Skip to main content

Advertisement

Log in

Design, Preparation and Identification a Mesoporous Bi-functional Organic–inorganic Hybrid Magnetic Catalyst for Selective and Effectual Synthesis 10,11-Dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione Derivatives

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the current work, N,N′-bipyridyl (N- sulfonic acid) (N′- silica-n-propyl) propane mesylate/chloride bonded to Fe3O4 coated with bilayer silica ([BPSSPMCFS]) was used as a novel bi-functional inorganic-organic hybrid magnetic nanocatalyst to manufacture 10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-diones under solvent-free conditions. The methods of field emission scanning electron microscopy (FE SEM), energy-dispersive X-ray spectroscopy (EDX), elemental mapping, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analyses, thermal gravimetric analysis (TGA), vibrating sample magnetometry (VSM) and Brunauer-Emmett-Teller (BET) were used to identify this nanohybrid. The [BPSSPMCFS] produced the mentioned derivatives with great selectivity without producing side products, and besides this important feature, which has always been one of the main problems on the way to the synthesis of these compounds, it has significant advantages such as simple synthesis, the use of green media, large surface area, simple separation and workup, very suitable turnover number (TON) and turnover frequency (TOF) values, great reuse for several consecutive cycles without noticeably changing its catalytic activity, and short reaction time. Moreover, the hot filtration technique was used to examine and confirm the heterogeneous nature of [BPSSPMCFS].

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

We have confirmed.

References

  1. Ghorbani-Choghamarani A, Mohammadi M, Taherinia Z (2019) (ZrO) 2 Fe 2 O 5 as an efficient and recoverable nanocatalyst in C–C bond formation. J Iran Chem Soc 16:411–421. https://doi.org/10.1007/s13738-018-1522-9

    Article  CAS  Google Scholar 

  2. Maleki A, Hajizadeh Z (2019) Magnetic aluminosilicate nanoclay: a natural and efficient nanocatalyst for the green synthesis of 4 H-pyran derivatives. Silicon 11(6):2789–2798. https://doi.org/10.1007/s12633-019-0069-4

    Article  CAS  Google Scholar 

  3. Maleki A, Ravaghi P, Aghaei M, Movahed H (2017) A novel magnetically recyclable silver-loaded cellulose-based bionanocomposite catalyst for green synthesis of tetrazolo [1, 5-a] pyrimidines. Res Chem Intermed 43:5485–5494. https://doi.org/10.1007/s11164-017-2941-4

    Article  CAS  Google Scholar 

  4. Maleki A (2018) An efficient magnetic heterogeneous nanocatalyst for the synthesis of pyrazinoporphyrazine macrocycles. Polycycl Aromat Compd 38(5):402–409. https://doi.org/10.1080/10406638.2016.1221836

    Article  CAS  Google Scholar 

  5. Shaabani A, Soleimani E, Maleki A, Moghimi-Rad J (2008) Rapid synthesis of 3-Aminoimidazo [1, 2-a] pyridines and pyrazines. Synth Commun 38(7):1090–1095. https://doi.org/10.1080/00397910701862931

    Article  CAS  Google Scholar 

  6. Nikoorazm M, Ghorbani-Choghamaranai A, Khanmoradi M et al (2018) Synthesis and characterization of Cu(II)-adenine-MCM-41 as stable and efficient mesoporous catalyst for the synthesis of 5-substituted 1H-tetrazoles and 1H-indazolo [1,2-b]phthalazine-triones. J Porous Mater 25:1831–1842. https://doi.org/10.1007/s10934-018-0597-0

    Article  CAS  Google Scholar 

  7. Kohzadi H, Soleiman-Beigi M (2020) A recyclable heterogeneous nanocatalyst of copper-grafted natural asphalt sulfonate (NAS@ Cu): characterization, synthesis and application in the Suzuki–Miyaura coupling reaction. New J Chem 44(28):12134–12142. https://doi.org/10.1039/D0NJ01883J

