Skip to main content

Advertisement

Log in

Rotenone-Induced Model of Parkinson’s Disease: Beyond Mitochondrial Complex I Inhibition

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is usually diagnosed through motor symptoms that make the patient incapable of carrying out daily activities; however, numerous non-motor symptoms include olfactory disturbances, constipation, depression, excessive daytime sleepiness, and rapid eye movement at sleep; they begin years before motor symptoms. Therefore, several experimental models have been studied to reproduce several PD functional and neurochemical characteristics; however, no model mimics all the PD motor and non-motor symptoms to date, which becomes a limitation for PD study. It has become increasingly relevant to find ways to study the disease from its slowly progressive nature. The experimental models most frequently used to reproduce PD are based on administering toxic chemical compounds, which aim to imitate dopamine deficiency. The most used toxic compounds to model PD have been 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), which inhibit the complex I of the electron transport chain but have some limitations. Another toxic compound that has drawn attention recently is rotenone, the classical inhibitor of mitochondrial complex I. Rotenone triggers the progressive death of dopaminergic neurons and α-synuclein inclusions formation in rats; also, rotenone induces microtubule destabilization. This review presents information about the experimental model of PD induced by rotenone, emphasizing its molecular characteristics beyond the inhibition of mitochondrial complex I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Only previously published data were used to prepare this manuscript.

References

  1. World Health Organization (2021) Ageing and health. Recovered from https://www.who.int/news-room/fact-sheets/detail/ageing-and-health. Accessed 1 Oct 2021

  2. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky ARR (2007) How common are the “common” neurologic disorders? Neurology 68(5):326–337. https://doi.org/10.1212/01.wnl.0000252807.38124.a3

    Article  CAS  PubMed  Google Scholar 

  3. Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE et al (2017) Past, present, and future of Parkinson’s disease: a special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 32:1264–1310. https://doi.org/10.1002/mds.27115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J (2011) Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol Suppl 1:S1-58

    Google Scholar 

  5. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P et al (2008) Movement Disorder Society UPDRS Revision Task Force. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170. https://doi.org/10.1002/mds.22340

    Article  PubMed  Google Scholar 

  6. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211. https://doi.org/10.1016/s0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  7. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol. 249 Suppl 3:III/1–5. https://doi.org/10.1007/s00415-002-1301-4

  8. Braak H, de Vos RA, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396(1):67–72. https://doi.org/10.1016/j.neulet.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  9. Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H (2018) Parkinson’s disease: cause factors, measurable indicators, and early diagnosis. Comput Biol Med 102:234–241. https://doi.org/10.1016/j.compbiomed.2018.09.008

    Article  PubMed  Google Scholar 

  10. Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T (2016) The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology 46(4):292–300. https://doi.org/10.1159/000445751

    Article  PubMed  Google Scholar 

  11. Niemann N, Jankovic J (2019) Juvenile parkinsonism: Differential diagnosis, genetics, and treatment. Parkinsonism Relat Disord 67:74–89. https://doi.org/10.1016/j.parkreldis.2019.06.025

    Article  PubMed  Google Scholar 

  12. Magistrelli L, Contaldi E, Milner AV, Gallo S, Sacchetti M, Fornaro R, Cantello R, Comi C (2022) A very early onset of juvenile parkinsonism. J Neurol 269(12):6661–6663. https://doi.org/10.1007/s00415-022-11278-6

    Article  PubMed  Google Scholar 

  13. Labandeira-García JL, Rodriguez-Perez AI, Valenzuela R, Costa-Besada MA, Guerra MJ (2016) Menopause and Parkinson’s disease. Interaction between estrogens and brain renin-angiotensin system in dopaminergic degeneration. Front Neuroendocrinol 43:44–59. https://doi.org/10.1016/j.yfrne.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  14. Kalia LV, Kalia SK, Lang AE (2015) Disease-modifying strategies for Parkinson’s disease. Mov Disord 30(11):1442–1450. https://doi.org/10.1002/mds.26354

    Article  CAS  PubMed  Google Scholar 

  15. Vidrio-Morgado H, Alonso-Vilatela ME, López-López M (2007) Factores genéticos involucrados en la susceptibilidad para desarrollar enfermedad de Parkinson. Salud Ment 30(1):16–24

    Google Scholar 

  16. Proukakis C, Houlden H, Schapira AH (2013) Somatic alpha-synuclein mutations in Parkinson’s disease: hypothesis and preliminary data. Mov Disord 28(6):705–712. https://doi.org/10.1002/mds.25502

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xiromerisiou G, Dardiotis E, Tsimourtou V, Kountra P, Paterakis K, Kapsalaki E, Hadjigeorgiou G (2010) Genetic basis of Parkinson disease. Neurosurg Focus 28(1):17. https://doi.org/10.3171/2009.10.FOCUS09220

    Article  Google Scholar 

  18. Belin AC, Westerlund M (2008) Parkinson’s disease: a genetic perspective. FEBS J 275(7):1377–1383. https://doi.org/10.1111/j.1742-4658.2008.06301.x

    Article  CAS  PubMed  Google Scholar 

  19. Mata I, Kachergus J, Taylor J, Lincoln S, Aasly J, Lynch T, Farrer M (2005) Lrrk2 pathogenic substitutions in Parkinson’s disease. Neurogenetics 6(4):171–177. https://doi.org/10.1007/s10048-005-0005-1

    Article  CAS  PubMed  Google Scholar 

  20. Lladó A, Gaig C, Molinuevo JL (2006) Genética de las enfermedades neurodegenerativas más prevalentes. Med Clin 126(17):662–670. https://doi.org/10.1157/13087844

    Article  Google Scholar 

  21. Zabetian C, Hutter C, Yearout D, Lopez A, Factor S et al (2006) H LRRK2 G2019S in families with Parkinson disease who originated from Europe and the middle east: evidence of two distinct founding events beginning two millennia ago. Am J Hum Genet 79(4):752–758. https://doi.org/10.1086/508025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G et al (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274(5290):1197–1199. https://doi.org/10.1126/science.274.5290.1197

