Skip to main content

Advertisement

Log in

Exploring the Characteristics of New Structure Based on Silicon Doped Organic Blend for Photonics and Electronics Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This work includes design of PVA/PEG/Si new structure and investigating the structural, electronic, thermal and optical characteristics to use in different photonics and optoelectronics fields. The structure, electronic and optical characteristics included the total energy, HOMO-LUMO energies, energy gap (Eg), ionization energy (IE), electronegativity (Χ), electron affinity (EA), electronic softness (S), electrophilic index (W), electron density (TD), density of states (DOS), electrostatic surfaces potential (ESP), dipole moment (D.M) and polarizability (αave) and the relative IR-Spectra. The calculated thermal properties were included the thermal energy, enthalpy, specific heat and entropy. The results demonstrated that the PVA-PEG-Si structure has high absorption at wavelength near from 345   nm. Also, the energy gap of PVA-PEG-Si structure is 9.386   eV. The results of electronic and thermal properties of PVA-PEG-Si structure indicated to the good electronic and thermal parameters. Finally, the obtained results showed that the PVA-PEG-Si structure may be useful in various low cost and lightweight photonics, optoelectronics and high energy radiation shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

yes, the data are available.

References

  1. Rehim MHA, Alhamidi J (2018) TiO2/Polymer nanocomposites for antibacterial packaging applications. J Adv Food Techno 1(1)

  2. Farea MO, Abdelghany AM, Oraby AH (2020). RSC Adv 10:37621

    Article  CAS  Google Scholar 

  3. Hassan HB (2011) A Study of the Electronic Structure of Germanabenzene Molecules (Doctoral dissertation, M. Sc. Thesis, University of Babylon, College of Science, Department of Physics)

  4. Kittel C (2005) Introduction to solid state physics. John Wiley and Sons, Inc., New York

    Google Scholar 

  5. Hamers RJ, Coulter SK, Ellison MD, Hovis JS, Padowitz DF, Schwartz MP, Greenlief CM, Russell JN (2000) Cycloaddition chemistry of organic molecules with semiconductor surfaces. Acc Chem Res 33(9):617–624

    Article  CAS  Google Scholar 

  6. Hashim A, Habeeb MA (2019) Synthesis and characterization of polymer Blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-018-0081-1

  7. Hashim A, Al-Khafaji Y, Hadi A (2019) Synthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocomposites. Trans Electr Electron Mater 20:530–536. https://doi.org/10.1007/s42341-019-00145-3

    Article  Google Scholar 

  8. Hashim A, Hadi A (2018) Novel pressure sensors made from nanocomposites (biodegradable polymers–metal oxide nanoparticles): fabrication and characterization. Ukr J Phys 63(8). https://doi.org/10.15407/ujpe63.8.754

  9. Hashim A, Hamad ZS (2019) Fabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensors. J Nanostruct 9(2):340–348. https://doi.org/10.22052/JNS.2019.02.016

    Article  CAS  Google Scholar 

  10. Hashim A (2021) Fabrication and characteristics of flexible, lightweight, and low-cost pressure sensors based on PVA/SiO2/SiC nanostructures. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-020-05032-9

  11. Badry R, Fahmy A, Ibrahim A, Elhaes H, Ibrahim M (2021) Application of polyvinyl alcohol/polypropylene/zinc oxide nanocomposites as sensor: modeling approach. Opt Quant Electron 53:39. https://doi.org/10.1007/s11082-020-02646-5

    Article  CAS  Google Scholar 

  12. Martin M, Prasad N, Sivalingam MM, Sastikumar D, Karthikeyan B (2018) Optical, phonon properties of ZnO–PVA, ZnO–GO–PVA nanocomposite free standing polymer films for UV sensing. J Mater Sci Mater Electron 29:365–373. https://doi.org/10.1007/s10854-017-7925-z

    Article  CAS  Google Scholar 

  13. Shukla P, Saxena P (2021) Polymer nanocomposites in sensor applications: a review on present trends and future scope. Chin J Polym Sci 39:665–691. https://doi.org/10.1007/s10118-021-2553-8

    Article  CAS  Google Scholar 

  14. Das M, Sarkar D (2018) Development of room temperature ethanol sensor from polypyrrole (PPy) embedded in polyvinyl alcohol (PVA) matrix. Polym Bull 75:3109–3125. https://doi.org/10.1007/s00289-017-2192-y

    Article  CAS  Google Scholar 

  15. Ahmed H, Hashim A (2020) Lightweight, flexible and high energies absorption property of PbO2 doped polymer blend for various renewable approaches. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00244-6

  16. Gayitri HM, AL-Gunaid M, Siddaramaiah et al (2020) Investigation of triplex CaAl2ZnO5 nanocrystals on electrical permittivity, optical and structural characteristics of PVA nanocomposite films. Polym Bull 77:5005–5026. https://doi.org/10.1007/s00289-019-03069-3

