Skip to main content
Log in

Analytical Modeling of a Triple Material Double Gate TFET with Hetero-Dielectric Gate Stack

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, we propose and develop an analytical model of a Triple material double gate Tunnel Field Effect Transistor (TM-DG TFET) with hetero-dielectric gate oxide stack comprising of SiO2 and HfO2. The two-dimensional Poisson’s equation has been solved using parabolic-approximation method to model the channel potential and electric field. Analytical model of drain current is developed by integrating the band-to-band tunneling generation rate over the channel thickness (tsi) and shortest tunneling path (\(L_{\min }\)). A Transconductance model is also developed using this drain current model. The proposed TM-DG TFET also provides better result with reference to input-output characteristics, subthreshold swing, ION/IOFF current ratio and ambipolar effect compared to the dual material double gate (DM-DG) TFET. The analytical model has been validated with the numerical data obtained from commercial TCAD software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seabaugh C, Zhang Q (2010) Low-voltage tunnel transistors for beyond CMOS logic. Proc IEEE 98:2095–2110

    Article  CAS  Google Scholar 

  2. Koswatta SO, Lundstrom MS, Nikonov DE (2009) Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans Electron Devices 56:456–465

    Article  CAS  Google Scholar 

  3. Toh EH, Wang GH, Samudra G, Yeo YC (2008) Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J Appl Phys 103:104504–1–104504-5

    Article  Google Scholar 

  4. Kumar MJ, Janardhanan S (2013) Doping-less tunnel field effect transistor: Design and investigation. IEEE Trans Electron Devices 60:3285–3290

    Article  CAS  Google Scholar 

  5. Saurabh S, Kumar MJ (2010) Estimation and compensation of process-induced variations in nano scale tunnel field-effect transistors for improved reliability. IEEE Trans Device Mater Rel 10:390–395

    Article  CAS  Google Scholar 

  6. Choi WY, Park BG, Lee JD, Liu TJK (2007) Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28:743–745

    Article  CAS  Google Scholar 

  7. Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nature 479:329–337

    Article  CAS  Google Scholar 

  8. (2014) International Technology Roadmap for Semiconductor

  9. Shen C, Ong SL, Heng CH, Samudra G, Yeo YC (2008) A variational approach to the two-dimensional nonlinear Poisson’s equation for the modeling of tunneling transistors. IEEE Electron Device Lett 29:1252–1255

    Article  CAS  Google Scholar 

  10. Saurabh S, Kumar MJ (2011) Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans Electron Devices 58:404–410

    Article  CAS  Google Scholar 

  11. Gholizadeh M, Hosseini SE (2014) A 2-D analytical model for doublegate tunnel FETs. IEEE Trans Electron Devices 61:1494–1500

    Article  Google Scholar 

  12. Gowami R, Bhowmick B (2017) An algorithm for extraction of threshold voltage in heterojunction TFETs. IEEE Trans Nanotechnol 16:90–93

    Google Scholar 

  13. Goswami R, Bhowmick B (2018) An analytical model of drain current in a nanoscale circular gate TFET. IEEE Trans Electron Devices 64:45–51

    Article  Google Scholar 

  14. Barah D, Singh AK, Bhowmick B (2018) Silicon. https://doi.org/10.1007/s12633-018-9894-0

  15. Kane EO (1961) Theory of tunneling. J Appl Phys 32:83–91

    Article  Google Scholar 

  16. Kumar S, Goel E, Singh K, Singh B, Kumar M, Jit S (2016) A compact 2-D analytical model for electrical characteristics of double gate TFETs with SiO2/High-K stacked gate oxide structure. IEEE Trans Electron Devices 63:3291–3299

    Article  CAS  Google Scholar 

  17. Kumar S, Goel E, Singh K, Singh B, Singh PK, Baral K, Jit S (2017) 2-D analytical modeling of the electrical characteristics of dual-material double-gate TFETs with a SiO 2/HfO 2 stacked gate-oxide structure. IEEE Trans Electron Devices 64:960–968

    Article  CAS  Google Scholar 

  18. Bagga N, Sarkar SK (2015) An analytical model for tunnel barrier modulation in triple metal double gate TFET. IEEE Trans Electron Devices 62:2136–2142

    Article  CAS  Google Scholar 

  19. (2013) ATLAS: Device simulator software, SILVACO Int., Santa Clara, CA, USA

  20. Vishnoi R, Kumar MJ (2014) Compact analytical model of dual material gate tunneling field-effect transistor using interband tunneling and channel transport. IEEE Trans Electron Devices 61:1936–1942

    Article  CAS  Google Scholar 

  21. Villalon A, Le Carval G, Martinie S, Le Royer C, Jaud M-A, Cristoloveanu S (2014) Further insights in TFET operation. IEEE Trans Electron Devices 61:2893–2898

    Article  CAS  Google Scholar 

  22. Min J, Wu J, Taur Y (2015) Analysis of source doping effect in tunnel FETs with staggered bandgap. IEEE Electron Device Lett 36:1094–1096

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Kumar, S. Analytical Modeling of a Triple Material Double Gate TFET with Hetero-Dielectric Gate Stack. Silicon 11, 1355–1369 (2019). https://doi.org/10.1007/s12633-018-9932-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9932-y

Keywords

Navigation