    Article  CAS  PubMed  Google Scholar 

  23. Polymeropoulos MH, Hurko O, Hsu F, Rubenstein J, Basnet S et al (1997) Linkage of the locus for cerebral cavernous hemangiomas to human chromosome 7q in four families of Mexican-American descent. Neurology 48(3):752–757. https://doi.org/10.1212/wnl.48.3.752

    Article  CAS  PubMed  Google Scholar 

  24. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108. https://doi.org/10.1038/ng0298-106

    Article  PubMed  Google Scholar 

  25. Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173. https://doi.org/10.1002/ana.10795

    Article  CAS  PubMed  Google Scholar 

  26. Shimura H, Hattori N, Si K, Mizuno Y, Asakawa S et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25(3):302–305. https://doi.org/10.1038/77060

    Article  CAS  PubMed  Google Scholar 

  27. Biswas A, Maulik M, Das SK, Indian Genome Variation Consortium, Ray K, Ray J (2007) Parkin polymorphisms: risk for Parkinson’s disease in Indian population. Clin Genet. 72(5):484–486. https://doi.org/10.1111/j.1399-0004.2007.00878.x

    Article  CAS  PubMed  Google Scholar 

  28. Pineda-Trujillo N, Carvajal-Carmona LG, Buriticá O, Moreno S, Uribe C et al (2001) A novel Cys212Tyr founder mutation in parkin and allelic heterogeneity of juvenile Parkinsonism in a population from North West Colombia. Neurosci Lett 298(2):87–90. https://doi.org/10.1016/s0304-3940(00)01733-x

    Article  CAS  PubMed  Google Scholar 

  29. Wintermeyer P, Krüger R, Kuhn W, Müller T, Woitalla D et al (2000) Mutation analysis and association studies of the UCHL1 gene in German Parkinson’s disease patients. NeuroReport 11(10):2079–2082. https://doi.org/10.1097/00001756-200007140-00004

    Article  CAS  PubMed  Google Scholar 

  30. Pridgeon JW, Olzmann JA, Chin LS, Li L (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5(7):e172. https://doi.org/10.1371/journal.pbio.0050172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Canet-Avilés RM, Wilson MA, Miller DW, Ahmad R, McLendon C et al (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A 101(24):9103–9108. https://doi.org/10.1073/pnas.0402959101

    Article  PubMed  PubMed Central  Google Scholar 

  32. West AB, Moore DJ, Choi C, Andrabi SA, Li X et al (2007) Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 16(2):223–232. https://doi.org/10.1093/hmg/ddl471

    Article  CAS  PubMed  Google Scholar 

  33. Chambers-Richards T, Su Y, Chireh B, D’Arcy C (2021) Exposure to toxic occupations and their association with Parkinson’s disease: a systematic review with meta-analysis. Rev Environ Health. https://doi.org/10.1515/reveh-2021-0111

    Article  PubMed  Google Scholar 

  34. Racette BA, Nelson G, Dlamini WW, Prathibha P, Turner JR, Ushe M, Nielsen SS (2021) Severity of parkinsonism associated with environmental manganese exposure. Environ Health 20(1):1–13. https://doi.org/10.1186/s12940-021-00712-3

    Article  CAS  Google Scholar 

  35. Cagac A (2020) Farming, well water consumption, rural living, and pesticide exposure in early life as the risk factors for Parkinson disease in Iğdır province. Neurol (Riyadh) 25(2):129–135. https://doi.org/10.17712/nsj.2020.2.20190104

    Article  Google Scholar 

  36. Koren G, Norton G, Radinsky K, Shalev V (2019) Chronic Use of β-Blockers and the Risk of Parkinson’s Disease. Clin Drug Investig 39(5):463–468. https://doi.org/10.1007/s40261-019-00771-y

    Article  CAS  PubMed  Google Scholar 

  37. Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G et al (2012) Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 72(6):893–901. https://doi.org/10.1002/ana.23687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hageman G, van der Hoek J, van Hout M, van der Laan G, Steur EJ, de Bruin W, Herholz K (1999) Parkinsonism, pyramidal signs, polyneuropathy, and cognitive decline after long-term occupational solvent exposure. J Neurol 246(3):198–206. https://doi.org/10.1007/s004150050334

    Article  CAS  PubMed  Google Scholar 

  39. Barbeau A, Roy M, Bernier G, Campanella G, Paris S (1987) Ecogenetics of Parkinson’s disease: prevalence and environmental aspects in rural areas. Can J Neurol Sci 14(1):36–41. https://doi.org/10.1017/s0317167100026147

    Article  CAS  PubMed  Google Scholar 

  40. Butterfield PG, Valanis BG, Spencer PS, Lindeman CA, Nutt JG (1993) Environmental antecedents of young-onset Parkinson’s disease. Neurology 43(6):1150–1158. https://doi.org/10.1212/wnl.43.6.1150

    Article  CAS  PubMed  Google Scholar 

  41. Hertzman C, Wiens M, Bowering D, Snow B, Calne D (1990) Parkinson’s disease: a case-control study of occupational and environmental risk factors. Am J Ind Med 17(3):349–355. https://doi.org/10.1002/ajim.4700170307

    Article  CAS  PubMed  Google Scholar 

  42. Hertzman C, Wiens M, Snow B, Kelly S, Calne D (1994) A case-control study of Parkinson’s disease in a horticultural region of British Columbia. Mov Disord 9(1):69–75. https://doi.org/10.1002/mds.870090111

    Article  CAS  PubMed  Google Scholar 

  43. Vaccari C, El Dib R, Gomaa H, Lopes LC, de Camargo JL (2019) Paraquat and Parkinson’s disease: a systematic review and meta-analysis of observational studies. J Toxicol Environ Health B Crit Rev 22(5–6):172–202. https://doi.org/10.1080/10937404.2019.1659197

