Skip to main content
Log in

Analysis of the Impact of Interface Trap Charges on the Analog/RF Performance of a Graphene Nanoribbon Vertical Tunnel FET

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

One of the critical assessments in determining the functionality of a device is the issue of reliability in the context of the trap charges at the semiconductor and oxide interface. This article presents the results of a thorough investigation into the impact of interface trap charges (ITCs) on graphene-based channel double-gate dual-material gate graphene nanoribbon vertical tunnel field-effect transistors (DG-DMG-GNR-VTFETs). The proposed device, which takes into account GNR channel material, is compared to the conventional material, a silicon-based channel (DG-DMG-Si-VTFET), in the presence (positive/negative) or absence of trap charges, with the exact dimension specification. This work aims to assess the linearity of the proposed device and the dependability of devices with the influence of ITCs on the DC aspect, low power, and high-frequency parameters. Because of the special properties of graphene, it was found that the DG-DMG-GNR-VTFET performs better than the DG-DMG-Si-VTFET. The simulation in this work was performed using the Silvaco ATLAS TCAD device simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. S.O. Koswatta, M.S. Lundstrom, and D.E. Nikonov, Performance comparison between pin tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56(3), 456–465 (2009).

    Article  CAS  Google Scholar 

  2. M.-H. Tsai and T.-P. Ma, The impact of device scaling on the current fluctuations in MOSFET’s. IEEE Trans. Electron Devices 41(11), 2061–2068 (1994).

    Article  CAS  Google Scholar 

  3. W.Y. Choi, B.-G. Park, J.D. Lee, and T.-J.K. Liu, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007).

    Article  CAS  Google Scholar 

  4. A. Singh, M. Khosla, and B. Raj, Design and analysis of electrostatic doped Schottky barrier CNTFET based low power SRAM. AEU-Int. J. Electron. Commun. 80, 67–72 (2017).

    Article  Google Scholar 

  5. Q. Huang, R. Huang, C. Wu, H. Zhu, C. Chen, J. Wang, L. Guo, R. Wang, L. Ye, and Y. Wang, Comprehensive performance re-assessment of TFETs with a novel design by gate and source engineering from device/circuit perspective. In: 2014 IEEE International Electron Devices Meeting, (IEEE, 2014), pp. 13–3.

  6. A.M. Ionescu and H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011). https://doi.org/10.1038/nature10679.

    Article  CAS  Google Scholar 

  7. H. Lu and A. Seabaugh, Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2(4), 44–49 (2014).

    Article  Google Scholar 

  8. N. Parmar, D.S.Yadav, S. Kumar, R. Sharma, S. Saraswat, and A. Kumar, Performance analysis of a novel dual metal strip charge plasma tunnel FET. In: 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), (IEEE, 2020), pp. 1–5.

  9. D.S. Yadav, D. Sharma, D.G. Sharma, and S. Bajpai, High frequency analysis of GaAsP /InSb hetero-junction double gate tunnel field effect transistor. In: 2018 3rd International Conference for Convergence in Technology (I2CT), (IEEE, 2018) pp. 1–6.

  10. K. Boucart and A.M. Ionescu, Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007). https://doi.org/10.1109/TED.2007.899389.

    Article  CAS  Google Scholar 

  11. M.R. Tripathy, A.K. Singh, A. Samad, S. Chander, K. Baral, P.K. Singh, and S. Jit, Device and circuit-level assessment of GaSb/Si heterojunction vertical tunnel-FET for low-power applications. IEEE Trans. Electron Devices 67(3), 1285–1292 (2020).

    Article  CAS  Google Scholar 

  12. R. Sharma, D.S. Yadav, S. Kumar, N. Parmar, S. Saraswat, and A. Kumar, Novel perspective approach to improve performance of nanowire TFET. In: 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), (IEEE, 2020), pp. 1–6.

  13. K.K. Bhuwalka, J. Schulze, and I. Eisele, Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE Trans. Electron Devices 52(5), 909–917 (2005).