    Article  CAS  Google Scholar 

  17. Aslam M, Kalyar MA, Raza ZA (2021) Fabrication of nano-CuO-loaded PVA composite films with enhanced optomechanical properties. Polym Bull 78:1551–1571. https://doi.org/10.1007/s00289-020-03173-9

    Article  CAS  Google Scholar 

  18. Nouh SA, Benthami K, Abou Elfadl A, el-Shamy NT, Tommalieh MJ (2021) Structural, thermal and optical characteristics of laser-exposed Pd/PVA nanocomposite. Polym Bull 78:1851–1866. https://doi.org/10.1007/s00289-020-03188-2

    Article  CAS  Google Scholar 

  19. Abdelhamied MM, Atta A, Abdelreheem AM, Farag ATM, el Okr MM (2020) Synthesis and optical properties of PVA/PANI/ag nanocomposite films. J Mater Sci Mater Electron 31:22629–22641. https://doi.org/10.1007/s10854-020-04774-w

    Article  CAS  Google Scholar 

  20. Ahmed H, Hashim A, Abduljalil HM (2020) Determination of optical parameters of films Of PVA/TiO2/SiC and PVA/MgO/SiC nanocomposites for optoelectronics and UV-Detectors. Ukr J Phys 65(6). https://doi.org/10.15407/ujpe65.6.533

  21. Hadi A, Hashim A, Al-Khafaji Y (2020) Structural, optical and electrical properties of PVA/PEO/SnO2 new nanocomposites for flexible devices. Trans Electr Electron Mater 21:283–292. https://doi.org/10.1007/s42341-020-00189-w

    Article  Google Scholar 

  22. Hashim A (2021) Synthesis of SiO2/CoFe2O4 nanoparticles doped CMC: exploring the morphology and optical characteristics for photodegradation of organic dyes. J Inorg Organomet Polym Mater 31:2483–2491. https://doi.org/10.1007/s10904-020-01846-6

    Article  CAS  Google Scholar 

  23. Ahmed H, Hashim A (2020) Structure, optical, electronic and chemical characteristics of novel (PVA-CoO) structure doped with silicon carbide. Silicon. https://doi.org/10.1007/s12633-020-00723-8

  24. Hashim A, Hamad ZS (2020) Lower cost and higher UV-absorption of polyvinyl alcohol/ silica nanocomposites for potential Applications. Egypt. J. Chem 63(2). https://doi.org/10.21608/EJCHEM.2019.7264.1593

  25. Hashim A, Abduljalil HM, Ahmed H (2020) Fabrication and characterization of (PVA-TiO2)1-x/ SiCx nanocomposites for biomedical applications. Egypt J Chem 63(1). https://doi.org/10.21608/EJCHEM.2019.10712.1695

  26. Abdallah OM, EL-Baghdady KZ, Khalil MMH et al (2020) Antibacterial, antibiofilm and cytotoxic activities of biogenic polyvinyl alcohol-silver and chitosan-silver nanocomposites. J Polym Res 27:74. https://doi.org/10.1007/s10965-020-02050-3

    Article  CAS  Google Scholar 

  27. Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21:355. https://doi.org/10.1007/s10965-014-0355-1

    Article  CAS  Google Scholar 

  28. Devi JM, Umadevi M (2014) Synthesis and characterization of silver–PVA nanocomposite for sensor and antibacterial applications. J Clust Sci 25:639–650. https://doi.org/10.1007/s10876-013-0660-6

    Article  CAS  Google Scholar 

  29. Chouhan S, Bhatt R, Bajpai AK, Bajpai J, Katare R (2015) Investigation of UV absorption and antibacterial behavior of zinc oxide containing poly(vinyl alcohol-g-acrylonitrile) (PVA-g-PAN) nanocomposites films. Fibers Polym 16:1243–1254. https://doi.org/10.1007/s12221-015-1243-y

    Article  CAS  Google Scholar 

  30. Ahmed H, Hashim A (2020) Fabrication of PVA/NiO/SiC nanocomposites and studying their dielectric properties for antibacterial applications. Egypt J Chem 63(3). https://doi.org/10.21608/EJCHEM.2019.11109.1712

  31. Kadhim KJ, Agool IR, Hashim A (2016) Synthesis of (PVA-PEG-PVP-TiO2) nanocomposites for antibacterial application. Materials Focus 5(5). https://doi.org/10.1166/mat.2016.1371

  32. Hashim A, Abduljalil H, Ahmed H (2019) Analysis of optical, electronic and spectroscopic properties of (Biopolymer-SiC) nanocomposites for electronics applications. Egypt J Chem 62(9). https://doi.org/10.21608/EJCHEM.2019.7154.1590

