Skip to main content

Advertisement

Log in

Fabrication and Tailored Optical Characteristics of CeO2/SiO2 Nanostructures Doped PMMA for Electronics and Optics Fields

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, fabrication of poly-methyl methacrylate(PMMA)/cerium dioxide/silicon dioxide nanostructures has been investigated as promising materials to use in various electronics and optics nanodevices like photovoltaic cell, sensors, electronic gates, and transistors. The optical properties of PMMA/ CeO2/SiO2 nanostructures were studied at photon wavelength from 240 to 840 nm. The results indicated that the optical absorption of PMMA at wavelength (λ) = 240 nm was increased about 33.5% and transmission reduced about 53.7% when the CeO2/SiO2 NPs contents reached (5.4 wt.%), this behavior make it suitable for many optical approaches. The energy gap of PMMA was decreased from 4.14 eV for pure PMMA to 2.08 eV when the CeO2/SiO2 NPs content reached (5.4 wt.%), this result made it may be considered as key for various optical fields and optoelectronics nanodevices. The optical parameters values like refractive index, optical conductivity and dielectric constants of PMMA were enhanced with rise in the CeO2/SiO2 NPs content. The final obtained results showed the PMMA/ CeO2/SiO2 nanostructures have excellent optical characteristics to utilize in the optics and electronics fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Yes, the data are available.

References

  1. Al-Baradi AM, Al-Shehri SF, Badawi A, Amar Merazga A, Atta A (2018) A study of optical, mechanical and electrical properties of poly(methacrylic acid)/TiO2 nanocomposite. Results Phys 9:879–885. https://doi.org/10.1016/j.rinp.2018.03.039

    Article  Google Scholar 

  2. Gaabour LH (2021) Effect of addition of TiO2 nanoparticles on structural and dielectric properties of polystyrene/polyvinyl chloride polymer blend. AIP Adv 11:105120. https://doi.org/10.1063/5.0062445

    Article  CAS  Google Scholar 

  3. WeiWang , Baikai Zhang, Shuai Jiang, Huiyu Bai and Shengwen Zhang, Use of CeO2 Nanoparticles to Enhance UV-Shielding of Transparent Regenerated Cellulose Films, Polymers 11 (2019) https://doi.org/10.3390/polym11030458

  4. Areen A. Bani-Salameh, A. A. Ahmad, A. M. Alsaad, I. A. Qattan and Ihsan A. Aljarrah, Synthesis, Optical, Chemical and Thermal Characterizations of PMMA-PS/CeO2 Nanoparticles Thin Film, Polymers 13, (2021), https://doi.org/10.3390/polym13071158

  5. Mosab Kaseem, Zeeshan Ur Rehman, Shakhawat Hossain, Ashish Kumar Singh and Burak Dikici, A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites, Polymers 13, (2021), https://doi.org/10.3390/polym13183036

  6. Chih-Ling Huang, A Study of the Optical Properties and Fabrication of Coatings Made of Three-Dimensional Photonic Glass, Coatings 10, (2020), https://doi.org/10.3390/coatings10080781

  7. Raina Aman Qazi , Rozina Khattak, Luqman Ali Shah, Rizwan Ullah, Muhammad Sufaid Khan, Muhammad Sadiq, Mahmoud M. Hessien and Zeinhom M. El-Bahy, Effect of MWCNTs Functionalization on Thermal, Electrical, and Ammonia-Sensing Properties of MWCNTs/PMMA and PHB/MWCNTs/ PMMA Thin Films Nanocomposites, Nanomaterials 11, (2021), https://doi.org/10.3390/nano11102625

  8. Solyman SM, Ali HR, Moustafa YM (2021) The Performance of Inorganic Salts/PMMA Nanocomposites in Ca+2 and Mg+2 Adsorption from Aqueous Solution, Egypt. J Chem 64(10):6123–6135. https://doi.org/10.21608/EJCHEM.2021.55304.3172

    Article  Google Scholar 

  9. ShicongYang, Xiaohan Wan, Kuixian Wei, Wenhui Ma, Zhi Wang, Silicon recycling and iron, nickel removal from diamond wire saw silicon powder waste: Synergistic chlorination with CaO smelting treatment, Minerals Engineering, 169, (2021), https://doi.org/10.1016/j.mineng.2021.106966.