    Article  CAS  Google Scholar 

  8. Kohzadian A, Filian H, Kordrostami Z et al (2020) A simple, rapid and effective protocol for synthesis of bis(pyrazolyl)methanes using nickel–guanidine complex immobilized on MCM-41. Res Chem Intermed 46:1941–1953. https://doi.org/10.1007/s11164-019-04073-y

    Article  CAS  Google Scholar 

  9. Zare A, Barzegar M (2020) Dicationic ionic liquid grafted with silica-coated nano-Fe3O4 as a novel and efficient catalyst for the preparation of uracil-containing heterocycles. Res Chem Intermed 46:3727–3740. https://doi.org/10.1007/s11164-020-04171-2

    Article  CAS  Google Scholar 

  10. Almajidi YQ, Ubaidullah M, Pandit B, Kareem AK, Romero-Parra RM, Bobirjon A, Kadhum WR, Al-Erjan AM, Abosaooda M, Mahmoud AK (2023) Immobilized Ni on TMEDA@ βSiO 2@ αSiO 2@ Fe 3 O 4: as a novel magnetic nanocatalyst for preparation of pyrido [2, 3-d: 6, 5-d′] dipyrimidines. RSC Adv 13(17):11393–11405. https://doi.org/10.1039/D3RA01720F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maleki A, Kamalzare M (2014) An efficient synthesis of benzodiazepine derivatives via a one-pot, three-component reaction accelerated by a chitosan-supported superparamagnetic iron oxide nanocomposite. Tetrahedron Lett 55(50):6931–6934. https://doi.org/10.1016/j.tetlet.2014.10.120

    Article  CAS  Google Scholar 

  12. Esmaeili MS, Khodabakhshi MR, Maleki A, Varzi Z (2021) Green, natural and low cost xanthum gum supported Fe3O4 as a robust biopolymer nanocatalyst for the one-pot synthesis of 2-amino-3-cyano-4 H-pyran derivatives. Polycycl Aromat Compd 41(9):1953–1971. https://doi.org/10.1080/10406638.2019.1708418

    Article  CAS  Google Scholar 

  13. Maleki A, Aghaei M, Kari T (2017) Facile synthesis of 7-aryl-benzo [h] tetrazolo [5, 1-b] quinazoline-5, 6-dione fused polycyclic compounds by using a novel magnetic polyurethane catalyst. Polycycl Aromat Compd 39(3):266–278. https://doi.org/10.1080/10406638.2017.1325746

    Article  CAS  Google Scholar 

  14. Hajizadeh Z, Valadi K, Taheri-Ledari R, Maleki A (2020) Convenient Cr (VI) removal from aqueous samples: executed by a promising clay-based catalytic system, magnetized by Fe3O4 nanoparticles and functionalized with humic acid. ChemistrySelect 5(8):2441–2448. https://doi.org/10.1002/slct.201904672

    Article  CAS  Google Scholar 

  15. Hosseini ES, Mohammadi S, Khodarahmi R, Fouani MH, Tavallaei O, Jaberi KR, Shabaninejad Z, Janfaza S, Yazdian-Robati R, Sajadimajd S (2022) New insights into the biosensing of Parkinson's disease biomarkers: a concise review. Curr Med Chem 29(22):3945–3972. https://doi.org/10.2174/0929867328666211213111812

    Article  CAS  PubMed  Google Scholar 

  16. Sun DH, Lu P, Zhang JL, Liu YL, Ni JZ (2011) Synthesis of the Fe3O4@ SiO2@ SiO2–Tb (PABA) 3 luminomagnetic microspheres. J Nanosci Nanotechnol 11(11):9774–9779. https://doi.org/10.1166/jnn.2011.5265

    Article  CAS  PubMed  Google Scholar 

  17. Niu HY, Li WH, Shi YL, Cai YQ (2011) A core–shell magnetic mesoporous silica sorbent for organic targets with high extraction performance and anti-interference ability. Chem Commun 47(15):4454–4456. https://doi.org/10.1039/C1CC10300H

    Article  Google Scholar 

  18. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltrimethylammonium–kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63(4):988–992. https://doi.org/10.1246/bcsj.63.988