    Article  CAS  PubMed  Google Scholar 

  44. Yan D, Zhang Y, Liu L, Shi N, Yan H (2018) Pesticide exposure and risk of Parkinson’s disease: dose-response meta-analysis of observational studies. Regul Toxicol Pharmacol 96:57–63. https://doi.org/10.1016/j.yrtph.2018.05.005

    Article  CAS  PubMed  Google Scholar 

  45. Kim Y, Kim I, Sung JM, Song J (2021) Parkinson’s disease in a worker exposed to insecticides at a greenhouse. Ann Occup Environ Med 33:e6. https://doi.org/10.35371/aoem.2021.33.e6

    Article  PubMed  PubMed Central  Google Scholar 

  46. Erikson KM, Thompson K, Aschner J, Aschner M (2007) Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 113(2):369–377. https://doi.org/10.1016/j.pharmthera.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  47. McKnight S, Hack N (2020) Toxin-induced parkinsonism. Neurol Clin 38(4):853–865. https://doi.org/10.1016/j.ncl.2020.08.003

    Article  PubMed  Google Scholar 

  48. Pal P, Samii A, Calne D (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20:227–238

    CAS  PubMed  Google Scholar 

  49. Du K, Liu MY, Pan YZ, Zhong X, Wei MJ (2018) Association of circulating manganese levels with Parkinson’s disease: a meta-analysis. Neurosci Lett 665:92–98. https://doi.org/10.1016/j.neulet.2017.11.054

    Article  CAS  PubMed  Google Scholar 

  50. Sanchez-Betancourt J, Anaya-Martínez V, Gutiérrez-Valdez A, Ordoñez-Librado J, Montiel-Flores E, Espinosa-Villanueva J, Ávila-Costa M (2012) Manganese mixture inhalation is a reliable Parkinson disease model in rats. Neurotoxicology 33(5):1346–1355. https://doi.org/10.1016/j.neuro.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  51. Zhu QF, Lu LL, Fang YY, Wu J, Huang ZY, Zheng XW, Jiang YM (2022) Methylcyclopentadienyl manganese tricarbonyl alter behavior and cause ultrastructural changes in the substantia nigra of rats: comparison with inorganic manganese chloride. Neurochem Res. https://doi.org/10.1007/s11064-022-03606-z

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hirata Y, Suzuno H, Tsuruta T, Oh-hashi K, Kiuchi K (2008) The role of dopamine transporter in selective toxicity of manganese and rotenone. Toxicology 244(2–3):249–256. https://doi.org/10.1016/j.tox.2007.11.018

    Article  CAS  PubMed  Google Scholar 

  53. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS et al (2019) The microbiota-gut-brain axis. Physiol Rev 99(4):1877–2013. https://doi.org/10.1152/physrev.00018.2018

    Article  CAS  PubMed  Google Scholar 

  54. Cersosimo MG, Raina GB, Pecci C, Pellene A, Calandra CR et al (2013) Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J Neurol 260(5):1332–1338. https://doi.org/10.1007/s00415-012-6801-2

    Article  CAS  PubMed  Google Scholar 

  55. Shen T, Yue Y, He T, Huang C, Qu B et al (2021) The association between the gut microbiota and Parkinson’s disease, a meta-analysis. Front Aging Neurosci 13:636545. https://doi.org/10.3389/fnagi.2021.636545.V.N

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Floor E, Wetzel MG (1998) Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 70(1):268–275. https://doi.org/10.1046/j.1471-4159.1998.70010268.x

    Article  CAS  PubMed  Google Scholar 

  57. Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MM et al (2012) Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease. Neurochem Res 37(2):358–369. https://doi.org/10.1007/s11064-011-0619-7

    Article  CAS  PubMed  Google Scholar 

  58. Gerlach M, Riederer P, Przuntek H, Youdim MB (1991) MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. Euro J Pharmacol 208(4):273–286. https://doi.org/10.1016/0922-4106(91)90073-q.S

    Article  CAS  Google Scholar 

  59. Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T et al (2005) Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J Biol Chem 280(51):42026–42035. https://doi.org/10.1074/jbc.M508628200

    Article  CAS  PubMed  Google Scholar 

  60. Gal S, Fridkin M, Amit T, Zheng H, Youdim MB (2006) M30, a novel multifunctional neuroprotective drug with potent iron chelating and brain selective monoamine oxidase-ab inhibitory activity for Parkinson’s disease. J Neural Transm Suppl 70:447–456. https://doi.org/10.1007/978-3-211-45295-0_68

    Article  CAS  Google Scholar 

  61. Soto-Otero R, Sanmartín-Suárez C, Sánchez-Iglesias S, Hermida-Ameijeiras A, Sánchez-Sellero I, Méndez-Alvarez E (2006) Study on the ability of 1,2,3,4-tetrahydropapaveroline to cause oxidative stress: Mechanisms and potential implications in relation to Parkinson’s disease. J Biochem Mol Toxicol 20(5):209–220. https://doi.org/10.1002/jbt.20138

    Article  CAS  PubMed  Google Scholar 

  62. Umek N, Geršak B, Vintar N, Šoštarič M, Mavri J (2018) Dopamine autoxidation is controlled by acidic pH. Front Mol Neurosci 11:467. https://doi.org/10.3389/fnmol.2018.00467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shen XM, Dryhurst G (1998) Iron- and manganese-catalyzed autoxidation of dopamine in the presence of L-cysteine: possible insights into iron- and manganese-mediated dopaminergic neurotoxicity. Chem Res Toxicol 11(7):824–837. https://doi.org/10.1021/tx980036t

    Article  CAS  PubMed  Google Scholar 

  64. Zecca L, Zucca FA, Costi P, Tampellini D, Gatti A, Gerlach M et al (2003) The neuromelanin of human substantia nigra: structure, synthesis and molecular behaviour. J Neural Transm Suppl 65:145–155. https://doi.org/10.1007/978-3-7091-0643-3_8