  10. Tingting Zhang, Zhijie Wang, Huijing Xiang, Xue Xu, Jing Zou, and Chichong Lu, Biocompatible Superparamagnetic Europium-Doped Iron Oxide Nanoparticle Clusters as Multifunctional Nanoprobes for Multimodal In Vivo Imaging, ACS Appl. Mater. Interfaces, 13, (2021), https://doi.org/10.1021/acsami.1c07739.

  11. Xiong QM, Chen Z, Huang JT et al (2020) Preparation, structure and mechanical properties of Sialon ceramics by transition metal-catalyzed nitriding reaction. Rare Met 39:589–596. https://doi.org/10.1007/s12598-020-01385-6

    Article  CAS  Google Scholar 

  12. Chaozheng He, Risheng Sun, Ling Fu, Jinrong Huo, Chenxu Zhao, Xiuyuan Li, Yan Song, SuminWang, Defect engineering for high-selection-performance of NO reduction to NH3 over CeO2 (111) surface: A DFT study, Chinese Chem Lett 33 1, (2022), https://doi.org/10.1016/j.cclet.2021.05.072.

  13. Xue Chen, Dengkui Wang, Tuo Wang, Zhenyu Yang, Xuming Zou, Peng Wang, Wenjin Luo, Qing Li, Lei Liao, Weida Hu, and Zhipeng Wei, Enhanced Photoresponsivity of a GaAs Nanowire Metal-Semiconductor-Metal Photodetector by Adjusting the Fermi Level, ACS Appl Mater Interfaces 11, (2019), https://doi.org/10.1021/acsami.9b07891.

  14. Haolin Li, Jilong Tang, Yubin Kang, Haixia Zhao, Dan Fang, Xuan Fang, Rui Chen, and Zhipeng Wei, Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires, Appl Phys Lett 113, (2018), https://doi.org/10.1063/1.5053844.

  15. Dong Xu, Hailing Ma, Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis, J Clean Prod, 313, (2021), https://doi.org/10.1016/j.jclepro.2021.127758.

  16. Kelin Hu, Feipeng Wang, Zijia Shen, Hongcheng Liu, Jianglin Xiong, Ternary heterojunctions synthesis and sensing mechanism of Pd/ZnO–SnO2 hollow nanofibers with enhanced H2 gas sensing properties, J Alloys Compd, 850, (2021), https://doi.org/10.1016/j.jallcom.2020.156663.

  17. Xuefeng Tong, Fan Zhang, Bifa Ji, Maohua Sheng, Yongbing Tang, Carbon-Coated Porous Aluminum Foil Anode for High-Rate, Long-Term Cycling Stability, and High Energy Density Dual-Ion Batteries, Adv Matt 28, (2016), https://doi.org/10.1002/adma.201603735.

  18. Ahmed Hashim, Zinah S. Hamad, Lower Cost and Higher UV-Absorption of Polyvinyl Alcohol/ Silica Nanocomposites For Potential Applications, Egypt J Chem 63 2, https://doi.org/10.21608/EJCHEM.2019.7264.1593, (2020).

  19. Ahmed Hashim, Enhanced Structural, Optical, and Electronic Properties of In2O3 and Cr2O3 Nanoparticles Doped Polymer Blend for Flexible Electronics and Potential Applications, J Inorg Organomet Polym Mater, 30, https://doi.org/10.1007/s10904-020-01528-3, (2020).

  20. H. Ahmed, A. Hashim, H.M. Abduljalil, Determination of Optical Parameters of Films Of PVA/TiO2/SiC and PVA/MgO/SiC Nanocomposites For Optoelectronics and UV-Detectors, Ukr J Phys 65 6, (2020). https://doi.org/10.15407/ujpe65.6.533.

  21. A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid, Fabrication of Novel (Biopolymer Blend-Lead Oxide Nanoparticles) Nanocomposites: Structural and Optical Properties for Low Cost Nuclear Radiation Shielding, Ukr J Phys 64 2, (2019), https://doi.org/10.15407/ujpe64.2.157.