  33. Hind Ahmed and Ahmed Hashim, Structural, optical and electronic properties of silicon carbide doped PVA/NiO for low cost electronics applications, Silicon, https://doi.org/10.1007/s12633-020-00543-w, (2020)

  34. Al-Gunaid MQA, Saeed AMN, Subramani NK et al (2017) Optical parameters, electrical permittivity and I–V characteristics of PVA/Cs2CuO2 nanocomposite films for opto-electronic applications. J Mater Sci Mater Electron 28:8074–8086. https://doi.org/10.1007/s10854-017-6513-6

    Article  CAS  Google Scholar 

  35. Elhosiny Ali H, Khairy Y, Algarni H, Elsaeedy HI, Alshehri AM, Yahia IS (2018) Optical spectroscopy and electrical analysis of La3+-doped PVA composite films for varistor and optoelectronic applications. J Mater Sci Mater Electron 29:20424–20432. https://doi.org/10.1007/s10854-018-0176-9

    Article  CAS  Google Scholar 

  36. Ahmed H, Hashim A (2020) Geometry optimization, optical and electronic characteristics of novel PVA/PEO/SiC structure for electronics applications. Silicon. https://doi.org/10.1007/s12633-020-00620-0

  37. Hazim A, Abduljalil HM, Hashim A (2020) First principles calculations of electronic, structural and optical properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) nanocomposites for optoelectronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00224-w

  38. Hazim A, Abduljalil HM, Hashim A (2020) Structural, spectroscopic, electronic and optical properties of novel platinum doped (PMMA/ZrO2) and (PMMA/Al2O3) nanocomposites for electronics devices. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00210-2

  39. Ahmed H, Hashim A (2020) Design and characteristics of novel PVA/PEG/Y2O3 structure for optoelectronics devices. J Mol Model. https://doi.org/10.1007/s00894-020-04479-1

  40. Jebur QM, Hashim A, Habeeb MA (2019) Structural, electrical and optical properties for (polyvinyl alcohol–polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00121-x

  41. Hashim A, Structural E (2020) Optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applications. J Inorg Organomet Polym Mater 30. https://doi.org/10.1007/s10904-020-01528-3

  42. Angham H, Ahmed H, Hayder MA (2019) Analysis of structural and electronic, properties of novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2-Ag, PMMA -Ag) nanocomposites for low cost electronics and optics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00148-0

  43. Ahmed H, Hashim A (2021) Design of Polymer/lithium fluoride new structure for renewable and electronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-021-00340-1

  44. Hazim A, Abduljalil HM, Hashim A (2021) Design of PMMA doped with inorganic materials as promising structures for optoelectronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-021-00308-1

  45. Hadi A (2020) Influence of titanium oxide on properties of (Fe2O3–Sb2O3) nanocomposites for renewable energy and electronics applications. Trans Electr Electron Mater 21:267–273. https://doi.org/10.1007/s42341-020-00175-2

    Article  Google Scholar 

  46. Hazim A, Hashim A, Abduljalil HM (2021) Fabrication of novel (PMMA-Al2O3/Ag) nanocomposites and its structural and optical properties for lightweight and low cost electronics applications. Egypt J Chem 64(1). https://doi.org/10.21608/EJCHEM.2019.18513.2144

  47. Rashid FL, Talib SM, Hadi A, Hashim A (2018) Novel of thermal energy storage and release: water/(SnO2 -TaC) and water/(SnO2 –SiC) nanofluids for environmental applications. IOP Conf. Series: Materials Science and Engineering, 454 012113. https://doi.org/10.1088/1757-899X/454/1/012113

  48. Ma C, Wei C, Bai J, Deng J (2021) Paraffin-filled boron carbide/polyvinyl alcohol scaffolds with enhanced thermal energy storage and form stability. J Mater Sci 56:13259–13270. https://doi.org/10.1007/s10853-021-06153-0

    Article  CAS  Google Scholar 

  49. Kanemoto SO, Gouthaman S, Venkatesh M, Cheumani AM, Ndikontar MK, Suguna Lakshmi M (2021) Thermal performance of polyurethane nanocomposite from phosphorus and nitrogen-containing monomer, polyethylene glycol and polydimethylsiloxane for thermal energy storage applications. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-10478-4

  50. Valentini F, Dorigato A, Pegoretti A, Tomasi M, Sorarù GD, Biesuz M (2021) Si3N4 nanofelts/paraffin composites as novel thermal energy storage architecture. J Mater Sci 56:1537–1550. https://doi.org/10.1007/s10853-020-05247-5

    Article  CAS  Google Scholar 

  51. Hadi A, Rashid FL, Hussein HQ, Hashim A (2019) Novel of water with (CeO2-WC) and (SiC-WC) nanoparticles systems for energy storage and release applications. IOP Conference Series: Materials Science and Engineering, 518(3):5. https://doi.org/10.1088/1757-899X/518/3/032059

