicity of leukoaminochromeo-semiquinone radical derived of dopamine oxidation: mitochondria damage, necrosis and hydroxyl radical formation.Neurobiol. Dis. 16, 468–477.

    Article  PubMed  CAS  Google Scholar 

  • Berg D, H Hochstrasser, KJ Schweitzer and O Riess (2006) Disturbance of iron metabolism in Parkinson’s disease - ultrasonography as a biomarker.Neurotox. Res. 9, 1–13.

    PubMed  CAS  Google Scholar 

  • Caviedes P, E Olivares, K Salas, R Caviedes and E Jaimovich (1993) Calcium fluxes, ion currents and dihydropyridine receptors in a newly established cell line from rat heart muscle.J. Mol. Cell Cardiol. 25, 829–845.

    Article  PubMed  CAS  Google Scholar 

  • Caviedes R, P Caviedes, JL y Liberona and E Jaimovich (1994) Ion currents in a skeletal muscle cell line from a Duchenne muscular dystrophy patient.Muscle & Nerve 17, 1021–1028.

    Article  CAS  Google Scholar 

  • Caviedes P, R Caviedes, TB Freeman, PR Sanberg and DF Cameron (2002)Proliferated Cell Lines and Uses Thereof. International Publication number WO 03/065999 A2. Filed Feb. 8th, 2002, publication date: August 14th, 2003. World Intellectual Property Organization, International Bureau.

  • Chiasson K, B Daoust, D Levesque and MG Martinoli (2006) Dopamine D2 agonists, bromocriptine and quinpirole, increase MPP+-induced toxicity in PC12 cells.Neurotox. Res. 10, 31–42.

    PubMed  CAS  Google Scholar 

  • Copeland RL Jr, YA Leggett, YM Kanaan, RE Taylor and Y Tizabi (2005) Neuroprotective effects of nicotine against salsolinol-induced cytotoxicity: implications for Parkinson’s disease.Neurotox. Res. 8, 289–293.

    PubMed  CAS  Google Scholar 

  • Dagnino-Subiabre A, K Marcelain, C Arriagada, I Paris, P Caviedes, R Caviedes and J Segura-Aguilar (2000) Angiotensin receptor II is present in dopaminergic cell line of rat substantia nigra and it is down regulated by aminochrome.Mol. Cell. Biochem. 212, 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Duka T and A Sidhu (2006) The neurotoxin, MPP+, induces hyperphosphorylation of tau, in the presence of α-synuclein, in SH-SY5Y neuroblastoma cells.Neurotox. Res. 10, 1–10.

    PubMed  CAS  Google Scholar 

  • Fuentes-Bravo P, P Martinez-Alvarado, S Cardenas, J Lozano, I Paris, C Perez-Pastene, R Graumann, P Caviedes and J Segura-Aguilar (2005) Inhibition of VMAT-2 and DT-diaphorase induce neurotoxicity via apoptosis.Neurotox. Res. 8, 339. Abstr.

    Google Scholar 

  • Fuentes P, I Paris I, M Nassif, P Caviedes and J Segura-Aguilar (2007) Inhibition of VMAT-2 and DT-diaphorase induce cell death in aSubstantia nigra-derived cell line - an experimental cell model for dopamine toxicity studies.Chem. Res. Toxicol. 20, 776–783.

    Article  PubMed  CAS  Google Scholar 

  • Greene LA. and AS Tischler (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.Proc. Natl. Acad. Sci. USA 73, 2424–2428.

    Article  PubMed  CAS  Google Scholar 

  • Greene LA and AS Tischler (1982) PC12 pheochromocytoma cells in neurobiological research.Adv. Cell. Neurobiol. 3, 373–414.

    CAS  Google Scholar 

  • Hasegawa T, M Matsuzaki, A Takeda, A Kikuchi, K Furukawa, S Shibahara and Y Itoyama (2003) Increased dopamine and its metabolites in SH-SY5Y neuroblastoma cells that express tyrosinase.J. Neurochem. 87, 470–475.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto W, S Kitayama, K Kumagai, N Morioka, K Morita and T Dohi (2005) Transport of dopamine and levodopa and their interaction in COS-7 cells heterologously expressing monoamine neurotransmitter transporters and in monoaminergic cell lines PC12 and SK-N-SH.Life Sci. 76, 1603–1612.