  22. Ahmed H, Hashim A (2021) Design and Tailoring the Optical and Electronic Characteristics of Silicon Doped PS/SnS2 New Composites for Nano-Semiconductors Devices. SILICON. https://doi.org/10.1007/s12633-021-01449-x

    Article  PubMed Central  Google Scholar 

  23. Hashim A (2021) Synthesis of SiO2/CoFe2O4 Nanoparticles Doped CMC: Exploring the Morphology and Optical Characteristics for Photodegradation of Organic Dyes. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-020-01846-6

    Article  Google Scholar 

  24. Abdel Maksoud MIA, Abdelhaleem S, Tawfik EK et al (2021) Tailoring the structural, thermal, photoluminescence, and optical properties of flexible PVA/Gd2O3 nanocomposite films by gamma irradiation. Appl Phys A 127:801. https://doi.org/10.1007/s00339-021-04940-9

    Article  CAS  Google Scholar 

  25. Akouibaa A, Masrour R, Jabar A et al (2021) Numerical investigation of electronic, dielectric and optical properties of CdO, SnO2/CdO and SnO2/CdO/PVP nanocomposites. Opt Quant Electron 53:681. https://doi.org/10.1007/s11082-021-03305-z

    Article  CAS  Google Scholar 

  26. Vardanjani MJ, Karevan M (2021) Design, fabrication, and characterization of thermal and optical properties of nano-composite self-cleaning smart window. Opt Quant Electron 53:600. https://doi.org/10.1007/s11082-021-03250-x

    Article  CAS  Google Scholar 

  27. Vanin AI, Kumzerov YA, Solov’ev VG et al (2021) Electrical and Optical Properties of Nanocomposites Fabricated by the Introduction of Iodine in Porous Dielectric Matrices. Glass Phys Chem 47:229–234. https://doi.org/10.1134/S1087659621030123

    Article  CAS  Google Scholar 

  28. Ishwarchand W, Sarakar G, Swain BP (2021) Investigation of optical properties, chemical network and electronic environments of polycaprolactone/reduced graphene oxide fiber nanocomposites. Polym Bull. https://doi.org/10.1007/s00289-021-03920-6

    Article  Google Scholar 

  29. Abass MR, Ibrahim AB, El-Masry EH et al (2021) Optical properties enhancement for polyacrylonitrile-ball clay nanocomposite by heavy metals saturation technique. J Radioanal Nucl Chem 329:849–855. https://doi.org/10.1007/s10967-021-07844-3

    Article  CAS  Google Scholar 

  30. Ahmed H, Hashim A (2020) Structure, Optical, Electronic and Chemical Characteristics of Novel (PVA-CoO) Structure Doped with Silicon Carbide. SILICON. https://doi.org/10.1007/s12633-020-00723-8

    Article  Google Scholar 

  31. Ahmed H, Hashim A (2021) Exploring the Design, Optical and Electronic Characteristics of Silicon Doped (PS-B) New Structures for Electronics and Renewable Approaches. SILICON. https://doi.org/10.1007/s12633-021-01465-x

    Article  PubMed Central  Google Scholar 

  32. Ahmed H, Hayder A, Hind A (2019) Analysis of Optical, Electronic and Spectroscopic properties of (Biopolymer-SiC) Nanocomposites For Electronics Applications, Egypt. J Chem. https://doi.org/10.21608/EJCHEM.2019.7154.1590

    Article  Google Scholar 

  33. Ahmed H, Hashim A (2020) Lightweight, Flexible and High energies Absorption Property of PbO2 Doped Polymer Blend for Various Renewable Approaches. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00244-6

    Article  Google Scholar 

  34. Z. Al-Ramadhan, Ahmed Hashim and Alaa J. Kadham Algidsawi, The D.C electrical properties of (PVC-Al2O3) composites , AIP Conference Proceedings 1400 1, https://doi.org/10.1063/1.3663109, (2011).

  35. Al-Huda Al-Aaraji N, Hashim A, Hadi A, Abduljalil HM (2021) Effect of Silicon Carbide Nanoparticles Addition on Structural and Dielectric Characteristics of PVA/CuO Nanostructures for Electronics Devices. SILICON. https://doi.org/10.1007/s12633-021-01265-3

    Article  Google Scholar 

  36. Jebur QM, Hashim A, Habeeb MA (2019) Structural, Electrical and Optical Properties for (Polyvinyl Alcohol-Polyethylene Oxide–Magnesium Oxide) Nanocomposites for Optoelectronics Applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00121-x

    Article  Google Scholar 

  37. Jang KS, Yeom HY, Park JW et al (2021) Morphology, electrical conductivity, and rheology of latex-based polymer/nanocarbon nanocomposites. Korea-Aust Rheol J 33:357–366. https://doi.org/10.1007/s13367-021-0028-7

    Article  Google Scholar 

  38. Momin SA, Mariatti M (2021) Thermal, electrical, and physical properties of novel phase stabilized material: hybrid plastilina nanocomposites for effective thermal management in electronics. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-021-07248-9