    Article  Google Scholar 

  65. Law-Tho D, Hirsch JC, Crepel F (1994) Dopamine modulation of synaptic transmission in rat prefrontal cortex: an in vitro electrophysiological study. Neurosci Res 21(2):151–160. https://doi.org/10.1016/0168-0102(94)90157-0

    Article  CAS  PubMed  Google Scholar 

  66. Gerhardt GA, Cass WA, Yi A, Zhang Z, Gash DM (2002) Changes in somatodendritic but not terminal dopamine regulation in aged rhesus monkeys. J Neurochem 80(1):168–177. https://doi.org/10.1046/j.0022-3042.2001.00684.x

    Article  CAS  PubMed  Google Scholar 

  67. González-Rodríguez P, Zampese E, Stout KA, Guzman JN, Ilijic E et al (2021) Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 599(7886):650–656. https://doi.org/10.1038/s41586-021-04059-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P et al (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827. https://doi.org/10.1111/j.1471-4159.1990.tb02325.x

    Article  CAS  PubMed  Google Scholar 

  69. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV et al (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306. https://doi.org/10.1038/81834

    Article  CAS  PubMed  Google Scholar 

  70. Zárate RV, Hidalgo S, Navarro N, Molina-Mateo D, Arancibia D et al (2022) An early disturbance in serotonergic neurotransmission contributes to the onset of parkinsonian phenotypes in Drosophila melanogaster. Cells 11(9):1544. https://doi.org/10.3390/cells11091544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38(5):515–517. https://doi.org/10.1038/ng1769

    Article  CAS  PubMed  Google Scholar 

  72. Beilina A, Cookson MR (2016) Genes associated with Parkinson’s disease: regulation of autophagy and beyond. J Neurochem 139:91–107. https://doi.org/10.1111/jnc.13266

    Article  CAS  PubMed  Google Scholar 

  73. Hattingen E, Magerkurth J, Pilatus U, Mozer A, Seifried C et al (2009) Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain 132(12):3285–3297. https://doi.org/10.1093/brain/awp293

    Article  PubMed  Google Scholar 

  74. Flønes IH, Fernandez-Vizarra E, Lykouri M, Brakedal B, Skeie GO et al (2018) Neuronal complex I deficiency occurs throughout the Parkinson’s disease brain, but is not associated with neurodegeneration or mitochondrial DNA damage. Acta Neuropathol 135(3):409–425. https://doi.org/10.1007/s00401-017-1794-7

    Article  PubMed  Google Scholar 

  75. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21(2):404–412. https://doi.org/10.1016/j.nbd.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  76. Iannaccone S, Cerami C, Alessio M, Garibotto V, Panzacchi A et al (2013) In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Parkinsonism Relat Disord 19(1):47–52. https://doi.org/10.1016/j.parkreldis.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  77. Smajić S, Prada-Medina CA, Landoulsi Z, Ghelfi J, Delcambre S et al (2022) Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain 145(3):964–978. https://doi.org/10.1093/brain/awab446

    Article  PubMed  Google Scholar 

  78. Dodiya HB, Forsyth CB, Voigt RM, Engen PA, Patel J et al (2020) Chronic stress-induced gut dysfunction exacerbates Parkinson’s disease phenotype and pathology in a rotenone-induced mouse model of Parkinson’s disease. Neurobiol Dis 135:104352. https://doi.org/10.1016/j.nbd.2018.12.012

    Article  CAS  PubMed  Google Scholar 

  79. Zhang W, Wang T, Pei Z, Miller DS, Wu X et al (2005) Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542. https://doi.org/10.1096/fj.04-2751com

    Article  CAS  PubMed  Google Scholar 

  80. Brodacki B, Staszewski J, Toczyłowska B, Kozłowska E, Drela N et al (2008) Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFα, and INFγ concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci Lett 441(2):158–162. https://doi.org/10.1016/j.neulet.2008.06.040

    Article  CAS  PubMed  Google Scholar 

  81. Schröder JB, Pawlowski M, Meyer zu Hörste G, Gross CC, Wiendl H et al (2018) Immune cell activation in the cerebrospinal fluid of patients with Parkinson’s disease. Front Neurol 9:1081. https://doi.org/10.3389/fneur.2018.01081

    Article  PubMed  PubMed Central  Google Scholar 

  82. Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172(1–2):151–154. https://doi.org/10.1016/0304-3940(94)90684-x

    Article  CAS  PubMed  Google Scholar 

  83. Mogi M, Togari A, Kondo T, Mizuno Y, Komure O et al (2000) Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm (Vienna) 107(3):335–341. https://doi.org/10.1007/s007020050028

    Article  CAS  PubMed  Google Scholar 

  84. McNaught KSP, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 297(3):191–194. https://doi.org/10.1016/s0304-3940(00)01701-8

    Article  CAS  PubMed  Google Scholar 

  85. Sjödin S, Brinkmalm G, Öhrfelt A, Parnetti L, Paciotti S et al (2019) Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer’s and Parkinson’s disease. Alzheimers Res Ther 11(1):1–16. https://doi.org/10.1186/s13195-019-0533-9

    Article  CAS  Google Scholar 

  86. Barlan K, Gelfand VI (2017) Microtubule-based transport and the distribution, tethering, and organization of organelles. Cold Spring Harb Perspect Biol 9(5):a025817. https://doi.org/10.1101/cshperspect.a025817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pissadaki EK, Bolam JP (2013) The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front Comput Neurosci 7:13. https://doi.org/10.3389/fncom.2013.00013

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hunn BH, Cragg SJ, Bolam JP, Spillantini MG, Wade-Martins R (2015) Impaired intracellular trafficking defines early Parkinson’s disease. Trends Neurosci 38(3):178–188. https://doi.org/10.1016/j.tins.2014.12.009Hunnetal.,2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ren Y, Zhao J, Feng J (2003) Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci 23(8):3316–3324. https://doi.org/10.1523/JNEUROSCI.23-08-03316.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Burke D, Gasdaska P, Hartwell L (1989) Dominant effects of tubulin overexpression in Saccharomyces cerevisiae. Mol Cell Biol 9(3):1049–1059. https://doi.org/10.1128/mcb.9.3.1049-1059.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang F, Jiang Q, Zhao J, Ren Y, Sutton MD, Feng J (2005) Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem 280(17):17154–17162. https://doi.org/10.1074/jbc.M500843200

