Skip to main content
Log in

Optimization of Dual Material Based Dielectric Modulated Heterojunction Double Gate Tunnel FETs with Noise Reduction Analysis for High Frequency Applications

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study reveals the effect of variations in process parameters on the noise performance of dual gate Tunnel Field Effect Transistor (SMDGTFET), hetero dielectric Tunnel Field Effect Transistor (SMHDGTFET), dual metal gate Tunnel Field Effect Transistor (DMHDGTFET) and heterojunction dual metal gate Tunnel Field Effect Transistor (SiGe-DMHDGTFET), as previously proposed in the literature (Vedvrat et al. in Silicon 16:1297–1308, 2023). The noise characteristics, including the minimum noise figure (NFmin) and the optimum source impedance (Zopt), are examined in this work. This study also considers the statistical methods of auto-correlation aspects (< V1.V1* > / < V2.V2* >) and cross-correlation aspect (< V1.V2* >), due to the unpredictable nature of noise. We compare and study the four structures' analog characteristics as well as the effects of varying multiple structural design parameters on these characteristics in order to comprehend the structures' performance. Structure design elements including electric field, carrier concentration, surface potential, and carrier mobility explain the structure's internal mechanics. According to the performance assessment, the heterojunction dual metal hetero dielectric dual gate Tunnel FET (SiGe-DMHDGTFET), offers enhanced noise performance characteristics when the structure's channel length is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data and material are available within the manuscript.

References

  1. Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high k gate dielectric. IEEE Trans Electron Devices 54:1725–1733. https://doi.org/10.1109/TED.2007.899389

    Article  CAS  Google Scholar 

  2. Sivasankaran K, Mallick PS (2013) A comparative study of radio frequency stability performance of double gate MOSFET and double gate tunnel FET. Proc 013 Int Conf Green Comput Commun Conserv Energy, ICGCE, 220–224. https://doi.org/10.1109/ICGCE.2013.6823432

  3. Pal A, Dutta AK (2016) Analytical drain current modeling of double gate tunnel field-effect transistors. IEEE Trans Electron Devices 63:3213–3221. https://doi.org/10.1109/TED.2016.2581842

    Article  CAS  Google Scholar 

  4. Vedvrat, Yasin MY, Gupta V, Pandey D (2023) Improved switching and analog/RF behaviour of SiGe heterojunction dielectric modulated dual material nano silicon tunnel FET for low power applications. SILICON 16:1297–1308. https://doi.org/10.1007/s12633-023-02755-2

  5. Yang Zhaonian (2016) Tunnel field-effect transistor with an L shaped gate. IEEE Electron Device Lett 37:839–842. https://doi.org/10.1109/LED.2016.2574821

    Article  CAS  Google Scholar 

  6. Bhuwalka KK, Sedlmaier S (2004) Vertical tunnel field-effect transistor. IEEE Trans Electron Devices 51:279–282. https://doi.org/10.1109/TED.2003.821575

    Article  CAS  Google Scholar 

  7. Paras N, Chauhan SS (2019) Temperature sensitivity analysis of vertical tunneling based dual metal Gate TFET on analog/RF FOMs. Appl Phys A 125(5):316

    Article  CAS  Google Scholar 

  8. Liana Z, Choudhuri B, Bhowmick B (2023) Analysis of the impact of interface trap charges on the analog/RF performance of a graphene nanoribbon vertical tunnel FET. J Electron Mater 52(10):6825–6839. https://doi.org/10.1007/s11664-023-10615-3

    Article  CAS  Google Scholar 

  9. Bhushan B, Nayak K, Rao VR (2012) DC compact model for SOI tunnel field-effect transistors. IEEE Trans Electron Devices 59:2635–2642. https://doi.org/10.1109/TED.2012.2209180

    Article  CAS  Google Scholar 

  10. Kao KH, William ASV, Vandenberghe G et al (2012) Direct and indirect band-to-band tunneling in germanium-based TFETs. IEEE Trans Electron Devices 59:292–301

    Article  CAS  Google Scholar 

  11. Kim HW, Kim JH, Kim SW, Sun MC, Park E, Park BG (2014) Tunneling field-effect transistor with Si/SiGe material for high current drivability. Jpn J Appl Phys 53:6S. https://doi.org/10.7567/JJAP.53.06JE12

    Article  CAS  Google Scholar 

  12. Mitra SK, Goswami R, Bhowmick B (2016) A hetero dielectric stack gate SOI-TFET with back gate and its application as a digital inverter. Superlattices Microstruct 92:37–51. https://doi.org/10.1016/j.spmi.2016.01.040

    Article  CAS  Google Scholar 

  13. Ahish S, Sharma D, Vasantha MH, Kumar YBN (2016) Design and analysis of novel InSb/Si heterojunction Double Gate tunnel field effect transistor. IEEE Comput Soc Annu Symp VLSI.105–109. https://doi.org/10.1109/ISVLSI.2016.52