    Article  Google Scholar 

  39. Jambaladinni S, Bhat JS (2021) Enhanced Structural, Optical, and Electrical Properties of PVP/ZnO Nanocomposites. Iran J Sci Technol Trans Sci. https://doi.org/10.1007/s40995-021-01213-1

    Article  Google Scholar 

  40. Kadhim K J, Agool I R and Hashim A. (2016), Synthesis of (PVA-PEG-PVP-TiO2) Nanocomposites for Antibacterial Application. Materials Focus 5 5, https://doi.org/10.1166/mat.2016.1371

  41. Kadhim K J, Agool I R and Hashim A., (2017) Effect of Zirconium Oxide Nanoparticles on Dielectric Properties of (PVA-PEG-PVP) Blend for Medical Application. Journal of Advanced Physics 6 2, https://doi.org/10.1166/jap.2017.1313

  42. Ahmed H, Hashim A, Optimization G (2020) Optical and Electronic Characteristics of Novel PVA/PEO/SiC Structure for Electronics Applications. SILICON. https://doi.org/10.1007/s12633-020-00620-0

    Article  Google Scholar 

  43. Hazim A, Abduljalil HM, Hashim A (2020) First Principles Calculations of Electronic, Structural and Optical Properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) Nanocomposites for Optoelectronics Applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00224-w

    Article  Google Scholar 

  44. Hazim A, Hashim A, Abduljalil HM (2019) Analysis of Structural and Electronic, properties of Novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2-Ag, PMMA -Ag) Nanocomposites for Low Cost Electronics and Optics Applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00148-0

    Article  Google Scholar 

  45. Hashim A (2021) Enhanced morphological, optical and electronic characteristics of WC NPs doped PVP/PEO for flexible and lightweight optoelectronics applications. Opt Quant Electron 53:478. https://doi.org/10.1007/s11082-021-03100-w

    Article  CAS  Google Scholar 

  46. Angham Hazim, Ahmed Hashim and Hayder M. Abduljalil, Fabrication of Novel (PMMA-Al2O3/Ag) Nanocomposites and its Structural and Optical Properties for Lightweight and Low Cost Electronics Applications, Egypt J Chem 64 1, (2021), https://doi.org/10.21608/EJCHEM.2019.18513.2144.

  47. Ahmed H, Hashim A (2020) Design and characteristics of novel PVA/PEG/Y2O3 structure for optoelectronics devices. J Mol Model 26:210. https://doi.org/10.1007/s00894-020-04479-1

    Article  CAS  PubMed  Google Scholar 

  48. Kumar S, Baruah S, Puzari A (2020) Poly(p-phenylenediamine)-based nanocomposites with metal oxide nanoparticle for optoelectronic and magneto-optic application. Polym Bull 77:441–457. https://doi.org/10.1007/s00289-019-02760-9

    Article  CAS  Google Scholar 

  49. Bano, N., Hussain, I., EL-Naggar, A.M. et al. Reduced graphene oxide nanocomposites for optoelectronics applications. Appl. Phys. A 125, 215 (2019). https://doi.org/10.1007/s00339-019-2518-8.

  50. Alharthi SS, Alzahrani A, Razvi MAN et al (2020) Spectroscopic and Electrical Properties of Ag2S/PVA Nanocomposite Films for Visible-Light Optoelectronic Devices. J Inorg Organomet Polym 30:3878–3885. https://doi.org/10.1007/s10904-020-01519-4

    Article  CAS  Google Scholar 

  51. Ahmed H, Hashim A (2021) Design of Polymer/Lithium Fluoride New Structure for Renewable and Electronics Applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-021-00340-1

    Article  Google Scholar 

  52. Ahmed H, Hashim A (2020) Structural, Optical and Electronic Properties of Silicon Carbide Doped PVA/NiO for Low Cost Electronics Applications. SILICON. https://doi.org/10.1007/s12633-020-00543-w

    Article  Google Scholar 

  53. Hazim A, Abduljalil HM, Hashim A (2020) Structural, Spectroscopic, Electronic and Optical Properties of Novel Platinum Doped (PMMA/ZrO2) and (PMMA/Al2O3) Nanocomposites for Electronics Devices. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00210-2