    Article  CAS  Google Scholar 

  19. Valadi K, Gharibi S, Taheri-Ledari R, Maleki A (2020) Ultrasound-assisted synthesis of 1, 4-dihydropyridine derivatives by an efficient volcanic-based hybrid nanocomposite. Solid State Sci 101:106141. https://doi.org/10.1016/j.solidstatesciences.2020.106141

    Article  CAS  Google Scholar 

  20. Maleki A, Gharibi S, Valadi K, Taheri-Ledari R (2020) Pumice-modified cellulose fiber: an environmentally benign solid state hybrid catalytic system for the synthesis of 2, 4, 5-triarylimidazole derivatives. J Phys Chem Solids 142:109443. https://doi.org/10.1016/j.jpcs.2020.109443

    Article  CAS  Google Scholar 

  21. Taheri-Ledari R, Valadi K, Gharibi S, Maleki A (2020) Synergistic photocatalytic effect between green LED light and Fe3O4/ZnO-modified natural pumice: a novel cleaner product for degradation of methylene blue. Mater Res Bull 130:110946. https://doi.org/10.1016/j.materresbull.2020.110946

    Article  CAS  Google Scholar 

  22. Soltani SS, Taheri-Ledari R, Farnia SM, Maleki A, Foroumadi A (2020) Synthesis and characterization of a supported Pd complex on volcanic pumice laminates textured by cellulose for facilitating Suzuki–Miyaura cross-coupling reactions. RSC Adv 10(39):23359–23371. https://doi.org/10.1039/D0RA04521G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kazemi B, Javanshir S, Maleki A, Safari M, Khavasi HR (2012) An efficient synthesis of 4H-chromene, 4H-pyran, and oxepine derivatives via one-pot three-component tandem reactions. Tetrahedron Lett 53(51):6977–6981. https://doi.org/10.1016/j.tetlet.2012.10.046

    Article  CAS  Google Scholar 

  24. Filian H, Ghorbani-Choghamarani A, Tahanpesar E (2019) Ni-guanidine@MCM-41 NPs: a new catalyst for the synthesis of 4,4′-(arylmethylene)-bis-(3-methyl-1-phenyl-1H-pyrazol-5-ols) and symmetric di-aryl sulfides. J Iran Chem Soc 16:2673–2681. https://doi.org/10.1007/s13738-019-01727-x

    Article  CAS  Google Scholar 

  25. Kohzadian A, Filian H (2023) Production and characterization of Fe3O4@SiO2@TMEDA-Pd as a very effectual interphase catalyst for the rapid preparation of di-aryl sulfides and pyrido-dipyrimidines. Silicon 15:4539–4554. https://doi.org/10.1007/s12633-023-02372-z

    Article  CAS  Google Scholar 

  26. Maleki A, Jafari AA, Yousefi S (2017) Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydr Polym 175:409–416. https://doi.org/10.1016/j.carbpol.2017.08.019

    Article  CAS  PubMed  Google Scholar 

  27. Maleki A, Azadegan S (2017) Amine-functionalized silica-supported magnetic nanoparticles: preparation, characterization and catalytic performance in the Chromene synthesis. J Inorg Organomet Polym 27:714–719. https://doi.org/10.1007/s10904-017-0514-z

    Article  CAS  Google Scholar 

  28. Maleki A, Movahed H, Ravaghi P (2017) Magnetic cellulose/Ag as a novel eco-friendly nanobiocomposite to catalyze synthesis of chromene-linked nicotinonitriles. Carbohydr Polym 156:259–267. https://doi.org/10.1016/j.carbpol.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  29. Maleki A, Aghaei M, Ghamari N (2016) Facile synthesis of tetrahydrobenzoxanthenones via a one-pot three-component reaction using an eco-friendly and magnetized biopolymer chitosan-based heterogeneous nanocatalyst. Appl Organomet Chem 30(11):939–942. https://doi.org/10.1002/aoc.3524