    Article  CAS  PubMed  Google Scholar 

  92. Ren Y, Jiang H, Hu Z, Fan K et al (2015) Parkin mutations reduce the complexity of neuronal processes in iPSC-derived human neurons. Stem Cells 33(1):68–78. https://doi.org/10.1002/stem.Renetal.,2015

    Article  CAS  PubMed  Google Scholar 

  93. Guo L, Gandhi PN et al (2007) The Parkinson’s disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res 313(16):3658–3670. https://doi.org/10.1016/j.yexcr.2007.07.007.Guoetal.,2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A (2006) The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52(4):587–593. https://doi.org/10.1016/j.neuron.2006.10.008

    Article  CAS  PubMed  Google Scholar 

  95. Godena VK, Brookes-Hocking N, Moller A, Shaw G, Oswald M et al (2014) Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 5:5245. https://doi.org/10.1038/ncomms6245

    Article  CAS  PubMed  Google Scholar 

  96. Schwab AJ, Ebert AD (2015) Neurite aggregation and calcium dysfunction in iPSC-derived sensory neurons with Parkinson’s disease-related LRRK2 G2019S mutation. Stem Cell Reports 5(6):1039–1052. https://doi.org/10.1016/j.stemcr.2015.11.004.Schwabetal.,2015

  97. Madine J, Doig AJ, Middleton DA (2006) A study of the regional effects of alpha-synuclein on the organization and stability of phospholipid bilayers. Biochemistry, 9 45(18):5783–5792. https://doi.org/10.1021/bi052151q

    Article  CAS  Google Scholar 

  98. Zhou RM, Huang YX, Li XL, Chen C, Shi Q et al (2010) (2010) Molecular interaction of α-synuclein with tubulin influences on the polymerization of microtubule in vitro and structure of microtubule in cells. Mol Biol Rep 37(7):3183–3192. https://doi.org/10.1007/s11033-009-9899-2

    Article  CAS  PubMed  Google Scholar 

  99. Alim MA, Hossain MS, Arima K et al (2002) Tubulin seeds alpha-synuclein fibril formation. J Biol Chem 277(3):2112–2117

    Article  CAS  PubMed  Google Scholar 

  100. Prots I, Veber V, Brey S, Campioni S, Buder K, Riek R, Böhm KJ, Winner B (2013) α-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J Biol Chem 288(30):21742–21754. https://doi.org/10.1074/jbc.M113.451815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cartelli D, Aliverti A, Barbiroli A et al (2016) α-Synuclein is a novel microtubule dynamase. Sci Rep 6:33289. https://doi.org/10.1038/srep33289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Esteves AR, Arduíno DM, Swerdlow RH, Oliveira CR, Cardoso SM (2009) Oxidative stress involvement in alpha-synuclein oligomerization in Parkinson’s disease cybrids. Antioxid Redox Signal 11(3):439–448. https://doi.org/10.1089/ars.2008.2247

    Article  CAS  PubMed  Google Scholar 

  103. Cartelli D, Casagrande F, Busceti CL, Bucci D, Molinaro G, Traficante A, Passarella D, Giavini E et al (2013) Microtubule alterations occur early in experimental parkinsonism and the microtubule stabilizer epothilone D is neuroprotective. Sci Rep 3:1837. https://doi.org/10.1038/srep01837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chia SJ, Tan EK, Chao YX (2020) Historical perspective: models of Parkinson’s disease. Int J Mol Sci 21(7):2464. https://doi.org/10.3390/ijms21072464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Thirugnanam T, Santhakumar K (2022) Chemically induced models of Parkinson’s disease. Comp Biochem Physiol C Toxicol Pharmacol 252:109213. https://doi.org/10.1016/j.cbpc.2021.109213

    Article  CAS  PubMed  Google Scholar 

  106. Langston JW (2017) The MPTP story. J Parkinsons Dis 7(s1):S11–S19. https://doi.org/10.3233/JPD-179006

    Article  PubMed  PubMed Central  Google Scholar 

  107. Przedborski S, Tieu K, Perier C, Vila M (2004) MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 36(4):375–379. https://doi.org/10.1023/B:JOBB.0000041771.66775.d5

    Article  CAS  PubMed  Google Scholar 

  108. Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76(5):1265–1274. https://doi.org/10.1046/j.1471-4159.2001.00183.x

    Article  CAS  PubMed  Google Scholar 

  109. Jonsson G, Nwanze E, Luthman J, Sundström E (1986) Effect of MPTP and its pyridinium metabolites on monoamine uptake and on central catecholamine neurons in mice. Acta Physiol Scand 128(2):187–194. https://doi.org/10.1111/j.1748-1716.1986.tb07965.x

    Article  CAS  PubMed  Google Scholar 

  110. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909. https://doi.org/10.1016/s0896-6273(03)00568-3

    Article  CAS  PubMed  Google Scholar 

  111. Riachi NJ, Harik SI (1988) Strain differences in systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in mice correlate best with monoamine oxidase activity at the blood-brain barrier. Life Sci 42(23):2359–2363. https://doi.org/10.1016/0024-3205(88)90189-0

    Article  CAS  PubMed  Google Scholar 

  112. Keller HH, Da Prada M (1985) Evidence for the release of 1-methyl-4-phenylpyridinium (MPP+) from rat striatal neurons in vitro. Eur J Pharmacol 119(3):247–250. https://doi.org/10.1016/0014-2999(85)90304-8

    Article  CAS  PubMed  Google Scholar 

  113. Blesa J, Przedborski S (2014) Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 8:155. https://doi.org/10.3389/fnana.2014.00155