    Article  Google Scholar 

  54. Ahmed H, Hashim A (2021) Exploring the Characteristics of New Structure Based on Silicon Doped Organic Blend for Photonics and Electronics Applications. SILICON. https://doi.org/10.1007/s12633-021-01258-2

    Article  PubMed Central  Google Scholar 

  55. Ahmed H, Abduljalil HM, Hashim A (2019) Analysis of Structural, Optical and Electronic Properties of Polymeric Nanocomposites/Silicon Carbide for Humidity Sensors. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00100-2

    Article  Google Scholar 

  56. Hashim A, Sattar Hamad Z (2019) Fabrication and Characterization of Polymer Blend Doped with Metal Carbide Nanoparticles for Humidity Sensors. J Nanostruct 9(2):340–348. https://doi.org/10.22052/JNS.2019.02.016

    Article  CAS  Google Scholar 

  57. Pavithra B, Prabhu SG, Nayak MM (2021) Design, development, fabrication and testing of low-cost, laser-engraved, embedded, nano-composite-based pressure sensor. ISSS J Micro Smart Syst. https://doi.org/10.1007/s41683-021-00076-3

    Article  Google Scholar 

  58. Panda S, Acharya B (2021) PDMS/MWCNT nanocomposites as capacitive pressure sensor and electromagnetic interference shielding materials. J Mater Sci: Mater Electron 32:16215–16229. https://doi.org/10.1007/s10854-021-06170-4

    Article  CAS  Google Scholar 

  59. Hashim A (2021) Fabrication and characteristics of flexible, lightweight, and low-cost pressure sensors based on PVA/SiO2/SiC nanostructures. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-020-05032-9

    Article  Google Scholar 

  60. Hashim A and Hadi A., (2018) Novel Pressure Sensors Made From Nanocomposites (Biodegradable Polymers–Metal Oxide Nanoparticles): Fabrication and Characterization. Ukr J Phys 63(8), https://doi.org/10.15407/ujpe63.8.754

  61. Ahmed Hashim and Aseel Hadi, (2017) A Novel Piezoelectric Materials Prepared from (Carboxymethyl Cellulose-Starch) Blend-Metal Oxide Nanocomposites, Sens Lett, 15, https://doi.org/10.1166/sl.2017.3910

  62. Hind A, Hashim A, Abduljalil HM (2019) Analysis of Structural, Electrical and Electronic Properties of (Polymer Nanocomposites/ Silicon Carbide) for Antibacterial Application. Egypt J Chem 62(4):1167–1176. https://doi.org/10.21608/EJCHEM.2019.6241.1522

    Article  Google Scholar 

  63. Ahmed Hashim, Ibrahim R. (2018) Agool, and Kadhim J. Kadhim, Modern Developments in Polymer Nanocomposites for Antibacterial and Antimicrobial Applications: A Review, J Bionanosci, 12 5, https://doi.org/10.1166/jbns.2018.1580

  64. Aida MS, Alonizan NH, Hussein MA et al (2021) Facile Synthesis and Antibacterial Activity of Bioplastic Membrane Containing In Doped ZnO/Cellulose Acetate Nanocomposite. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-021-02171-2

    Article  Google Scholar 

  65. Hamedi S, Shojaosadati SA (2021) Preparation of antibacterial ZnO NP-containing schizophyllan/bacterial cellulose nanocomposite for wound dressing. Cellulose 28:9269–9282. https://doi.org/10.1007/s10570-021-04119-8

    Article  CAS  Google Scholar 

  66. A Hashim, HM Abduljalil, H Ahmed, (2020) Fabrication and Characterization of (PVA-TiO2)1-x/ SiCx Nanocomposites for Biomedical Applications, Egypt J Chem 63 1, https://doi.org/10.21608/EJCHEM.2019.10712.1695

  67. Hind Ahmed, Ahmed Hashim,(2020) Fabrication of PVA/NiO/SiC Nanocomposites and Studying their Dielectric Properties For Antibacterial Applications, Egypt J Chem 63 3, https://doi.org/10.21608/EJCHEM.2019.11109.1712

  68. Kanemoto SO, Gouthaman S, Venkatesh M et al (2021) Thermal performance of polyurethane nanocomposite from phosphorus and nitrogen-containing monomer, polyethylene glycol and polydimethylsiloxane for thermal energy storage applications. J Therm Anal Calorim 146:2435–2444. https://doi.org/10.1007/s10973-020-10478-4