  14. Priya GL, Balamurugan N (2019) New dual material double gate junctionless tunnel FET: subthreshold modeling and simulation. AEU- Int J Electron Commun 99:130–138. https://doi.org/10.1016/j.aeue.2018.11.037

    Article  Google Scholar 

  15. Saurabh S, Kumar M (2011) Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans Electron Devices 58:404–410. https://doi.org/10.1109/TED.2010.2093142

    Article  CAS  Google Scholar 

  16. Pravin J, Nirmal D, Prajoon P, Ajayan J (2016) Implementation of nanoscale circuits using dual metal gate engineered nanowire MOSFET with high-k dielectrics for low power applications. Phys E Low-Dimens Syst Nanostruct 83:95–100. https://doi.org/10.1016/j.physe.2016.04.017

    Article  CAS  Google Scholar 

  17. Sharma N, Chauhan SS (2017) Dual metal drain Ge-source dopingless TFET with enhanced turn-ON steep subthreshold swing and high ON-current. Electron Lett 53(14):960–962

    Article  CAS  Google Scholar 

  18. Kumar S, Yadav DS (2022) Assessment of interface trap charges on proposed tfet for low power high-frequency application. SILICON 14(15):9291–9304. https://doi.org/10.1007/s12633-021-01616-0

    Article  CAS  Google Scholar 

  19. Verhulst AS, Sorée B, Leonelli D (2010) Modeling the single gate, double-gate, and gate-all-around tunnel field-effect transistor. J Appl Phys 107:24518. https://doi.org/10.1063/1.3277044

    Article  CAS  Google Scholar 

  20. Gupta SK, Kumar S (2019) Analytical modeling of a triple material double gate TFET with hetero-dielectric gate stack. SILICON 11(3):1355–1369. https://doi.org/10.1007/s12633-018-9932-y

    Article  CAS  Google Scholar 

  21. Dutta U, Soni M, Pattanaik M (2019) Simulation study of hetero dielectric tri material gate tunnel FET based common source amplifier circuit. AEU- Int J Electron Commun 99:258–263. https://doi.org/10.1016/j.aeue.2018.12.004

    Article  Google Scholar 

  22. Raad BR, Nigam K, Sharma D, Kondekar PN (2016) Performance investigation of the bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement. Superlattice Microstruct 94:138–146. https://doi.org/10.1016/j.spmi.2016.04.016

    Article  CAS  Google Scholar 

  23. Kumar S, Goel E, Singh K, Singh B, Kumar M, Jit S (2016) A compact 2-D analytical model for electrical characteristics of double-gate tunnel field-effect transistors with a SiO2/high-stacked gate-oxide structure. IEEE Trans Electron Devices 63(8):3291–3299. https://doi.org/10.1109/TED.2016.2572610

    Article  CAS  Google Scholar 

  24. Goel E, Kumar S, Singh K, Singh B, Kumar M, Jit S (2016) 2-D analytical modeling of threshold voltage for graded-channel dual material double-gate MOSFETs. IEEE Trans Electron Devices 63(3):966–973. https://doi.org/10.1109/TED.2016.2520096

    Article  CAS  Google Scholar 

  25. Anand S, Sarin RK (2017) Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance. J Semicond 38(2):024001

    Article  Google Scholar 

  26. Choi WY, Lee HK (2016) Demonstration of hetero-gate-dielectric tunneling field-effect transistors (HG TFETs). Nano Converg 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gracia D, Nirmal D, Nisha Justeena A (2017) Investigation of Ge based double gate dual metal tunnel FET novel architecture using various hetero dielectric materials. Superlattice Microstruct S0749–6036(17):30824–30828

    Google Scholar 

  28. Sahu SA, Goswami R, Mohapatra SK (2019) Characteristic enhancement of hetero dielectric DG TFET using SiGe pocket at source/channel interface: proposal and investigation. Silicon 12(3):513–520. https://doi.org/10.1007/s12633-019-00159-9

    Article  CAS  Google Scholar 

  29. Rani C, Bagan KB, Nirmal D, Roach RS (2019) Enhancement of performance in TFET by reducing high-K dielectric length and drain electrode thickness. Silicon 12(10):2337–2343. https://doi.org/10.1007/s12633-019-00328-w

    Article  CAS  Google Scholar 

  30. Karbalaei M, Dideban D, Heidari H (2020) A simulation study of the influence of a high-k insulator and source stack on the performance of a double-gate tunnel FET. J Comput Electron 19(3):1077–1084

    Article  CAS  Google Scholar 

  31. Nigam K, Kondekar PN, Sharma D (2016) Approach for ambipolar behavior suppression in tunnel FET by work function engineering. Micro Nano Lett 11(8):460–464

    Article  CAS  Google Scholar 

  32. Kondekar PN, Nigam K, Pandey S, Sharma D (2017) Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF applications. IEEE Trans Electron Devices 64(2):412–418