    Article  CAS  Google Scholar 

  14. F.S. Neves, P.G. Agopian, J.A. Martino, B. Cretu, R. Rooyackers, A. Vandooren, E. Simoen, A.V.-Y. Thean, and C. Claeys, Low-frequency noise analysis and modeling in vertical tunnel FETs with Ge source. IEEE Trans. Electron Devices 63(4), 1658–1665 (2016).

    Article  CAS  Google Scholar 

  15. S. Morichi, Y. Komoda, H. Inagaki, H. Itami, and H. Itami, Examination on the vertical normal strain observed at the ground surface during earthquakes. Doboku Gakkai Ronbunshuu A 64(2), 452–457 (2008).

    Article  Google Scholar 

  16. S. Morozov, K. Novoselov, F. Schedin, D. Jiang, A. Firsov, and A. Geim, Two-dimensional electron and hole gases at the surface of graphite. Phys. Rev. B 72(20), 201401 (2005).

    Article  Google Scholar 

  17. M.R. Tripathy, A.K. Singh, A. Samad, K. Baral, P.K. Singh, and S. Jit, Performance comparison of Ge/Si hetero-junction vertical tunnel FET with and without gate-drain underlapped structure with application to digital inverter. In: 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), (IEEE, 2020), pp. 1–4

  18. Z. Chen, H. Yu, N. Singh, N. Shen, R. Sayanthan, G. Lo, and D.-L. Kwong, Demonstration of tunneling FETs based on highly scalable vertical silicon nanowires. IEEE Electron Device Lett. 30(7), 754–756 (2009).

    Article  CAS  Google Scholar 

  19. E.D. Kurniawan, S.-Y. Yang, V. Thirunavukkarasu, and Y.-C. Wu, Analysis of Ge-Si heterojunction nanowire tunnel FET: impact of tunneling window of band-to-band tunneling model. J. Electrochem. Soc. 164(11), 3354 (2017).

    Article  Google Scholar 

  20. M. Pala, D. Esseni, and F. Conzatti, Impact of interface traps on the IV curves of InAs tunnel-FETs and MOSFETs: A full quantum study. In: 2012 International Electron Devices Meeting, (IEEE, 2012) pp. 6–6.

  21. M.-L. Fan, V.P.-H. Hu, Y.-N. Chen, P. Su, and C.-T. Chuang, Analysis of single-trap-induced random telegraph noise and its interaction with work function variation for tunnel FET. IEEE Trans. Electron Devices 60(6), 2038–2044 (2013).

    Article  Google Scholar 

  22. C.K. Pandey, A. Singh, and S. Chaudhury, Analysis of interface trap charges on dielectric pocket SOI-TFET. In: 2019 Devices for Integrated Circuit (DevIC), (IEEE, 2019), pp. 337–340.

  23. Y. Qiu, R. Wang, Q. Huang, and R. Huang, A comparative study on the impacts of interface traps on tunneling FET and MOSFET. IEEE Trans. Electron Devices 61(5), 1284–1291 (2014).

    Article  CAS  Google Scholar 

  24. J. Madan and R. Chaujar, Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. Reliab. 16(2), 227–234 (2016).

    Article  CAS  Google Scholar 

  25. Y.-M. Lin, J. Appenzeller, J. Knoch, and P. Avouris, High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4(5), 481–489 (2005).

    Article  Google Scholar 

  26. S. Saurabh and M.J. Kumar, Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2010).

    Article  Google Scholar 

  27. C. Nanmeni Bondja, Z. Geng, R. Granzner, J. Pezoldt, and F. Schwierz, Simulation of 50-nm gate graphene nanoribbon transistors. Electronics 5(1), 3 (2016).

    Article  Google Scholar 

  28. B. Choudhuri, B. Bhowmick et al., Study the impact of graphene channel over conventional silicon on DC/analog and RF performance of DG dual-material-gate VTFET. Microelectron. J. 128, 105581 (2022).