  52. Agool IR, Kadhim KJ, Hashim A Preparation of (polyvinyl alcohol–polyethylene glycol–polyvinyl pyrrolidinone–titanium oxide nanoparticles) nanocomposites: electrical properties for energy storage and release. Int J Plast Technol 20(1). https://doi.org/10.1007/s12588-016-9144-5

  53. Al-Attiyah KHH, Hashim A, Obaid SF (2019) Fabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applications. Int J Plast Technol 23(1). https://doi.org/10.1007/s12588-019-09228-5

  54. Hashim A, Al-Attiyah KHH, Obaid SF (2019) Fabrication of novel (Biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shielding. Ukr J Phys 64(2). https://doi.org/10.15407/ujpe64.2.157

  55. Frisch MJ, Clemente FR Gaussian 09, Revision A. 01, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino, G Zhe

  56. Kampen HM, Méndez H, Zahn DRT (1999) Energy level alignment at molecular semiconductor/GaAs (100) Interaces: where is the LUMO. University of Chemnitz, Institut fur, Germany, 28

  57. Sadasivam K, Kumaresan R (2011) Theoretical investigation on the antioxidant behavior of chrysoeriol and hispidulin flavonoid compounds–a DFT study. Comput Theor Chem 963(1):227–235

    Article  CAS  Google Scholar 

  58. Kolawole OA, Banjo S (2018) Theoretical studies of anti-corrosion properties of Triphenylimidazole derivatives in corrosion inhibition of carbon steel in acidic media via DFT approach

  59. Atkins PW, Friedman RS (2011) Molecular quantum mechanics. Oxford University Press

  60. Subramanian V (2005) Quantum chemical descriptors in computational medicinal chemistry for Chemoinformatics. Central Leather Research Institute, Chemical Laboratory

  61. Shenghua L, He Y, Yuansheng J (2004) Lubrication chemistry viewed from DFT-based concepts and electronic structural principles. Int J Mol Sci 5(1):13–34

    Article  Google Scholar 

  62. Camargo AJ, Honório KM, Mercadante R, Molfetta FA, Alves CN, da Silva AB (2003) A study of neolignan compounds with biological activity against Paracoccidioidesbrasiliensis by using quantum chemical and chemometric methods. J Braz Chem Soc 14(5):809–814

    Article  CAS  Google Scholar 

  63. Udhayakala P, Rajendiran TV (2011) Computational investigations on the corrosion inhibition efficiency of some pyridine based alkaloids. Journal of Chemical, Biological and Physical Sciences (JCBPS) 2(1):172

    Google Scholar 

  64. Zhu HX, Zhou PX, Li X, Liu JM (2014) Electronic structures and optical properties of rutile TiO2 with different point defects from DFT+ U calculations. Phys Lett A 378(36):2719–2724

    Article  CAS  Google Scholar 

  65. Arab A, Ziari F, Fazli M (2016) Electronic structure and reactivity of (TiO2) n (n= 1–10) nano-clusters: global and local hardness based DFT study. Comput Mater Sci 117:90–97

    Article  CAS  Google Scholar 

  66. Larkin P (2013) Infrared and Raman spectroscopy: principles and spectral interpretation, Elsevier Inc., ISBN 978-0-21-804162-8, 277 page

  67. Mansouri E, Mesbahi A, Malekzadeh R, Mansouri A (2020) Shielding characteristics of nanocomposites for protection against X- and gamma rays in medical applications: effect of particle size, photon energy and nano-particle concentration. Radiat Environ Biophys 59:583–600. https://doi.org/10.1007/s00411-020-00865-8

  68. Gerosa M, Bottani CE, Caramella L, Onida G, Di Valentin C, Pacchioni G (2015) Electronic structure and phase stability of oxide semiconductors: performance of dielectric-dependent hybrid functional DFT, benchmarked against G W band structure calculations and experiments. Phys Rev B 91(15):155201

    Article  Google Scholar 

  69. Jayakumar S, Saravanan T, Philip J (2017) Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites. Appl Nanosci 7:919–931. https://doi.org/10.1007/s13204-017-0631-6

Download references

Acknowledgments

acknowledgment to University of Babylon.

Funding

no funding.

Author information

Authors and Affiliations

Authors

Contributions

Hind Ahmed and Ahmed Hashim.

Corresponding author

Correspondence to Ahmed Hashim.

Ethics declarations

yes

Consent to Participate

Consent to participate.

Consent for Publication

Consent for Publication.

Conflict of Interest

no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H., Hashim, A. Exploring the Characteristics of New Structure Based on Silicon Doped Organic Blend for Photonics and Electronics Applications. Silicon 14, 4907–4914 (2022). https://doi.org/10.1007/s12633-021-01258-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01258-2

Keywords

Navigation