    Article  PubMed  PubMed Central  Google Scholar 

  114. Fornai F, Schlüter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M et al (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci U S A 102(9):3413–3418. https://doi.org/10.1073/pnas.0409713102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang J, Sun B, Yang J, Chen Z, Li Z et al (2022) Comparison of the effect of rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on inducing chronic Parkinson’s disease in mouse models. Mol Med Rep 25(3):91. https://doi.org/10.3892/mmr.2022.12607. (Epub 2022 Jan 18)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Salama RM, Abdel-Latif GA, Abbas SS, El Magdoub HM, Schaalan MF (2020) Neuroprotective effect of crocin against rotenone-induced Parkinson’s disease in rats: Interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology 164:107900. https://doi.org/10.1016/j.neuropharm.2019.107900)

    Article  CAS  PubMed  Google Scholar 

  117. Ozbey G, Nemutlu-Samur D, Parlak H, Yildirim S, Aslan M, Tanriover G, Agar A (2020) Metformin protects rotenone-induced dopaminergic neurodegeneration by reducing lipid peroxidation. Pharmacol Rep 72(5):1397–1406. https://doi.org/10.1007/s43440-020-00095-1

    Article  CAS  PubMed  Google Scholar 

  118. Bigelow LJ, Perry MA, Ogilvie SL, Tasker RA (2022) Longitudinal assessment of behaviour and associated bio-markers following chronic consumption of β-Sitosterol β-D-Glucoside in rats: a putative model of Parkinson’s disease. Front Neurosci 16:810148. https://doi.org/10.3389/fnins.2022.810148

    Article  PubMed  PubMed Central  Google Scholar 

  119. La Forge FB, Haller HL, Smith LE (1993) The determination of the structure of rotenone. Chem Rev 12(2):181–213

    Article  Google Scholar 

  120. Bettoli PW, Maceina MJ (1996) Sampling with toxicants. In: Murphy, B.R., Willis, D.R. (Eds) Fisheries Techniques. 2nd edition. American Fisheries Society, Bethesda, MD

  121. Ling N (2003) Rotenoneôa review of its toxicity and use for fisheries management. Sci Conserv 211:1–40

    Google Scholar 

  122. Fang N, Casida JE (1999) Cube resin insecticide: identification and biological activity of 29 rotenoid constituents. J Agri Food Chem 47(5):2130–2136. https://doi.org/10.1021/jf981188x

    Article  CAS  Google Scholar 

  123. Gómez-Chavarín M, Díaz-Pérez R, Morales-Espinosa R, Fernández-Ruiz J, Roldán-Roldán G, Torner C (2013) Efecto de la exposición al pesticida rotenona sobre el desarrollo del sistema dopaminérgico nigro-estriatal en ratas. Salud Ment 36(1):1–8

    Article  Google Scholar 

  124. World Health Organization, 2020. The WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition. Recovered from: https://www.who.int/publications/i/item/9789240005662. WHO 92:37

  125. Innos J and Hickey MA (2021) Using rotenone to model Parkinson’s disease in mice: a review of the role of pharmacokinetics. Chem Res Toxicol 34(5):1223–1239. https://doi.org/10.1021/acs.chemrestox.0c00522

  126. Narongchai P, Narongchai S, Thampituk S (2005) The first fatal case of yam bean and rotenone toxicity in Thailand. J Med Assoc Thai 88(7):984–987

    PubMed  Google Scholar 

  127. Holland EA (1938) Suicide by Ingestion of Derris Root Sp. in New Ireland. Trans Royal Soc Trop Med Hygiene 32(2):293–294

    Article  CAS  Google Scholar 

  128. De Wilde AR, Heyndrickx A, Carton D (1986) A case of fatal rotenone poisoning in a child. J Forensic Sci 31(4):1492–1498

    Article  PubMed  Google Scholar 

  129. Wood DM, Alsahaf H, Streete P, Dargan PI, Jones AL (2005) Fatality after deliberate ingestion of the pesticide rotenone: a case report. Crit Care 9(3):R280-284. https://doi.org/10.1186/cc3528

    Article  PubMed  PubMed Central  Google Scholar 

  130. Dhillon AS, Tarbutton GL, Levin JL, Plotkin GM, Lowry LK et al (2008) Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromedicine 13(1):37–48. https://doi.org/10.1080/10599240801986215

    Article  PubMed  Google Scholar 

  131. Heikkila RE, Nicklas WJ, Vyas I, Duvoisin RC (1985) Duvoisin, Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine toxicity. Neurosci Lett. 62(3):389–394. https://doi.org/10.1016/0304-3940(85)90580-4

    Article  CAS  PubMed  Google Scholar 

  132. Ferrante RJ, Schulz JB, Kowall NW, Beal MF (1997) Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra. Brain Res 753:157–162. https://doi.org/10.1016/s0006-8993(97)00008-5

    Article  CAS  PubMed  Google Scholar 

  133. Bashkatova V, Alam M, Vanin A, Schmidt WJ (2004) Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain. Exp Neurol 186(2):235–241. https://doi.org/10.1016/j.expneurol.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  134. Fleming SM, Zhu C, Fernagut PO, Mehta A, DiCarlo CD et al (2004) Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 187(2):418–429. https://doi.org/10.1016/j.expneurol.2004.01.023

    Article  CAS  PubMed  Google Scholar 

  135. Thiffault C, Langston JW, Di Monte DA (2000) Increased striatal dopamine turnover following acute administration of rotenone to mice. Brain Res 885(2):283–288. https://doi.org/10.1016/s0006-8993(00)02960-7

    Article  CAS  PubMed  Google Scholar 

  136. Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324

    Article  CAS  PubMed  Google Scholar 

  137. Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE et al (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34(2):279–290. https://doi.org/10.1016/j.nbd.2009.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Coulom H, Birman S (2004) Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J Neurosci 24(48):10993–10998. https://doi.org/10.1523/JNEUROSCI.2993-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Abdin AA, Hamouda HE (2008) Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism. Neuropharmacology 55(8):1340–1346. https://doi.org/10.1016/j.neuropharm.2008.08.033