    Article  CAS  Google Scholar 

  33. Chandan BV, Dasari S, Yadav S (2018) Approach to suppress ambipolarity and improve RF and linearity performances on ED tunnel FET. Micro Nano Lett 13(5):684–689

  34. Lv Y, Huang Q, Wang H, Chang S, He J (2016) A numerical study on grapheme nano ribbon heterojunction dual-material gate tunnel FET. IEEE Electron Device Lett 37:1354–1357

    Article  Google Scholar 

  35. Gopal G, Agrawal H, Garg H, Varma T (2023) Simulation-based analysis of an L-patterned negative-capacitance dual tunnel VTFET. Int J Electron 1–18. https://doi.org/10.1080/00207217.2022.2164069

  36. Gopal G, Varma T (2023) Impact of temperature on the reliability of UTB-DG-FE-TFETs and their RF/analog and linearity parameter dependence. J Electron Mater 52(9):6293–6307. https://doi.org/10.1007/s11664-023-10556-x

    Article  CAS  Google Scholar 

  37. Gopal G, Garg H, Agrawal H, Varma T (2022) Stacked ferroelectric heterojunction tunnel field effect transistor on a buried oxide substrate for enhanced electrical performance. Semicond Sci Technol 37(10):105006. https://doi.org/10.1088/1361-6641/ac830b

    Article  CAS  Google Scholar 

  38. Gopal G, Varma T (2022) Simulation-based analysis of ultra thin-body double gate ferroelectric TFET for an enhanced electric performance. SILICON 14(12):6553–6563. https://doi.org/10.1007/s12633-021-01428-2

    Article  CAS  Google Scholar 

  39. Neves FS, Agopianand PGD, Martino JA, Cretu B, Rooyackers R, Vandooren A, Simoen E, Thean AV, Claeys C (2016) Low frequency noise analysis and modeling in vertical Tunnel FETs with Ge source. IEEE Trans Electron Devices 63:1658–1665. https://doi.org/10.1109/TED.2016.2533360

    Article  CAS  Google Scholar 

  40. Pandey R, Rajamohanan B, Liu H, Narayanan V, Datta S (2014) Electrical noise in heterojunction interband tunnel FETs. IEEE Trans Electron Devices 61:552–560

    Article  CAS  Google Scholar 

  41. ATLAS Device Simulation Software (2013) Silvaco Int., Santa. Clara, CA, Version 5.14.0.R

  42. Shockley W, Read WT (1952) Statistics of the recombination of holes and electrons. Phys Rev 87:835–842

    Article  CAS  Google Scholar 

  43. Lee G, Jang JS, Choi WY (2013) Dual-dielectric-constant spacer hetero-gate-dielectric tunneling field-effect transistors. Semicond Sci Technol 28(5):052001. https://doi.org/10.1088/0268-1242/28/5/052001

    Article  CAS  Google Scholar 

  44. Cui N, Liang R, Wang J, Xu J (2012) Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering. AIP Adv 2(2). https://doi.org/10.1063/1.4705398

  45. Na KY, Kim YS (2006) Silicon complementary metal–oxide–semiconductor field-effect transistors with dual work function gate. Jpn J Appl Phys 45(12R):9033. https://doi.org/10.1143/JJAP.45.9033

    Article  CAS  Google Scholar 

  46. Padilla JL, Gamiz F, Godoy A (2012) A simple approach to quantum confinement in tunneling field-effect transistors. IEEE Electron Device Lett 33(10):1342–1344. https://doi.org/10.1109/LED.2012.2207876

    Article  CAS  Google Scholar 

  47. Padilla JL, Gamiz F, Godoy A (2012) Impact of quantum confinement on gate threshold voltage and subthreshold swings in double-gate tunnel FETs. IEEE Trans Electron Devices 59(12):3205–3211. https://doi.org/10.1109/TED.2012.2216531

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Integral University, Lucknow, Uttar Pradesh, India, for giving them with the mcn number IU/R&D/2024-MCN0002486 for their current research work.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Vedvrat: Conceptualization, Methodology, TCAD Software, Data curation, Analysis and Interpretation of data, Writing- Original draft preparation, Visualization, Investigation, Validation.

Mohd Yusuf Yasin: Supervision, review, revision and editing.

Digvijay Pandey: Revision and editing.

Corresponding author

Correspondence to Vedvrat.

Ethics declarations

The authors declare that all procedures followed were in accordance with the ethical standards.

Ethics Approval

Not applicable.

Consent to Participate

All authors have provided their explicit approval to participate in this research study.

Consent for Publication

All the authors declare their consent for publication of the article on acceptance.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedvrat, Yasin, M.Y. & Pandey, D. Optimization of Dual Material Based Dielectric Modulated Heterojunction Double Gate Tunnel FETs with Noise Reduction Analysis for High Frequency Applications. Silicon (2024). https://doi.org/10.1007/s12633-024-02987-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-02987-w

Keywords

Navigation