    Article  CAS  Google Scholar 

  30. Jazinizadeh E, Zare A, Sajadikhah SS et al (2022) Synthesis, characterization and application of a magnetically separable nanocatalyst for the preparation of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives. Res Chem Intermed 48:5059–5075. https://doi.org/10.1007/s11164-022-04854-y

    Article  CAS  Google Scholar 

  31. Naeimi H, Nejadshafiee V, Islami MR (2016) Iron (III)-doped, ionic liquid matrix-immobilized, mesoporous silica nanoparticles: application as recyclable catalyst for synthesis of pyrimidines in water. Microporous Mesoporous Mater 227:23–30. https://doi.org/10.1016/j.micromeso.2016.02.036

    Article  CAS  Google Scholar 

  32. Zare A, Kohzadian A, Abshirini Z, Sajadikhah SS, Phipps J, Benamara M, Beyzavi MH (2019) Nano-2-(dimethylamino)-N-(silica-n-propyl)-N, N-dimethylethanaminium chloride as a novel basic catalyst for the efficient synthesis of pyrido [2, 3-d: 6, 5-d′] dipyrimidines. New J Chem 43(5):2247–2257. https://doi.org/10.1039/C8NJ04921A

    Article  CAS  Google Scholar 

  33. Naeimi H, Didar A (2017) Facile one-pot four component synthesis of pyrido [2, 3-d: 6, 5-d′] dipyrimidines catalyzed by CuFe2O4 magnetic nanoparticles in water. J Mol Struct 1137:626–633. https://doi.org/10.1016/j.molstruc.2017.02.044

    Article  CAS  Google Scholar 

  34. Hajizadeh Z, Maleki A (2018) Poly (ethylene imine)-modified magnetic halloysite nanotubes: a novel, efficient and recyclable catalyst for the synthesis of dihydropyrano [2, 3-c] pyrazole derivatives. Mol Catal 460:87–93. https://doi.org/10.1016/j.mcat.2018.09.018

    Article  CAS  Google Scholar 

  35. Maleki A, Azizi M, Emdadi Z (2018) A novel poly (ethyleneoxide)-based magnetic nanocomposite catalyst for highly efficient multicomponent synthesis of pyran derivatives. Green Chem Lett Rev 11(4):573–582. https://doi.org/10.1080/17518253.2018.1547795

    Article  CAS  Google Scholar 

  36. Maleki A, Hajizadeh Z, Salehi P (2019) Mesoporous halloysite nanotubes modified by CuFe2O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Sci Rep 9:5552. https://doi.org/10.1038/s41598-019-42126-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maleki A, Eskandarpour V (2019) Design and development of a new functionalized cellulose-based magnetic nanocomposite: preparation, characterization, and catalytic application in the synthesis of diverse pyrano[2,3-c]pyrazole derivatives. J Iran Chem Soc 16:1459–1472. https://doi.org/10.1007/s13738-019-01610-9

    Article  CAS  Google Scholar 

  38. Filian H, Kohzadian A, Mohammadi M, Ghorbani-Choghamarani A, Karami A (2020) Pd (0)-guanidine@ MCM-41: a very effective catalyst for rapid production of bis (pyrazolyl) methanes. Appl Organomet Chem 34(6):e5579. https://doi.org/10.1002/aoc.5579

    Article  CAS  Google Scholar 

  39. Neyts J, Clercq ED, Singha R, Chang YH, Das AR, Chakraborty SK, Hong SC, Tsay SC, Hsu MH, Hwu JR (2009) Structure− activity relationship of new anti-hepatitis C virus agents: Heterobicycle− coumarin conjugates. J Med Chem 52(5):1486–1490. https://doi.org/10.1021/jm801240d

