Skip to main content
Log in

Magnetic Aluminosilicate Nanoclay: a Natural and Efficient Nanocatalyst for the Green Synthesis of 4H-Pyran Derivatives

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, the magnetic nanoparticles have been loaded on the halloysite nanotubes (HNTs) as an aluminosilicate clay mineral. Fe3O4/HNTs nanocomposite was fully characterized by Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray (EDX) analysis, thermogravimetric analysis (TGA), field-emission scanning electron microscopy (FE-SEM) image, transmission electron microscope (TEM) image, inductively coupled plasma (ICP) analysis, X-ray diffraction (XRD) pattern and vibrating sample magnetometer (VSM) curve. The performance of the Fe3O4/HNTs as a heterogeneous catalyst was investigated in the synthesis of 4H-pyran derivatives. The high efficiently, mild reaction condition, green solvents and using the eco-friendly and recoverable catalyst are the most advantages of the present work. Moreover, the simple separation and reuse of the Fe3O4/HNTs nanocatalyst were confirmed stability and efficiency of the catalyst after 7 runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergaya F, Lagaly G (2013) Developments in. Clay Sci 5:1–7

    Google Scholar 

  2. Lvov Y, Aerov A, Fakhrullin R (2014) Clay nanotube encapsulation for functional biocomposites. Adv Colloid Interf Sci 207:189–198

    Article  CAS  Google Scholar 

  3. Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv Mater 28:1227–1250

    Article  CAS  Google Scholar 

  4. Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525

    Article  CAS  Google Scholar 

  5. Hajizadeh Z, Maleki A (2018) Poly(ethylene imine)-modified magnetic halloysite nanotubes: A novel, efficient and recyclable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Mole Catal 460:87–93

    Article  CAS  Google Scholar 

  6. Suresh G, Vasu V, Rao MV (2018) A Composite (Taguchi-Utility-RSM) Approach for Optimizing the Tribological Responses of Polytetrafluoroethylene (PTFE) Nanocomposites for Self-lubrication Applications. Silicon 10:2043–2053

    Article  CAS  Google Scholar 

  7. Riahi-Madvaar R, Taher MA, Fazelirad H (2017) Synthesis and characterization of magnetic halloysite-iron oxide nanocomposite and its application for naphthol green B removal. Appl Clay Sci 137:101–106

    Article  CAS  Google Scholar 

  8. Chen L, Zhou CH, Fiore S, Tong DS, Zhang H, Li CS, Ji SF, Yu WH (2016). Appl Clay Sci 127:143–163

    Article  Google Scholar 

  9. Fattahi N, Ramazani A, Kinzhybalo V (2018). Silicon. https://doi.org/10.1007/s12633-017-9757-0

    Article  Google Scholar 

  10. Fattahi N, Ramazani A, Ahankar H, Azimzadeh Asiabi P, Kinzhybalo V (2018) Tetramethylguanidine-Functionalized Fe3O4/ Chloro-Silane Core-Shell Nanoparticles: an Efficient Heterogeneous and Reusable Organocatalyst for Aldol Reaction. Silicon. https://doi.org/10.1007/s12633-018-9954-5

    Article  Google Scholar 

  11. Maleki A, Aghaei M (2017) Ultrasonic assisted synergetic green synthesis of polycyclic imidazo(thiazolo)pyrimidines by using Fe3O4 @clay core-shell. Ultrason Sonochem 38:585–589

    Article  CAS  Google Scholar 

  12. Maleki A, Firozi-Haji R, Hajizadeh Z (2018) Magnetic guanidinylated chitosan nanobiocomposite: A green catalyst for the synthesis of 1,4-dihydropyridines. Int J Biol Macromol 116:320–326

    Article  CAS  Google Scholar 

  13. Tian X, Wang W, Tian N, Zhou C, Yang C, Komarneni S (2016) Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4 /halloysite nanohybrid. J Hazard Mater 309:151–156

    Article  CAS  Google Scholar 

  14. Tsoufis T, Katsaros F, Kooi BJ, Bletsa E, Papageorgiou S, Deligiannakis Y, Panagiotopoulos I (2017) Halloysite nanotube-magnetic iron oxide nanoparticle hybrids for the rapid catalytic decomposition of pentachlorophenol. Chem Eng J 313:466–474

    Article  CAS  Google Scholar 

  15. Mu B, Wang W, Zhang J, Wang A (2014) Superparamagnetic sandwich structured silver/halloysite nanotube/Fe3O4 nanocomposites for 4-nitrophenol reduction. RSC Adv 4:39439–39445