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Lewis V and RJ Smeyne (2005) MPTP and SNpc DA neuronal vulnerability: role of dopamine, superoxide and nitric oxide in neurotoxicity.Neurotox. Res. 7, 193–202.

    PubMed  CAS  Google Scholar 

  • Jiang H, Q Jiang and J Feng (2004) Parkin increases dopamine uptake by enhancing the cell surface expression of dopamine transporter.J. Biol. Chem. 279, 54380–54386.

    Article  PubMed  CAS  Google Scholar 

  • King SC, AA Tiller, AS Chang and DM Lam (1992) Differential regulation of the imipramine-sensitive serotonin transporter by cAMP in human JAr choriocarcinoma cells, rat PC12 pheochromocytoma cells, and C33-14-B1 transgenic mouse fibroblast cells.Biochem. Biophys. Res. Commun. 183, 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Langer AK, HF Poon, G Münch, BC Lynn, T Arendt, and DA Butterfield (2006) Identification of AGE-modified proteins in SH-SY5Y and OLN-93 cells.Neurotox. Res. 9, 255–268

    PubMed  CAS  Google Scholar 

  • Lozano-Gonzalez J, SP Cárdenas, P Martinez-Alvarado, P Fuentes-Bravo, C Perez-Pastene, R Graumman, I Paris and J Segura-Aguilar (2005) DT-Diaphorase and their relationship with dopamine oxidative metabolism and neurodegeneration in RCSN-33 cells derived ofSubstantia nigra of rat.Neurotox. Res. 8, 324. Abstr.

    Google Scholar 

  • Lu J, CS Park, SK Lee, DW Shin and JH Kang (2006) Leptin inhibits 1-methyl-4-phenylpyridinium-induced cell death in SH-SY5Y cells.Neurosci. Lett. 407, 240–243.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Alvarado P, A Dagnino-Subiabre, I Paris, D Metodiewa, C Welch, C Olea-Azar, P Caviedes, R Caviedes and J Segura-Aguilar (2001) Possible role of salsolinol quinone methide on RCSN-3 cells survival decrease.Biochem. Biophys. Res. Commun. 283, 1069–1076.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Alvarado P, P Fuentes-Bravo, S Cardenas, C Arriagada, I Paris, C Perez-Pastene, J Lozano, R Graumann, P Caviedes and J Segura-Aguilar (2005) Cell diferentiation in a catecholaminergic cell line (RCSN-33).Neurotox. Res. 8, 3. Abstr.

    Google Scholar 

  • Massicotte C, K Knight, CJ Van der Schyf, BS Jortner and M Ehrich (2005) Effects of organophosphorus compounds on ATP production and mitochondrial integrity in cultured cells.Neurotox. Res. 7, 203–217.

    PubMed  CAS  Google Scholar 

  • Mehler-Wex C, P Riederer and M Gerlach (2006) Dopaminergic dysbalance in distinct basal ganglia neurocircuits: implications for the pathophysiology of Parkinson’s disease, schizophrenia and attention deficit hyperactivity disorder.Neurotox. Res. 10, 167–79.

    PubMed  CAS  Google Scholar 

  • Paris I, A Dagnino-Subiabre, K Marcelain, LB Bennett, P Caviedes, R Caviedes, C Olea-Azar and J Segura-Aguilar (2001) Copper neurotoxicity is dependent on dopaminemediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line.J. Neurochem. 77, 519–529.

    Article  PubMed  CAS  Google Scholar 

  • Paris I, P Martinez-Alvarado, C Perez-Pastene, MN Vieira, C Olea-Azar, R Raisman-Vozari, S Cardenas, R Graumann, P Caviedes and J Segura-Aguilar (2005a) Monoamine transporter inhibitors and norepinephrine reduce dopaminedependent iron toxicity in cells derived from the substantia nigra.J. Neurochem. 92, 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  • Paris I, P Martinez-Alvarado, S Cardenas, C Perez-Pastene, R Graumann, P Fuentes, C Olea-Azar, P Caviedes and J Segura-Aguilar (2005b) Dopamine-dependent iron toxicity in cells derived from rat hypothalamus.Chem. Res. Toxicol. 18, 415–419.