    Article  CAS  PubMed  Google Scholar 

  40. Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A (2018) Coumarin: a natural, privileged and versatile scaffold for bioactive compounds. Molecules 23(2):250. https://doi.org/10.3390/molecules23020250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hwu JR, Singha R, Hong SC, Chang YH, Das AR, Vliegen I, De Clercq E, Neyts J (2008) Synthesis of new benzimidazole–coumarin conjugates as anti-hepatitis C virus agents. Antivir Res 77(2):157–162. https://doi.org/10.1016/j.antiviral.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki M, Nakagawa-Goto K, Nakamura S, Tokuda H, Morris-Natschke SL, Kozuka M, Nishino H, Lee KH (2006) Cancer preventive agents. Part 5. Anti-tumor-promoting effects of coumarins and related compounds on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis. Pharm Biol 44(3):178–182. https://doi.org/10.1080/13880200600686491

    Article  CAS  Google Scholar 

  43. Garazd YL, Kornienko EM, Maloshtan LN et al (2005) Modified Coumarins. 17. Synthesis and anticoagulant activity of 3,4-Cycloannelated Coumarin D-Glycopyranosides. Chem Nat Compd 41:508–512. https://doi.org/10.1007/s10600-005-0194-8

    Article  CAS  Google Scholar 

  44. Anand P, Singh B, Singh N, Karatas MO, Alici B, Cakir U, Cetinkaya E, Demir D, Ergün A, Gençer N, Arslan O (2012) Synthesis and carbonic anhydrase inhibitory properties of novel coumarin derivatives. Bioorg Med Chem 20:1175–1180

    Article  CAS  PubMed  Google Scholar 

  45. Yamahara J, Kozuka M, Sawada T, Fujimura H, Nakano K, Tomimatsu T, Nohara T (1985) Biologically active principles of crude drugs. Anti-allergic principles in" Cnidii monnieri". Chem Pharm Bull 33(4):1676–1680. https://doi.org/10.1248/cpb.33.1676

    Article  CAS  Google Scholar 

  46. Yang G, Jin Q, Xu C, Fan S, Wang C, Xie P (2018) Synthesis, characterization and antifungal activity of coumarin-functionalized chitosan derivatives. Int J Biol Macromol 106:179–184. https://doi.org/10.1016/j.ijbiomac.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  47. Kayser O, Kolodziej H (1999) Antibacterial activity of simple coumarins: structural requirements for biological activity. Zeitschrift für Naturforschung C 54(3–4):169–174. https://doi.org/10.1515/znc-1999-3-405

    Article  CAS  Google Scholar 

  48. Chohan ZH, Shaikh AU, Rauf A, Supuran CT (2006) Antibacterial, antifungal and cytotoxic properties of novel N-substituted sulfonamides from 4-hydroxycoumarin. J Enzyme Inhib Med Chem 21(6):741–748. https://doi.org/10.1080/14756360600810340

    Article  CAS  PubMed  Google Scholar 

  49. Kontogiorgis CA, Hadjipavlou-Litina DJ (2005) Synthesis and antiinflammatory activity of coumarin derivatives. J Med Chem 48(20):6400–6408. https://doi.org/10.1021/jm0580149

    Article  CAS  PubMed  Google Scholar 

  50. Stanchev S, Momekov G, Jensen F, Manolov I (2008) Synthesis, computational study and cytotoxic activity of new 4-hydroxycoumarin derivatives. Eur J Med Chem 43(4):694–706. https://doi.org/10.1016/j.ejmech.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  51. Zhao H, Neamati N, Hong H, Mazumder A, Wang S, Sunder S, Milne GW, Pommier Y, Burke TR (1997) Coumarin-based inhibitors of HIV integrase. J Med Chem 40(2):242–249. https://doi.org/10.1021/jm960450v

    Article  CAS  PubMed  Google Scholar 

  52. Pradhan K, Paul S, Das AR (2013) Fe (DS) 3, an efficient Lewis acid-surfactant-combined catalyst (LASC) for the one pot synthesis of chromeno [4, 3-b] chromene derivatives by assembling the basic building blocks. Tetrahedron Lett 54(24):3105–3110. https://doi.org/10.1016/j.tetlet.2013.04.001