    Article  CAS  PubMed  Google Scholar 

  140. Serrano-García N, Fernández-Valverde F, Luis-Garcia ER, Granados-Rojas L, Juárez-Zepeda TE et al (2018) Docosahexaenoic acid protection in a rotenone induced Parkinson’s model: prevention of tubulin and synaptophysin loss, but no association with mitochondrial function. Neurochem Int 121:26–37. https://doi.org/10.1016/j.neuint.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  141. Madiha S, Batool Z, Tabassum S, Liaquat L, Sadir S et al (2021) Quercetin exhibits potent antioxidant activity, restores motor and non-motor deficits induced by rotenone toxicity. PLoS ONE 16(11):e0258928. https://doi.org/10.1371/journal.pone.0258928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chen S, Xiao Z, Wu H, Zhou G, Xu C et al (2020) Bisdemethoxycurcumin exerts a cell-protective effect via JAK2/STAT3 signaling in a rotenone-induced Parkinson’s disease model in vitro. Folia Histochem Cytobiol 58(2):127–134. https://doi.org/10.5603/FHC.a2020.0011

    Article  PubMed  Google Scholar 

  143. Palanisamy BN, Sarkar S, Malovic E, Samidurai M, Charli A et al (2022) Environmental neurotoxic pesticide exposure induces gut inflammation and enteric neuronal degeneration by impairing enteric glial mitochondrial function in pesticide models of Parkinson’s Disease: potential relevance to gut-brain axis inflammation in Parkinson’s disease pathogenesis. Int J Biochem Cell Biol 147:106225. https://doi.org/10.1016/j.biocel.2022.106225

    Article  CAS  PubMed  Google Scholar 

  144. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363(9423):1783–1793. https://doi.org/10.1016/S0140-6736(04)16305-8

    Article  CAS  PubMed  Google Scholar 

  145. Moon SH, Kwon Y, Huh YE, Choi HJ (2022) Trehalose ameliorates prodromal non-motor deficits and aberrant protein accumulation in a rotenone-induced mouse model of Parkinson’s disease. Arch Pharm Res 45(6):417–432. https://doi.org/10.1007/s12272-022-01386-2

    Article  CAS  PubMed  Google Scholar 

  146. Wang Y, Liu W, Yang J, Wang F, Sima Y et al (2017) Parkinson’s disease-like motor and non-motor symptoms in rotenone-treated zebrafish. Neurotoxicology 58:103–109. https://doi.org/10.1016/j.neuro.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  147. Zhang D, Li S, Hou L, Jing L, Ruan Z et al (2021) Microglial activation contributes to cognitive impairments in rotenone-induced mouse Parkinson’s disease model. J Neuroinflammation 18(1):4. https://doi.org/10.1186/s12974-020-02065-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Adebayo OG, Asiwe JN, Ben‐Azu B, Aduema W, Onyeleonu I, et al (2020) Ginkgo biloba protects striatal neurodegeneration and gut phagoinflammatory damage in rotenone‐induced mice model of Parkinson’s disease: role of executioner caspase‐3/Nrf2/ARE signaling. J Food Biochem e14253. https://doi.org/10.1111/jfbc.14253

  149. Ahn EH, Kang SS, Liu X, Chen G, Zhang Z et al (2020) Initiation of Parkinson’s disease from gut to brain by δ-secretase. Cell Res 30(1):70–87. https://doi.org/10.1038/s41422-019-0241-9

    Article  PubMed  Google Scholar 

  150. Höglinger GU, Feger J, Prigent A, Michel P, Parain K et al (2003) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84:491–502. https://doi.org/10.1046/j.1471-4159.2003.01533.x

    Article  PubMed  Google Scholar 

  151. Sui YT, Bullock KM, Erickson MA, Zhang J, Banks WA (2014) alpha-synuclein is transported into and out of the brain by the blood–brain barrier. Peptides 62:197–202. https://doi.org/10.1016/j.peptides.2014.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. George JM (2002) The synucleins. Genome Biol. 3(1):REVIEWS3002. https://doi.org/10.1186/gb-2001-3-1-reviews3002

  153. Emamzadeh FN (2016) alpha-synuclein structure, functions, and interactions. J Res Med Sci 21:29. https://doi.org/10.4103/1735-1995.181989

    Article  PubMed  PubMed Central  Google Scholar 

  154. Rodríguez EE, Arcos-López T, Trujano-Ortiz LG, Fernández CO, González FJ et al (2016) Role of N-terminal methionine residues in the redox activity of copper bound to apha-synuclein. J Biol Inorg Chem 21(5–6):691–702. https://doi.org/10.1007/s00775-016-1376-5

    Article  CAS  PubMed  Google Scholar 

  155. George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15(2):361–372. https://doi.org/10.1016/0896-6273(95)90040-3

    Article  CAS  PubMed  Google Scholar 

  156. Oueslati A, Fournier M, Lashuel HA (2010) Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein: implications for Parkinson’s disease pathogenesis and therapies. Prog Brain Res 183:115–145. https://doi.org/10.1016/S0079-6123(10)83007-9

    Article  CAS  PubMed  Google Scholar 

  157. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E et al (2002) α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2):60–164. https://doi.org/10.1038/ncb748

    Article  CAS  Google Scholar 

  158. Nakai M, Fujita M, Waragai M, Sugama S, Wei J et al (2007) Expression of α-synuclein, a presynaptic protein implicated in Parkinson’s disease, in erythropoietic lineage. Biochem Biophys Res Commun 358(1):104–110. https://doi.org/10.1016/j.bbrc.2007.04.108

    Article  CAS  PubMed  Google Scholar 

  159. Bartels T, Choi JG, Selkoe DJ (2011) α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110. https://doi.org/10.1038/nature10324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LT, Liao J et al (2011) A soluble α-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci U S A 108(43):17797–17802. https://doi.org/10.1073/pnas.1113260108