    Article  CAS  Google Scholar 

  69. Rashid FL, Talib SM (2018) Aseel Hadi and Ahmed Hashim, Novel of thermal energy storage and release: water/(SnO2 -TaC) and water/(SnO2 –SiC) nanofluids for environmental applications. IOP Conf. Ser: Mater Sci Eng 454:012113. https://doi.org/10.1088/1757-899X/454/1/012113

    Article  Google Scholar 

  70. Hadi A, Rashid FL, Hussein HQ, Hashim A (2019) Novel of water with (CeO2-WC) and (SiC-WC) nanoparticles systems for energy storage and release applications. IOP Conf Ser: Mater Sci Eng 518(3):5. https://doi.org/10.1088/1757-899X/518/3/032059

    Article  Google Scholar 

  71. Jothibas M, Manoharan C, Johnson Jeyakumar S, Praveen P (2015) Study on structural and optical behaviors of In2O3 nanocrystals as potential candidate for optoelectronic devices. J Mater Sci: Mater Electron 26:9600–9606. https://doi.org/10.1007/s10854-015-3623-x

    Article  CAS  Google Scholar 

  72. T. Abdel-Baset, M. Elzayat, and S.Mahrous, Characterization and Optical and Dielectric Properties of Polyvinyl Chloride/Silica Nanocomposites Films, International Journal of Polymer Science, Vol. 2016, Article ID 1707018, 13 pages, https://doi.org/10.1155/2016/1707018.

  73. Agarwal S, Saraswat YK, Saraswat VK (2016) Study of Optical Constants of ZnO Dispersed PC/PMMA Blend Nanocomposites. Open Phys J 3:63–72. https://doi.org/10.2174/1874843001603010063

    Article  Google Scholar 

  74. Heiba ZK, Mohamed MB, Ahmed SI (2021) Exploring the physical properties of PVA/PEG polymeric material upon doping with nano gadolinium oxide. Alex Eng J. https://doi.org/10.1016/j.aej.2021.08.051

    Article  Google Scholar 

  75. A. Alsaad, A. R. Al Dairy, A. Ahmad, I. A. Qattan, S. Al Fawares and Q. Al-Bataineh, Synthesis and Characterization of Polymeric (PMMA-PVA) Hybrid Thin Films Doped with TiO2 Nanoparticles Using Dip-Coating Technique, Crystals 11, (2021), https://doi.org/10.3390/cryst11020099.

  76. Chetna Tyagi and Ambika Devi, Alteration of structural, optical and electrical properties of CdSe incorporated polyvinyl pyrrolidone nanocomposite for memory devices, J Adv Dielectr 8 3, (2018), https://doi.org/10.1142/S2010135X18500200.

  77. Ahmad M. Alsaad, Ahmad A. Ahmad , Issam A. Qattan, Abdul-Raouf El-Ali, Shatha A. Al Fawares and Qais M. Al-Bataineh, Synthesis of Optically Tunable and Thermally Stable PMMA–PVA/CuO NPs Hybrid Nanocomposite Thin Films, Polymers 13, (2021), https://doi.org/10.3390/polym13111715.

  78. Gaabour LH (2020) Analysis of Spectroscopic, Optical and Magnetic Behaviour of PVDF/PMMA Blend Embedded by Magnetite (Fe3O4) Nanoparticles. Opt Photonics J 10:197–209. https://doi.org/10.4236/opj.2020.108021

    Article  CAS  Google Scholar 

  79. Ali Atta, Mostufa M. Abdelhamied, Ahmed M. Abdelreheem and Mohamed R. Berber, Flexible Methyl Cellulose/Polyaniline/Silver Composite Films with Enhanced Linear and Nonlinear Optical Properties, Polymers, 13, (2021), https://doi.org/10.3390/polym13081225.

Download references

Acknowledgements

Acknowledgment to University of Babylon.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Ola Basim Fadil and Ahmed Hashim.

Corresponding author

Correspondence to Ahmed Hashim.

Ethics declarations

Ethics approval (Research involving human participants, their data or biological) material

The Research is not involving the studies on human or their data.

Consent to participate

Consent to participate.

Consent for Publication

Consent for Publication.

Conflict of Interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadil, O.B., Hashim, A. Fabrication and Tailored Optical Characteristics of CeO2/SiO2 Nanostructures Doped PMMA for Electronics and Optics Fields. Silicon 14, 9845–9852 (2022). https://doi.org/10.1007/s12633-022-01728-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01728-1

Keywords

Navigation