    Article  CAS  Google Scholar 

  53. Elinson MN, Dorofeev AS, Feducovich SK, Gorbunov SV, Nasybullin RF, Stepanov NO, Nikishin GI (2006) Electrochemically induced chain transformation of salicylaldehydes and alkyl cyanoacetates into substituted 4H-chromenes. Tetrahedron Lett 47(43):7629–7633. https://doi.org/10.1016/j.tetlet.2006.08.053

    Article  CAS  Google Scholar 

  54. Sun W, Cama LD, Birzin ET, Warrier S, Locco L, Mosley R, Hammond ML, Rohrer SP (2006) 6H-benzo [c] chromen-6-one derivatives as selective ERβ agonists. Bioorg Med Chem Lett 16(6):1468–1472. https://doi.org/10.1016/j.bmcl.2005.12.057

    Article  CAS  PubMed  Google Scholar 

  55. Stachulski AV, Berry NG, Lilian Low AC, Moores SL, Row E, Warhurst DC, Adagu IS, Rossignol JF (2006) Identification of isoflavone derivatives as effective anticryptosporidial agents in vitro and in vivo. J Med Chem 49(4):1450–1454. https://doi.org/10.1021/jm050973f

    Article  CAS  PubMed  Google Scholar 

  56. Gesson J. P., Fonteneau N., Mondon M., Charbit S., Ficheux H. and Schutze F., Negma-Lerads, 7-carboxy-flavone derivatives preparation method and therapeutic use, US Pat., 6965039B2, 2005

  57. Esmaeilpour M, Sardarian AR, Javidi J (2014) Synthesis and characterization of Schiff base complex of Pd (II) supported on superparamagnetic Fe3O4@ SiO2 nanoparticles and its application as an efficient copper-and phosphine ligand-free recyclable catalyst for Sonogashira–Hagihara coupling reactions. J Organomet Chem 749:233–240. https://doi.org/10.1016/j.jorganchem.2013.10.011

    Article  CAS  Google Scholar 

  58. Ghorbani-Choghamarani A, Tahmasbi B, Noori N, Faryadi S (2017) Pd–S-methylisothiourea supported on magnetic nanoparticles as an efficient and reusable nanocatalyst for heck and Suzuki reactions. Comptes Rendus Chimie 20(2):132–139. https://doi.org/10.1016/j.crci.2016.06.010

    Article  CAS  Google Scholar 

  59. Aphesteguy JC, Kurlyandskaya GV, De Celis JP, Safronov AP, Schegoleva NN (2015) Magnetite nanoparticles prepared by co-precipitation method in different conditions. Mater Chem Phys 161:243–249. https://doi.org/10.1016/j.matchemphys.2015.05.044

    Article  CAS  Google Scholar 

  60. Emtiazi H, Amrollahi MA (2014) An efficient and rapid access to the synthesis of tetrahydrochromeno [4, 3-b] chromene-6, 8-dione derivatives by magnesium perchlorate. S Afr J Chem 67:175–179

    Google Scholar 

  61. Kohzadian A, Zare A (2019) Efficient and highly selective production of 10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-diones using a mesoporous silica-based nanocatalyst. Res Chem Intermed 45:5473–5485. https://doi.org/10.1007/s11164-019-03913-1

    Article  CAS  Google Scholar 

  62. Ebrahimi SES, Ghadirian P, Emtiazi H et al (2016) Hetero-annulated coumarins as new AChE/BuChE inhibitors: synthesis and biological evaluation. Med Chem Res 25:1831–1841. https://doi.org/10.1007/s00044-016-1626-7

    Article  CAS  Google Scholar 

  63. Wei Z, Abbaspour S, Tayebee R (2023) Nickel nanoparticles originated from cressa leaf extract in the preparation of a novel Melem@ Ni-HPA photocatalyst for the synthesis of some chromenes and a preliminary MTT assay on the anticancer activity of the nanocomposite. Polycycl Aromat Compd 43(1):552–571. https://doi.org/10.1080/10406638.2021.2019063

    Article  CAS  Google Scholar 

  64. Patil BM, Mali SR, Patil BM, Patil SS (2020) Averrhoa bilimbi in organic transformation: a highly efficient and green biosurfactant for the synthesis of multi-functional chromenes and xanthenes. Curr Sci 118(6):931