    Article  PubMed  PubMed Central  Google Scholar 

  161. Burré J, Sharma M, Südhof TC (2014) α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc Natl Acad Sci U S A 111(40):E4274–E4283. https://doi.org/10.1073/pnas.1416598111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR et al (2012) Exosomal cell-to-cell transmission of alpha-synuclein oligomers. Mol Neurodegener 7:42. https://doi.org/10.1186/1750-1326-7-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li JY, Englund E, Holton JL, Soulet D, Hagell P et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503. https://doi.org/10.1038/nm1746

    Article  CAS  PubMed  Google Scholar 

  164. Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R et al (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci USA 112(38):E5308–E5317. https://doi.org/10.1073/pnas.1514475112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Uversky VN (2002) Cracking the folding code. Why do some proteins adopt partially folded conformations, whereas other don’t? FEBS letters 514(2–3):181–183. https://doi.org/10.1016/S0014-5793(02)02359-1

    Article  CAS  PubMed  Google Scholar 

  166. Silva BA, Einarsdóttir Ó, Fink AL, Uversky VN (2013) Biophysical characterization of α-synuclein and rotenone interaction. Biomolecules 3(3):703–732. https://doi.org/10.3390/biom3030703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sugeno N, Takeda A, Hasegawa T, Kobayashi M, Kikuchi A et al (2008) Serine 129 phosphorylation of alpha-synuclein induces unfolded protein response-mediated cell death. J Biol Chem 283(34):23179–23188. https://doi.org/10.1074/jbc.M802223200

    Article  CAS  PubMed  Google Scholar 

  168. Shin WH, Chung KC (2020) Death-associated protein kinase 1 phosphorylates α-Synuclein at ser129 and exacerbates rotenone-induced toxic aggregation of α-Synuclein in dopaminergic SH-SY5Y Cells. Exp Neurobiol 29(3):207–218. https://doi.org/10.5607/en20014

    Article  PubMed  PubMed Central  Google Scholar 

  169. Esteves AR, Arduíno DM, Swerdlow RH, Oliveira CR, Cardoso SM (2010) Microtubule depolymerization potentiates alpha-synuclein oligomerization. Front Aging Neurosci 1:5. https://doi.org/10.3389/neuro.24.005.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Marshall LE, Himes RH (1978) Rotenone inhibition of tubulin self-assembly. Biochim Biophys Acta (BBA)-General Subjects 543(4):590–594. https://doi.org/10.1016/0304-4165(78)90315-x

    Article  CAS  PubMed  Google Scholar 

  171. Díaz-Corrales FJ, Asanuma M, Miyazaki I, Miyoshi K, Ogawa N (2005) Rotenone induces aggregation of γ-tubulin protein and subsequent disorganization of the centrosome: relevance to formation of inclusion bodies and neurodegeneration. Neuroscience 133(1):117–135. https://doi.org/10.1016/j.neuroscience.2005.01.044

    Article  CAS  PubMed  Google Scholar 

  172. Srivastava P, Panda D (2007) Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS J 274(18):4788–4801. https://doi.org/10.1111/j.1742-4658.2007.06004.x

    Article  CAS  PubMed  Google Scholar 

  173. Ren Y, Liu W, Jiang Q, Feng J (2005) Selectively vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 280:34105–34112. https://doi.org/10.1074/jbc.M503483200

  174. Choi WS, Kruse SE, Palmiter RD, Xia Z (2008) Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. Proc Natl Acad Sci U S A 105(39):15136–15141. https://doi.org/10.1073/pnas.0807581105,114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ivashko-Pachima Y, Seroogy KB, Sharabi Y, Gozes I (2021) Parkinson disease-modification encompassing rotenone and 6-hydroxydopamine neurotoxicity by the microtubule-protecting drug candidate SKIP. J Mol Neurosci 71(8):1515–1524. https://doi.org/10.1007/s12031-021-01876-w

    Article  CAS  PubMed  Google Scholar 

  176. Esteves AR, Lu J, Rodova M, Onyango I, Lezi E et al (2010) Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson’s subject mitochondrial transfer. J Neurochem 113(3):674–682. https://doi.org/10.1111/j.1471-4159.2010.06631.x

    Article  CAS  PubMed  Google Scholar 

  177. Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ (2010) Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res 70(24):10192–10201. https://doi.org/10.1158/0008-5472.CAN-10-2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Choi WS, Palmiter RD (2011) Xia Z (2011) Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol 192(5):873–882. https://doi.org/10.1083/jcb.201009132.Choi

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Flønes IH, Tzoulis C (2022) Mitochondrial respiratory chain dysfunction-a hallmark pathology of idiopathic Parkinson’s disease? Front Cell Dev Biol 10:874596. https://doi.org/10.3389/fcell.2022.874596

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Ibarra-Gutiérrez M. T. is a PhD student from Programa de Doctorado en Ciencias Biomédicas at the Universidad Nacional Autónoma de México (UNAM) and received the fellowship 414232 from the Consejo Nacional de Ciencia y Tecnología, México.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. Maria Teresa Ibarra-Gutiérrez wrote the first draft of the manuscript under the supervision of Marisol Orozco-Ibarra; all authors performed the revision considering the reviewer’s suggestion. Finally, all authors read and approved the final manuscript.

Corresponding author

Correspondence to Marisol Orozco-Ibarra.

Ethics declarations

Ethics Approval

This manuscript does not report the results of studies involving humans and/or animals.

Consent to Participate

This manuscript does not involve human subjects.

Consent for Publication

This manuscript does not involve human subjects.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibarra-Gutiérrez, M.T., Serrano-García, N. & Orozco-Ibarra, M. Rotenone-Induced Model of Parkinson’s Disease: Beyond Mitochondrial Complex I Inhibition. Mol Neurobiol 60, 1929–1948 (2023). https://doi.org/10.1007/s12035-022-03193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03193-8

Keywords

Navigation