    Article  CAS  Google Scholar 

  16. Xie Y, Qian D, Wu D, Ma X (2011) Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem Eng J 168:959–963

    Article  CAS  Google Scholar 

  17. Rostamnia S, Alamgholiloo H, Jafari M (2018) Appl Organomet Chem 32:e4370–e4379

  18. Maleki A, Hajizadeh Z, Abbasi H (2018) Carbon Lett 27:42–49

  19. Azzam RA, Mohareb RM (2015) Multicomponent Reactions of Acetoacetanilide Derivatives with Aromatic Aldehydes and Cyanomethylene Reagents to Produce 4<i>H</i>-Pyran and 1,4-Dihydropyridine Derivatives with Antitumor Activities. Chem Pharm Bull 63:1055–1064

    Article  CAS  Google Scholar 

  20. Maleki A, Ghassemi M, Firouzi-Haji R (2018) Green multicomponent synthesis of four different classes of six-membered N-containing and O-containing heterocycles catalyzed by an efficient chitosan-based magnetic bionanocomposite. Pure Appl Chem 90:387–394

    Article  CAS  Google Scholar 

  21. Hekmatshoar R, Majedi S, Bakhtiari K (2008) Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives. Catal Commun 9:307–310

    Article  CAS  Google Scholar 

  22. Niknam K, Borazjani N, Rashidian R, Jamali A (2013) Silica-bonded N-propylpiperazine sodium n-propionate as recyclable catalyst for synthesis of 4H-pyran derivatives. Chin J Catal 34:2245–2254

    Article  CAS  Google Scholar 

  23. Maleki B, Sheikh S (2015) One-pot Synthesis of 2-Amino-2-chromene and 2-Amino-3-cyano-4H-pyran Derivatives Promoted by Potassium Fluoride. Org Prep Proced Int 47:368–378

    Article  CAS  Google Scholar 

  24. Maleki A (2013) Tetrahedron Lett 54:2055–2059

  25. Maleki A (2018) Ultrason Sonochem 40:460–464

  26. Maleki A (2018) Polycycl Aromat Compd 38:402–409

  27. Maleki A, Rahimi J, Hajizadeh Z, Niksefat M (2019) J Organomet Chem 881:58-65

  28. Maleki A (2014) Helv Chim Acta 97:587–593

  29. Li C, Li X, Duan X, Li G, Wang J (2014) Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres. J Colloid Interface Sci 436:70–76

    Article  CAS  Google Scholar 

  30. Maleki A, Hajizadeh Z, Firouzi-Haji R (2018) Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Microporous Mesoporous Mater 259:46–53

    Article  CAS  Google Scholar 

  31. Maleki A, Akhlaghi E, Paydar R (2016) Design, synthesis, characterization and catalytic performance of a new cellulose-based magnetic nanocomposite in the one-pot three-component synthesis of α-aminonitriles. Appl Organometal Chem 30:382–386

    Article  CAS  Google Scholar 

  32. Johnson SL, Guggenheim S, van Groos AF (1990) Thermal Stability of Halloysite by High-Pressure Differential Thermal Analysis. Clay Clay Miner 38:477–484

    Article  CAS  Google Scholar 

  33. Wang XS, Shi DQ, Tu ST, Yao CS (2003) A Convenient Synthesis of 5-Oxo-5,6,7,8-tetrahydro-4H-benzo-[b]-pyran Derivatives Catalyzed by KF-Alumina. Synth Commun 33:119–126

    Article  CAS  Google Scholar 

  34. Wang LM, Shao JH, Tian H, Wang YH, Liu B (2006) Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot synthesis of benzopyran derivatives. J Fluor Chem 127:97–100

    Article  CAS  Google Scholar 

  35. Jin TS, Wang AQ, Wang X, Zhang JS, Li TS (2004). Synlett 5:871–873

    Article  Google Scholar 

  36. Pourian E, Javanshir S, Dolatkhah Z, Molaei S, Maleki A (2018) Ultrasonic-Assisted Preparation, Characterization, and Use of Novel Biocompatible Core/Shell Fe3O4@GA@Isinglass in the Synthesis of 1,4-Dihydropyridine and 4H-Pyran Derivatives. ACS Omega 3:5012–5020

    Article  CAS  Google Scholar 

  37. Moshtaghi Zonouz AA, Moghani D, Okhravi S (2014) A facile and efficient protocol for the synthesis of 2-amino-3-cyano-4H-pyran derivatives at ambient temperature. Curr Chem Lett 3:71–74

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial support from the Research Council of the Iran University of Science and Technology.

Author information

Authors and Affiliations

Authors

Electronic supplementary material

ESM 1

(DOC 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, A., Hajizadeh, Z. Magnetic Aluminosilicate Nanoclay: a Natural and Efficient Nanocatalyst for the Green Synthesis of 4H-Pyran Derivatives. Silicon 11, 2789–2798 (2019). https://doi.org/10.1007/s12633-019-0069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-0069-4

Keywords

Navigation