    Article  CAS  Google Scholar 

  65. Jarrahi M, Tayebee R, Maleki B, Salimi A (2021) One-pot multicomponent green LED photoinduced synthesis of chromeno [4, 3-b] chromenes catalyzed by a new nanophotocatalyst histaminium tetrachlorozincate. RSC Adv 11(32):19723–19736. https://doi.org/10.1039/D1RA00189B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anaraki-Ardakani H, Ghanavatian R, Akbari M (2013) An efficient one-pot synthesis of tetrahydro-chromeno [4, 3-b] chromene-6, 8-dione and tetrahydro-pyrano [4, 3-b] chromene-1, 9-dione derivatives under solvent-free conditions. World Appl Sci J 22:802–808. https://doi.org/10.5829/idosi.wasj.2013.22.06.333

    Article  CAS  Google Scholar 

  67. Ganguly NC, Roy S, Mondal P (2014) Boric acid–catalyzed one-pot access to 7-aryl-benzopyrano [4, 3-b] benzopyran-6, 8-diones under aqueous micellar conditions. Synth Commun 44(3):433–440. https://doi.org/10.1080/00397911.2013.813546

    Article  CAS  Google Scholar 

  68. Iniyavan P, Sarveswari S, Vijayakumar V (2015) Microwave-assisted clean synthesis of xanthenes and chromenes in [bmim][PF 6] and their antioxidant studies. Res Chem Intermed 41:7413–7426. https://doi.org/10.1007/s11164-014-1821-4

    Article  CAS  Google Scholar 

  69. Chen Z, Zhu Q, Su W (2011) A novel sulfonic acid functionalized ionic liquid catalyzed multicomponent synthesis of 10, 11-dihydrochromeno [4, 3-b] chromene-6, 8 (7H, 9H)-dione derivatives in water. Tetrahedron Lett 52(20):2601–2604. https://doi.org/10.1016/j.tetlet.2011.03.059

    Article  CAS  Google Scholar 

  70. Sun XJ, Zhou JF, Zhi SJ (2012) Efficient one-pot synthesis of tetrahydrobenzo [c] xanthene-1, 11-dione derivatives under microwave irradiation. Synth Commun 42(13):1987–1994. https://doi.org/10.1080/00397911.2010.551285

    Article  CAS  Google Scholar 

  71. Patil KT, Walekar LS, Undare SS, Kolekar GB, Deshmukh MB, Choudhari PB, Anbhule PV (2016) An efficient one-pot synthesis of tetrahydro-chromeno [4, 3-b] chromene-6, 8-dione and tetrahydro-pyrano [4, 3-b] chromene-1, 9-dione derivatives under solvent-free conditions. Indian J Chem 55:1151–1159

    Google Scholar 

  72. Vajar S, Mokhtary M (2019) Nano-CuFe2O4@ SO3H catalyzed efficient one-pot cyclo-dehydration of dimedone and synthesis of chromeno [4, 3-b] chromenes. Polycycl Aromat Compd 39(2):111–123. https://doi.org/10.1080/10406638.2017.1280516

    Article  CAS  Google Scholar 

  73. Zare A, Asvar H, Zarei F, Khalili M, Kordrostami Z, Moosavi-Zare AR, Khakyzadeh V (2016) Synthesis and identification of SO3H-functionalized Phthalimide (SFP) as an efficient catalyst for the condensation of Dimedone with Arylaldehydes. J Appl Chem Res 10(2):59–67 https://dorl.net/dor/20.1001.1.20083815.2016.10.2.6.2

    Google Scholar 

  74. Kauthale SS, Tekale SU, Jadhav KM, Pawar RP (2016) Ethylene glycol promoted catalyst-free pseudo three-component green synthesis of bis (coumarin) s and bis (3-methyl-1-phenyl-1 H-pyrazol-5-ol) s. Mol Divers 20:763–770. https://doi.org/10.1007/s11030-016-9673-z