    Article  PubMed  CAS  Google Scholar 

  • Paris I, P Martinez-Alvarado, C Perez-Pastene, MN Vieira, C Olea-Azar, R Raisman-Vozari, S Cardenas, R Graumann, P Caviedes and J Segura-Aguilar (2005c) Monoamine transporter inhibitors and norepinephrine reduce dopaminedependent iron toxicity in cells derived from the substantia nigra.J. Neurochem. 92, 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  • Paris I, C Perez-Pastene, P Martinez-Alvarado, R Graumann, P Fuentes, J Lozano, S Cárdenas, C Olea-Azar, P Caviedes and J Segura-Aguilar (2005d) Dopamine-dependent iron toxicity in cells derived from rat hypothalamus - the role of norepinephrine transport.Neurotox. Res. 8, 338. Abstr.

    Google Scholar 

  • Paris I, C Perez-Pastene, P Martinez-Alvarado, R Graumann, P Fuentes, J Lozano, S Cárdenas, C Olea-Azar, P Caviedes and J Segura-Aguilar (2005e) On the mechanism of dopamine- dependent copper toxicity.Neurotox. Res. 8, 330.Abstr.

    Google Scholar 

  • Paris I, C Perez-Pastene, P Martinez-Alvarado, R Graumann, P Fuentes, J Lozano, S Cárdenas, C Olea-Azar, P Caviedes and J Segura-Aguilar (2005f) DT-Diaphorase, monoaminergic transporter inhibitors and norepinephine prevent dopamine- dependent iron toxicity in cells derived from the Substantia nigra.Neurotox. Res. 8, 335. Abstr.

    Google Scholar 

  • Paris I, C Arriagada, C Perez-Pastene, P Martinez-Alvarado, R Graumann, P Fuentes, J Lozano, S Cardenas, C Olea-Azar, P Caviedes and J Segura-Aguilar (2007a) On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation.Neurotox. Res. 8, 328 Abstr.

    Google Scholar 

  • Paris I, S Cardenas, J Lozano, C Perez-Pastene, R Graumann, A Riveros, P Caviedes and J Segura-Aguilar (2007b) Aminochrome as a preclinical experimental model to study degeneration of dopaminergic neurons in Parkinson’s disease.Neurotox. Res. 12(2), 125–134. Review.

    Article  PubMed  CAS  Google Scholar 

  • Segura-Aguilar J and RM Kostrzewa (2006) Neurotoxins and neurotoxicity mechanisms. An overview.Neurotox. Res. 10, 263–287.

    PubMed  CAS  Google Scholar 

  • Seitz G, HB Stegmann, HH Jäger, HM Schlude, H Wolburg, VA Roginsky, D Niethammer and G Bruchelt (2000) Neuroblastoma cells expressing the noradrenaline transporter are destroyed more selectively by 6-fluorodopamine than by 6-hydroxydopamine.J. Neurochem. 75, 511–520.

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, J Bogulavsky, KE Larsen, G Behr, E. Karatekin, MH Kleinman, N Turro, D Krantz, RH Edwards, LA Greene and L Zecca (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles.Proc. Natl. Acad. Sci. USA 97, 11869–11874.

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, D Cawthon, KA McCastlain, HM Duhart, GD Newport, H Fang, TA Patterson, W Slikker and SF Ali (2005) Selective alterations of transcription factors in MPP+- induced neurotoxicity in PC12 cells.Neurotoxicology 26, 729–737.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Segura-Aguilar.

Additional information

†Please address correspondence regarding use of the RCSN-3 line to Pablo Caviedes (pcaviede@med.uchile.cl)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paris, I., Lozano, J., Cardenas, S. et al. The catecholaminergic RCSN-3 cell line: A model to study dopamine metabolism. neurotox res 13, 221–230 (2008). https://doi.org/10.1007/BF03033505

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033505

Keywords

Navigation