    Article  Google Scholar 

  29. T. Thingujam, K. Jolson, M. Kumar, and S.K. Sarkar, TCAD based modeling and simulation of graphene nanostructured FET (GFET) for high frequency performance. ADBU J. Eng. Technol. 6(1) (2017).

  30. A.U. Manual, (SILVACO, Inc., Santa Clara, 2012).

  31. G. Fiori, A. Betti, S. Bruzzone, P. D’Amico, and G. Iannaccone, Nanodevices in flatland: Two-dimensional graphene-based transistors with high I on/I off ratio. In: 2011 International Electron Devices Meeting, (IEEE 2011), pp. 11–14.

  32. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, and A. Lanzara, Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6(10), 770–775 (2007). https://doi.org/10.1038/nmat2003.

    Article  CAS  Google Scholar 

  33. P. Yadav, P.K. Srivastava, and S. Ghosh, High field effect mobility of 10,000 cm 2/vs and 5,000 cm 2/vs in undoped and doped monolayer graphene-based transistors. In: 2014 IEEE 2nd International Conference on Emerging Electronics (ICEE), (IEEE, 2014), pp. 1–3.

  34. S. Shamsir, L. Parvin Poly, R. Chakraborty, and S. Subrina, Current- voltage model of a graphene nanoribbon pn junction and Schottky junction diode. IET Circuits Devices Syst. 16(2), 157–168 (2022).

    Article  Google Scholar 

  35. M.R. Tripathy, A. Samad, A.K. Singh, P.K. Singh, K. Baral, A.K. Mishra, and S. Jit, Impact of interface trap charges on electrical performance characteristics of a source pocket engineered Ge/Si heterojunction vertical TFET with HfO2/Al2O3 laterally stacked gate oxide. Microelectron. Reliab. 119, 114073 (2021).

    Article  CAS  Google Scholar 

  36. A. Pon, K.S.V.P. Tulasi, and R. Ramesh, Effect of interface trap charges on the performance of asymmetric dielectric modulated dual short gate tunnel FET. AEU-Int. J. Electron. Commun. 102, 1–8 (2019).

    Article  Google Scholar 

  37. S. Kumar and D.S. Yadav, Assessment of interface trap charges on proposed TFET for low power high-frequency application. Silicon 14(15), 9291–9304 (2022). https://doi.org/10.1007/s12633-021-01616-0.

    Article  CAS  Google Scholar 

  38. S.M. Sze, Semiconductor Devices: Physics and Technology (Wiley, 2008).

    Google Scholar 

  39. S. Chander, S.K. Sinha, S. Kumar, P.K. Singh, K. Baral, K. Singh, and S. Jit, Temperature analysis of Ge/Si heterojunction SOI-tunnel FET. Superlattices Microstruct. 110, 162–170 (2017).

    Article  CAS  Google Scholar 

  40. D.S. Yadav, D. Sharma, S. Tirkey, and V. Bajaj, A systematic investigation of the integrated effects of gate underlapping, dual work functionality and hetero gate dielectric for improved performance of CP TFETs. J. Comput. Electron. 17(1), 118–128 (2018).

    Article  CAS  Google Scholar 

  41. M. Aslam, D. Sharma, D. Soni, S. Yadav, B.R. Raad, D.S. Yadav, and N. Sharma, Effective design technique for improvement of electrostatics behaviour of dopingless TFET: proposal, investigation and optimisation. Micro Nano Lett. 13(10), 1480–1485 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Software, Formal Analysis, Investigation, Data curation, Writing-Original draft preparation, Visualization: Z; Conceptualization, Validation, Resources, Writing-Reviewing and Editing, Supervision: BB; Supervision, Writing-Reviewing and Editing: BC.

Corresponding author

Correspondence to Zohming Liana.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liana, Z., Choudhuri, B. & Bhowmick, B. Analysis of the Impact of Interface Trap Charges on the Analog/RF Performance of a Graphene Nanoribbon Vertical Tunnel FET. J. Electron. Mater. 52, 6825–6839 (2023). https://doi.org/10.1007/s11664-023-10615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10615-3

Keywords

Navigation