    Article  CAS  PubMed  Google Scholar 

  75. Irannejad-Gheshlaghchaei N, Zare A, Sajadikhah SS, Banaei A (2018) A novel dicationic ionic liquid as a highly effectual and dual-functional catalyst for the synthesis of 3-methyl-4-arylmethylene-isoxazole-5 (4 H)-ones. Res Chem Intermed 44:6253–6266. https://doi.org/10.1007/s11164-018-3488-8

    Article  CAS  Google Scholar 

  76. Shirini F, Langarudi MS, Daneshvar N, Mashhadinezhad M, Nabinia N (2017) Preparation of a new DABCO-based ionic liquid and investigation on its application in the synthesis of benzimidazoquinazolinone and pyrimido [4, 5-b]-quinoline derivatives. J Mol Liq 243:302–312. https://doi.org/10.1016/j.molliq.2017.07.080

    Article  CAS  Google Scholar 

  77. Mohammadi K, Shirini F, Yahyazadeh A (2015) 1, 3-Disulfonic acid imidazolium hydrogen sulfate: a reusable and efficient ionic liquid for the one-pot multi-component synthesis of pyrimido [4, 5-b] quinoline derivatives. RSC Adv 5(30):23586–23590. https://doi.org/10.1039/C5RA02198G

    Article  CAS  Google Scholar 

  78. Sheikhhosseini E, Yahyazadehfar M (2023) Synthesis and characterization of an Fe-MOF@ Fe3O4 nanocatalyst and its application as an organic nanocatalyst for one-pot synthesis of dihydropyrano [2, 3-c] chromenes. Front Chem 10:984502. https://doi.org/10.3389/fchem.2022.984502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ezzatzadeh E, Hossaini Z, Rostamian R, Vaseghi S, Mousavi SF (2017) Fe3O4 magnetic nanoparticles (MNPs) as reusable catalyst for the synthesis of Chromene derivatives using multicomponent reaction of 4-Hydroxycumarin basis on Cheletropic reaction. J Heterocyclic Chem 54(5):2906–2911. https://doi.org/10.1002/jhet.2900

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to acknowledge the Takin Shimi Sepanta Industries Co, Ilam, Iran.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Riyadh Hasan Mohammed Ali: synthesis of some 10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives (1a-6a) and manuscript editing. Ahmed Hjazi: synthesis of some 10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives (7a-12a) and helping to edit the manuscript. Herlina Uinarni: optimizing the synthesis conditions of 10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives. Sarah Salah Jalal: identifying the structure of the catalyst by means of FT-IR and XRD analyzes. Saurabh Aggarwal: identifying the structure of the catalyst by means of TGA and BET analyzes. Sherzod Shukhratovich Abdullaev: identifying the structure of the catalyst by means of FE-SEM and EDS analyzes. Mohammed Kadhem Abid: identifying the structure of 10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione by 1H NMR and 13CNMR, as well as analyzing their resulting data. Abbas F. Almulla: providing part of the required raw materials and helping to edit the manuscript. Ali Alsaalamy: providing part of the required raw materials and designing and drawing schemes. Rohollah Fathollahi: designed and synthesized the catalyst, and wrote the manuscript.

Corresponding author

Correspondence to Rohollah Fathollahi.

Ethics declarations

Ethics approval and consent to participate

The author's declare that the paper is not be submitted simultaneously to another journal. The submitted work is original and has not been published elsewhere in any form or language, and the authors have no conflict of interest regarding this manuscript. The authors agree to participate in submitting our manuscript to this journal, and agree to the publication of our research data in this journal.

Consent for publication

We have confirmed.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1625 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, R.H.M., Hjazi, A., Uinarni, H. et al. Design, Preparation and Identification a Mesoporous Bi-functional Organic–inorganic Hybrid Magnetic Catalyst for Selective and Effectual Synthesis 10,11-Dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione Derivatives. Silicon 16, 939–954 (2024). https://doi.org/10.1007/s12633-023-02799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02799-4

Keywords

Navigation